
P
os
te
d
on

4
J
an

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
67
28
58
98
.8
03
92
30
3/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

On-Demand JSON: A Better Way to Parse Documents?

Daniel Lemire1 and John Keiser1

1Universite TELUQ

January 4, 2023

Abstract

JSON is a popular standard for data interchange on the Internet. Ingesting JSON documents can be a performance bottleneck.

A popular parsing strategy consists in converting the input text into a tree-based data structure—sometimes called a Document

Object Model or DOM. We designed and implemented a novel JSON parsing interface—called On-Demand—that appears

to the programmer like a conventional DOM-based approach. However, the underlying implementation is a pointer iterating

through the content, only materializing the results (objects, arrays, strings, numbers) lazily. On recent commodity processors,

an implementation of our approach provides superior performance in multiple benchmarks. To ensure reproducibility, our work

is freely available as open source software.

1

R E S E A RCH ART I C L E

On-Demand JSON: A Better Way to ParseDocuments?
John Keiser1 | Daniel Lemire1*
1DOT-Lab Research Center, Université du
Québec (TELUQ), Montreal, Quebec, H2S
3L5, Canada
Correspondence
Daniel Lemire, DOT-Lab Research Center,
Université du Québec (TELUQ), Montreal,
Quebec, H2S 3L5, Canada
Email: lemire@gmail.com
Funding information
Natural Sciences and Engineering Research
Council of Canada, Grant Number:
RGPIN-2017-03910

JSON is a popular standard for data interchange on the In-
ternet. Ingesting JSON documents can be a performance
bottleneck. A popular parsing strategy consists in convert-
ing the input text into a tree-based data structure—sometimes
called a Document Object Model or DOM. We designed
and implemented a novel JSON parsing interface—called
On-Demand—that appears to the programmer like a con-
ventional DOM-based approach. However, the underlying
implementation is a pointer iterating through the content,
only materializing the results (objects, arrays, strings, num-
bers) lazily. On recent commodity processors, an implemen-
tation of our approach provides superior performance in
multiple benchmarks. To ensure reproducibility, our work
is freely available as open source software.
K E YWORD S
JSON, Semi-Structured Documents, Text Processing, SIMD
Instructions, Performance

1 | INTRODUCTION
There are several text-based semi-structured document formats (e.g., HTML, XML, JSON). JSON is maybe the most
popular format online for data interchange [1]. Several database systems such as CouchDB, RethinkDB, MongoDB,
SimpleDB and JSON Tiles [2] use JSON as their primary exchange format.

A JSON document must be stored in a valid Unicode (UTF-8) string. The JSON syntax is nearly a strict subset
of the popular programming language JavaScript. It has four primitive types (string, number, Boolean, null) and two
composed types (arrays and objects). An object takes the form of a series of key-value pairs between braces where
keys are strings and values can be primitive or composed types (e.g., {"name":"Jack","age":22}). An array is a

1

2 John Keiser and Daniel Lemire

{
"Width": 800,
"Height": 600,
"Title": "View from my room",
"Url": "http ://ex.com/img.png",
"Private": false ,
"Thumbnail": {

"Url": "http ://ex.com/th.png",
"Height": 125,
"Width": 100

},
"array": [

116,
943,
234

],
"Owner": null

}

root
"Width": 800
"Height": 600
"Title": "View from my room"
"Url": "http://ex.com/img.png"
"Private": false
"Thumbnail"

"Url": "http://ex.com/th.png"
"Height": 125
"Width": 100

"array"
116
943
234

"Owner": null

F IGURE 1 JSON example with corresponding tree form

list of comma-separated values (either primitive of composed) between brackets (e.g., [1,"abc",null]). The JSON
specification has six structural characters (‘[’, ‘{’, ‘]’, ‘}’, ‘:’, ‘,’) to delimit the location and structure of objects and arrays.

Programmers rarely work directly on text-based semi-structured document formats: they prefer to work with
a software interface—a parser—providing automated validation and text-to-data conversion. There are two popular
general-purpose parsing strategies [3]:
• Many parsers process the input document (e.g., JSON,HTML, XML) immediately into an in-memory data structure.

Most web browsers use such an approach under the name Document Object Model (DOM): web pages (HTML)
are loaded in memory into an ordered tree, accessible as a data structure from a programming language such
as JavaScript [4]. Fig. 1 illustrates how a JSON document might be viewed as an ordered tree. A DOM-like
approach is convenient, but it requires that the original document be materialized in memory. If the programmer
is only interested in a subset of the document, they must still construct the whole tree. Further, even when the
programmer needs to ingest the whole document, they may need to copy the data into their own data structures
and data types. Hence the materialization of the tree might be unnecessary and wasteful.

