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Abstract

This paper focuses on the compressed sensing $\ell 1-\ell 2-$minimization model and develops new bounds on cumulative

coherence $\mu 1(s)$. We point out that if cumulative coherence $\mu 1(s)$ satisfies (2) or (11), then the sparse signal can

stably recover in noise model and exactly recover in free noise by $\ell 1-\ell 2$-minimization model.
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Abstract

This paper focuses on the compressed sensing
`1 − `2−minimization model and develops new
bounds on cumulative coherence µ1(s). We point
out that if cumulative coherence µ1(s) satisfies
(2) or (11), then the sparse signal can stably re-
cover in noise model and exactly recover in free
noise by `1 − `2-minimization model. .
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1 Introduction
Compression sensing is mainly used to recover high-
dimensional sparse vectors from low dimensional vec-
tors. Its mathematical model can be expressed as `0-
minimization model:

min
x∈Rn

‖x‖0 subject to y −Ax ∈ B,

where A ∈ Rm×n(m � n), is the measurement matrix,
y ∈ Rm is the measurement vector, x ∈ Rn is the sparse
vector to be recovered, ‖x‖0 calculate the number of nonze-
ro components in x, B = {0} indicates a noiseless case, and
B = {ε} indicates a noise case.

The `0-minimization model is NP-hard, and thus com-
putationally not feasible in high-dimensional sets [2]. For-
tunately, however, scholars found that the `1-minimization
model can solve the `0-minimization model well when mea-
surement matrix meets certain conditions [1, 2, 5].

Although the `1-minimization model yields considerable
results [1, 2, 5], it is not exactly equivalent to the `0-
minimization problem [4]. Hence, the `1 − `2-minimization
model has been proposed to replace the `1-minimization
model in the case where the `1-minimization model does
not execute well. The `1 − `2-minimization model can be
expressed as

min
x∈Rn

‖x‖1 − ‖x‖2 subject to ‖y −Ax‖2 ≤ ε (1)

where ‖x‖1 =
∑n

i=1 |xi|, ‖x‖2 =
√∑n

i=1 |xi|2.
In the literature, such as the `1-minimization model, the

`1− `2-minimization model is also solved based on the nul-
l space property, coherence, restricted orthogonality con-
stants [3], and restricted isometry property [3].

This paper continues to study the `1 − `2-minimization
model. The main contribution of our study is that we used
the cumulative coherence to solve the `1 − `2-minimization
model. We point out that if µ1(2s−1) combines with µ1(s−
1) satisfies (2) or cumulative coherence satisfies (11) then
the `1−`2-minimization model exactly recovers the s-sparse
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signal in the noiseless case and stable recovery in the noise
case.

We introduce related concepts in Section I. In Section II,
we present our main results and we conclude the paper in
Section III.

Notations: For x ∈ Rn, ‖x‖∞ = max
i∈[n]
|xi|, where [n] =

{1, 2, 3, · · · , n}. s ∈ R and xmax(s) is defined as the vector
x with all but the largest s entries in absolute value set to
zero, and x−max(s) = x − xmax(s). For y ∈ Rn, 〈x, y〉 =∑n

i=1 xiyi. T ⊂ [n], xT is defined as the vector (xT )i = xi,
if i ∈ T and (xT )i = 0 otherwise.

2 Preliminary

Definition 1 ( [2]) Let A ∈ Rm×n be a matrix with `2-
normalized columns A1, . . . , An (that is, ‖Ai‖2 = 1
for all i = 1, ..., n ). The cumulative coherence function
µ1(s) = µ1(A, s) of matrix A is defined for s ∈ [n− 1] by

µ1(s) = max
i∈[n]

max{
∑
j∈S

|〈Ai, Aj〉|, S ⊂ [n], card(S) = s, i /∈ S}

When the cumulative coherence of a matrix grows slow-
ly, we can informally say that the dictionary is quasi-
incoherent.

The following lemmas are needed in the proof of our main
results and we list them below.

Lemma 1 ( [2]) Let A ∈ Rm×n be a matrix with `2-
normalized columns and s ∈ [n]. For all s-sparse vectors
x ∈ Rn,

(1− µ1(s− 1))‖x‖22 ≤ ‖Ax‖22 ≤ (1 + µ1(s− 1))‖x‖22.

Lemma 2 ( [5]) Suppose that x is s-sparse and y is t-
sparse; then,

|〈Ax,Ay〉 − 〈x, y〉| ≤ µ1(s+ t− 1)‖x‖2‖y‖2.