• There are also event-based or streaming strategies. The document is processed from the beginning, and each
newly encountered component is an event: e.g., the beginning of a string, the beginning of an array, the end of
an array, etc. In some instances, the programmer may provide functions corresponding to each event. E.g., a
programmer might have a function that is triggered each time a string is encountered. One of the most popular
families of such parsers might be Simple API for XML (SAX) [5]. Streaming approaches can be efficient: if the
programmer only needs to capture part of the input document, they can ignore everything else. The programmer
may also write the data to their own data structures directly, without the need to materialize a full tree in a tem-
porary memory buffer. We may use these efficient strategies for specific tasks such as well-defined queries (e.g.,
JSONPath [6]). We may also apply them to the deserialisation of specific data structures: a popular framework
that serves this purpose in Rust is called serde [7]. For general-purpose tasks, streaming strategies might be chal-
lenging to the programmer. For example, the programmer may need to write their own code to track their logical
location within the document. Without help, the programmer may end up with streaming code that is not highly
efficient.
It is possible to parse JSON at high speedwith DOM-like approaches. The simdjson DOMparser [8] can construct

an ordered tree at a speed of over 2GiB s−1 on realistic inputs. However, we might be able to go even faster if

John Keiser and Daniel Lemire 3

auto doc = parser . iterate (json) ;
for (object point_object : doc["coordinates"]) {
x += double (point_object ["x"]) ;
y += double (point_object ["y"]) ;
z += double (point_object ["z"]) ;

}

F IGURE 2 On-Demand C++ source code used by the kostya JSON benchmark

we skip the in-memory construction of the ordered tree. The conventional approach to avoid the materialization
of the document as an in-memory data structure is to adopt a streaming strategy. However, even when it would
provide superior performance (e.g., 2× or 3× faster), we believe that many programmers would still prefer the DOM-
like approach for convenience.

For high-efficiency and convenience, we want to offer to the programmer a lazily evaluated tree [9]: if the pro-
grammer only needs one number out of a larger document, we allow the programmer to navigate to this one number
using as little effort as possible, and to only materialize this one number. When the input document is an array (e.g.,
[1,2,3]), we propose to offer to the programmer what appears to be an array data structure, but is just an iterator
over the values in the array. For objects (e.g., {"one":1, "two":2, "three":3} in JSON), we iterate over key-value
pairs. The parsing of the values is delayed until it is needed: the programmermay choose to skip unneeded values. Fur-
thermore, we seek to provide as much flexibility to the programmer as possible. A given value appearing in JSON as a
number may be parsed by the programmer as an integer, a floating-point number, or a string; a string (e.g., "3.1416")
can be parsed as number; and so forth. We call this lazy parsing strategy On-Demand. We refer to On-Demand as a
front-end: it is a programming interface for the programmer that serves to abstract much of the complexity necessary
for correct and efficient parsing.

An open-source implementation of our proposal (simdjson On-Demand) provides high speed. A long-standing
benchmark of several JSON parsers1 (henceforth Kostya) starts with a 10 000-long array of coordinates in JSON (e.g.,
{"coordinates":[{"x":2.0,"y":0.5,"z":0.25}, ...]}) and requires that the parser sums all ‘x‘ values, all ‘y‘ val-
ues and all ‘z‘ values. The On-Demand source code specific to this benchmark is provided in Fig. 2. The results are
updated regularly, but the On-Demand approach is often ranked in first position among ≈ 75 competitors. We present
some of the results in Table 1 for July 2022. The nearest competitor which does not sacrifice floating-point accuracy
is Serde in the Rust programmming language. A highly efficient C++ approach (DAW JSON Link) is practically on par
with On-Demand in performance and it offers a functionality similar to Serde, with other specialized compile-time
constructions, although without exact number parsing [8, 10].

We believe that the Kostya benchmark illustrates that an On-Demand front-end may achieve high performance
with a software interface that is both expressive—our code is generic—and accessible: our users’ code resembles that
of a DOM interface.

1https://github.com/kostya/benchmarks

4 John Keiser and Daniel Lemire

Library and Language Time (s) Energy Usage (J)
C++/g++ (simdjson On-Demand) 0.067 2.8

Rust (Serde) 0.11 5.6
C++/g++ (RapidJSON) 0.25 6.9
C++/g++ (Boost.JSON) 0.40 16

Go 0.86 36
C++/clang++ (Nlohmann) 1.3 53

Python 1.5 60
TABLE 1 Sample of the kostya JSON benchmark results (July 2022), after excluding techniques that fail to
provide exact number parsing. The benchmark is reported to run on an Intel Xeon E-2324G processor (Rocket Lake),
using a Debian distribution with GCC 12.1, Go 1.18.2, Rust 1.61 and Python 3.10.4. The test file is 115GB, the
timing excludes the time requires to load the file from disk.