Moreover, if supp(x) ∩ supp(y) = ∅, then

|〈Ax,Ay〉| ≤ µ1(s+ t− 1)‖x‖2‖y‖2.

Lemma 3 ( [1]) Let q and r be positive integers satisfying
r ≤ q ≤ 3r. Descending chain of real numbers

a1 ≥ a2 ≥ · · · ar ≥ b1 ≥ · · · ≥ bq ≥ c1 · · · ≥ cr ≥ 0

satisfies √√√√ q∑
i=1

b2i +

r∑
i=1

c2i ≤
∑r

i=1 ai +
∑q

i=1 bi√
q + r

.

3 Main result
In this section, we present the main results. Theorem 1
shows that when µ1(3s−1) combines with µ1(2s−1) satisfy
some conditions, the `1−`2−minimization model can stably
recover an unknown signal.
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Theorem 1 Suppose that

µ1(3s− 1) + (

√
s+ 1√
2s− 1

)2µ1(2s− 1) < 1− (

√
s+ 1√
2s− 1

)2, (2)

then the solution x of `1 − `2-minimization model and the
original signal x satisfies

‖x− x‖2 ≤
(4 + 2

√
2)s

a1
ε+

a3
a2
‖xSc

0
‖1.

where a1 = (2s −
√

2s)
√

1− µ1(3s− 1) −
(
√

2s +
√

2s)
√

1 + µ1(2s− 1), a2 = (2s −√
2s)

√
1− µ1(3s− 1) − (

√
2s +

√
2s)

√
1 + µ1(2s− 1),

a3 = 2
√

2s
√

1− µ1(3s− 1) + 2
√

2s
√

1 + µ1(2s− 1)

Proof: Set S0 as the indices of the s largest entries of
x, S1 are the indices of the t largest entries of hSc

0
, S2 are

the indices of the next t largest entries of hSc
0
, and so on.

Firstly, we know that the kth largest value of hSc
0

obeys

|hSc
0
|k ≤ ‖hSc

0
‖1/k.

Set S01 = S0 ∪ S1; therefore,

‖hSc
01
‖22 ≤ ‖hSc

0
‖21

∑
k≥t+1

1/k2 ≤ ‖hSc
0
‖21/t. (3)

On the other hand, set x = x− h, then we have

‖x‖1 − ‖x‖2 ≥ ‖x+ h‖1 − ‖x+ h‖2.

Thus,

‖h‖2 + ‖x‖1 ≥ ‖x+ h‖2 − ‖x‖2 + ‖x‖1 ≥ ‖x+ h‖1.

Additionally,

‖x+ h‖1 = ‖(x+ h)S0‖1 + ‖(x+ h)Sc
0
‖1

≥ ‖xS0‖1 − ‖hS0‖1 + ‖hSc
0
‖1 − ‖xSc

0
‖1.

Combining the above two inequalities yield

‖hSc
0
‖1 ≤ ‖hS0‖1 + 2‖xSc

0
‖1 + ‖h‖2. (4)

The inequalities (4) and (3) give

‖hSc
01
‖2 ≤ (‖hS0‖1 + 2‖xSc

0
‖1 + ‖h‖2)/

√
t

≤
√
s/t‖hs0‖2 + (2‖xSc

0
‖1 + ‖h‖2)/

√
t,

and thus

‖h‖2 ≤ ‖hS01‖2 + ‖hSc
01
‖2

≤ (1 +
√
s/t)‖hS01‖2 + 2‖xSc

0
‖1/
√
t+ ‖h‖2/

√
t.

This yields

‖h‖2 ≤
√
t+
√
s√

t− 1
‖hS01‖2 +

2√
t− 1

‖xSc
0
‖1. (5)

From Lemma 1, we have

‖Ah‖2 = ‖AS01hS01 +
∑
i≥2

ASihSi‖2

≥ ‖AS01hS01‖2 − ‖
∑
i≥2

ASihSi‖

≥ ‖AS01hS01‖2 −
∑
i≥2

‖ASihSi‖2

≥
√

1− µ1(s+ t− 1)‖hS01‖2 −
√

1 + µ1(t− 1)
∑
i≥2

‖hSi‖2

(6)

Now, we note that for i ≥ 1 and k ∈ Si+1,

|hk| ≤ ‖hSi‖1/t,

then
‖hSi+1‖

2
2 ≤ ‖hSi‖

2
1/t.

This and inequality (4) give∑
i≥2

‖hSi‖2 ≤
∑
i≥1

‖hSi‖1/
√
t = ‖hSc

0
‖1/

√
t ≤

√
s/t‖hS0‖2 + 2‖xSc

0
‖1/
√
t+ ‖h‖2/

√
t.

(7)

Combining (6) and (7), we obtain:

‖Ah‖2 ≥ (
√

1− µ1(s+ t− 1)−
√
s/t

√
1 + µ1(t− 1))‖hS01‖2

−
2
√

1 + µ1(t− 1)√
t

‖xSc
0
‖1 −

√
1 + µ1(t− 1)√

t
‖h‖2.

If √
1− µ1(s+ t− 1)−

√
s/t

√
1 + µ1(t− 1) > 0, (8)

then, by combining ‖Ah‖2 ≤ 2ε and the above two inequal-
ities, we have

‖hS01‖2 ≤
1

a4
(2ε+

2
√

1 + µ1(t− 1)√
t

‖xSc
0
‖1+

√
1 + µ1(t− 1)√

t
‖h‖2).

where a4 =
√

1− µ1(s+ t− 1)−
√
s/t

√
1 + µ1(t− 1).

If

(t−
√
t)
√

1− µ1(s+ t− 1)−(
√
st+
√
t)
√

1 + µ1(t− 1) > 0,
(9)

it follows from the above two inequalities and inequality (5)
that

‖h‖2 ≤
2t+ 2

√
st

(t−
√
t)
√

1− µ1(s+ t− 1)− (
√
st+

√
t)
√

1 + µ1(t− 1)
ε

+
2
√
t
√

1− µ1(s+ t− 1) + 2
√
t
√

1 + µ1(t− 1)

(t−
√
t)
√

1− µ1(s+ t− 1)− (
√
st+

√
t)
√

1 + µ1(t− 1)
‖xSc

0
‖1.

(10)
It is easy to know that inequality (9) is sufficient for in-
equality (8), and inequality (9) is equivalent to

µ1(s+ t− 1) + (

√
s+ 1√
t− 1

)2µ1(t− 1) < 1− (

√
s+ 1√
t− 1

)2.

Condition (2) ensures that the inequality above holds when
t = 2s. Hence, from inequality (10), we can get the conclu-
sion of the theorem. �

The following theorem provides another condition that
can ensure stable recovery of unknown signals by `1 −
`2-minimization model. This condition is accompanied
through additional parameters. We can choose appropri-
ate parameters to meet our requirements. The following
lemma is needed in the proof of the following theorem.

Lemma 4 If positive integer a, b ≥ 2, s satisfies

µ1(s+ a− 1) +

√
s+ 1√
b− 1

µ1(s+ a+ b− 1) ≤ 1,

then

b−
√
b−(b−

√
b)µ1(s+a−1)−(

√
sb+
√
b)µ1(s+a+b−1) ≥ 0,

and

1− µ1(s+ a− 1)−
√
s

b
µ1(s+ a+ b− 1) ≥ 0.

This lemma is simple, therefore we can ignore its proof.
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Theorem 2 Suppose that

µ1(s+ a− 1) +

√
s+ 1√
b− 1

µ1(s+ a+ b− 1) ≤ 1 (11)

holds for some positive integers a and b, satisfying 2a ≤
b ≤ 4a. Then, the solution x of `1− `2-minimization model
and the original signal x satisfy

‖x− x‖2 ≤
2(b+

√
sb)

√
1 + µ1(s+ a− 1)

c1
ε+

c2
c1
‖x−max(s)‖1.

where c1 = b−
√
b−(b−

√
b)µ1(s+a−1)−(

√
sb+
√
b)µ1(s+

a+b−1), c2 = 2
√
b−2
√
bµ1(s+a−1)+2

√
bµ1(s+a+b−1).

Proof: Without a loss of generality, we assume the first
s coordinates of x are the largest in magnitude. Making a
rearrangement if necessary, we may also assume that

|h(s+ 1)| ≥ |h(s+ 2)| ≥ · · · .

Set T0 = {1, 2, · · · , s}, T∗ = {s + 1, s + 2, · · · , s + a} and
Ti = {s+ a+ (i− 1)b+ 1, · · · , s+ a+ ib}, i = 1, 2 · · · , with
the last subset of size less than or equal to b. Let h0 = hT0 ,
h∗ = hT∗ and hi = hTi for i ≥ 1.

First, we divide each vector hi into two pieces. Set Ti1 =
{s + a + (i − 1)b + 1, · · · , s + ib} and Ti2 = Ti − Ti1 =
{s+ 1 + ib, · · · , s+ a+ ib}. We note that |Ti1| = b− a and
|Ti2| = a for all i ≥ 1. Let hi1 = hTi1 and hi2 = hTi2 .
Note that a ≤ b−a ≤ 3a. Applying Lemma 3 to the vectors
h∗, h11, h12 and h(i−1)2, hi1, hi2 for i = 2, 3, · · · , we obtain,

‖h1‖2 ≤
‖h∗‖1 + ‖h11‖1√

b
, ‖h2‖2 ≤

‖h12‖1 + ‖h21‖1√
b

, · · · ,

‖hi‖2 ≤
‖h(i−1)2‖1 + ‖hi1‖1√

b
, · · · .

Additionally, inequality (4) holds. Cauchy–
Buniakowsky–Schwarz inequality and (4) yield∑

i≥1

‖hi‖2 ≤
‖h∗‖1 +

∑
i≥1 ‖hi‖1

√
b

=
‖h− h0‖1√

b

≤
‖h0‖1 + 2‖x−max(s)‖1 + ‖h‖2√

b

≤
√
s

b
‖h0‖2 +

2‖x−max(s)‖1 + ‖h‖2√
b

≤
√
s

b
‖h0 + h∗‖2 +

2‖x−max(s)‖1 + ‖h‖2√
b

.

(12)

From Lemmas 1, 2, and (12), we have

|〈Ah,A(h0 + h∗)〉|

= |〈A(h0 + h∗), A(h0 + h∗)〉+
∑
i≥1

〈Ahi, A(h0 + h∗)〉|

≥ (1− µ1(s+ a− 1))‖h0 + h∗‖22
−

∑
i≥1

µ1(s+ a+ b− 1)‖h0 + h∗‖2‖hi‖2

≥ ‖h0 + h∗‖2((1− µ1(s+ a− 1)−
√
s

b
µ1(s+ a+ b

− 1))‖h0 + h∗‖2 − µ1(s+ a+ b− 1)
2‖x−max(s)‖1 + ‖h‖2√

b
).

(13)
Additionally, ‖Ah‖2 = ‖A(x − x)‖2 ≤ ‖Ax − y‖2 + ‖Ax −
y‖2 ≤ 2ε. Combining Cauchy–Buniakowsky–Schwarz in-
equality and Lemma 1 yields

|〈Ah,A(h0 + h∗)〉| ≤ ‖Ah‖2‖A(h0 + h∗)‖2
≤ 2ε

√
1 + µ1(s+ a− 1)‖h0 + h∗‖2.

(14)

Combining (13), (14), (11) and Lemma 4 give

‖h0 + h∗‖2 ≤
2ε
√

1 + µ1(s+ a− 1)

1− µ1(s+ a− 1)−
√

s
b
µ1(s+ a+ b− 1)

+

µ1(s+ a+ b− 1)
2‖x−max(s)‖1+‖h‖2√

b

1− µ1(s+ a− 1)−
√

s
b
µ1(s+ a+ b− 1)

.

Therefore, the above inequality and (12) produce

‖h‖2 ≤ ‖h0 + h∗‖2 +
∑
i≥1

‖hi‖2

≤ (1 +

√
s

b
)‖h0 + h∗‖2 +

2‖x−max(s)‖1 + ‖h‖2√
b

≤ ((1 +

√
s

b
)
µ1(s+ a+ b− 1)

c4
+ 1)

2‖x−max(s)‖1 + ‖h‖2√
b

+

(1 +

√
s

b
)
2ε
√

1 + µ1(s+ a− 1)

c4
.

where c4 = 1− µ1(s+ a− 1)−
√

s
b
µ1(s+ a+ b− 1).

Simplifying the above inequality, from (11) and Lemma 4,
We can get the conclusion of the theorem. �

Theorem 2 and 1 naturally leads to the following conclu-
sion.

Theorem 3 Assume that the cumulative coherence of the
measurement matrix satisfies condition (2) or (11), and ε =
0 in `1 − `2-minimization model, then any s−sparse vector
can be accurately recovered through `1 − `2-minimization
model.

4 Conclusion
From this paper, we find that based on some condition of
cumulative coherence, the `1− `2−minimization model can
exactly recover s-sparse signals in noiseless cases and stably
recover s-sparse signals in the noise cases.
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