2 | RELATED WORK
Our work builds on simdjson [8], specifically on its indexing stage. The simdjson parser was the first standard-
compliant JSON parser to process gigabytes of data per second on a single core using commodity processors. Given
an input JSON document, the simdjson parser identifies the starting location of all JSON nodes (e.g., numbers, strings,
null, true, false, arrays, objects) as well as all JSON structural characters (‘[’, ‘{’, ‘]’, ‘}’, ‘:’, ‘,’). The parser stores these
locations as integer indexes in a separate array. For example, given the array {"abc":2000}, we might have the in-
dexes 0, 1, 6, 7, 11. During this indexing stage, we must distinguish the characters that are between quotes, and thus
inside a string value, from other characters. For example, the JSON document "[1,2]\"" is a single string and we
only need to locate the first quote character. During the indexing phase, the simdjson parser also checks the Unicode
encoding using an efficient SIMD-based algorithm [11]. It also checks other rules such that we only find the ASCII
space, the horizontal tab, the line feed, the carriage return and the JSON structural characters (‘[’, ‘{’, ‘]’, ‘}’, ‘:’, ‘,’)
outside strings. The entirety of the indexing is done with in bit-parallel manner, and leveraging SIMD instructions
when available. It reads blocks of 64 bytes one after the other. From the 64 bytes, it generates a 64-bit word which
acts as a bitset: the location of each 1-bit indicates the potential location of a JSON structural character or the start
of a value. From this 64-bit word, we extract index locations to an array of integers, each 64-byte block generating
between zero to 32 index values. The software relies on runtime dispatching, first identifying the features supported
by the CPU and then calling on the appropriate function. The simdjson library is used by popular database systems
such as ClickHouse and StarRocks.

Though the simdjson parser provides state-of-the-art speed on single-core commodity processors, there are faster
JSON parsers on more specialized hardware. Using field-programmable gate arrays (FPGA), Dann et al. [12] designed
PipeJSON, the first standard-compliant JSON parser to process tens of gigabytes of data per second. It consists in
a JSON parser prototype with a simdjson-compatible interface, and it can serve as a drop-in replacement for the
simdjson parser. Hahn et al. [13] present a fast FPGA JSON filtering parser than can locate relevant components
with high accury and high speed. Peltenburg et al. [14] convert JSON to the Arrow format at the rate of tens of
gigabytes per second on an FPGA. Stehle and Jacobsen similarly achieve high speeds, using a graphical processing
unit (GPU) [15]. It is also possible to accelerate JSON parsing with multicore parallelism [16, 17].

John Keiser and Daniel Lemire 5
One of the advantages of our On-Demand approach is that the programmer can quickly skip irrelevant JSON

data. Consuming JSON faster by skipping irrelevant sections is a common strategy. Alagiannis et al. [18] query JSON
without loading it in their database—parsing only what is necessary. Bonetta and Brantner use just-in-time (JIT) com-
pilation and selective data access [19]. Jiang and Zhao [3] implemented a JSON streaming framework (JSONSki) to
fast-forward over different cases of irrelevant substructures. Li et al. present their fast parser, Mison which can jump
directly to a queried field without parsing intermediate content [20]. Mison uses SIMD instructions to quickly identify
some structural characters but otherwise works by processing bit-vectors in general purpose registers with branching
loops. Mison preceded simdjson and it is broadly similar to simdjson’s indexing. FishStore [21] parses JSON data and
selects subsets of interest, storing the result in a fast key-value store [22]. Though built originally on Mison, FishStore
has adopted simdjson2. Palkar et al. present Sparser: it filters quickly an unprocessed document to find mostly just
the relevant information [23], and then relies on a parser.

3 | ON-DEMAND FRONT-END
Conceptually, parsing with On Demand begins with the creation of a parser instance (ondemand::parser). The parser
is responsible for memory allocation and it can be reused from document to document. Given a parser instance, the
user calls the iterate method on a string input which returns a document instance (ondemand::document). The
method calls the simdjson indexing routine, and writes an index in the parser instance. Afterward, the front-end
consists essentially in a pointer over the document which we call internally a json_iterator: the iterator resides
within the document instance.

We typically traverse the document sequentially from the beginning to the end, always pointing at one pseudo-
structural character at a time. The json_iterator has also a reference to a pre-allocated string buffer—owned by
the parser instance—where we may decode JSON strings: strings in JSON may contain escaped characters (e.g., \n
or U0030) and we provide the user with an unescaped version stored in our own buffer.

During the processing of a valid JSON document, we point at a structural character (‘[’, ‘{’, ‘]’, ‘}’, ‘:’, ‘,’) or at the
beginning of a value:
• A quote character (‘"’) marking the beginning of either a string value or an object key.
• A digit or minus character (‘-’, ‘0’, . . . , ‘9’) marking the beginning of number.
• The letters ‘n’, ‘t’ or ‘f’ for the start of a null, true, or false token.
However not all of these states are accessible to the programmer: in the normal course of operation, the code points
at the beginning of an array (‘[’), at the beginning of an object (‘{’) or at the beginning of a value (number, string,
Boolean, null).

The On-Demand front-end validates the content that it parses. We may choose to skip a value (e.g., a string or
a number) and in which case the content of the value is not fully validated. For example, the JSON string [1,1b]

is invalid—because 1b is not a valid number string—but if it is not accessed (i.e., it is skipped), then no error may be
reported.

To help us keep track of the structure of the JSON document, our pointer instance (json_iterator) contains a
depth counter. When we enter an array or an object, the depth is incremented by one, and decremented by one when
we exit the object or the array. In case of an error or when we have consumed the whole document, the depth is set
to zero. Table 2 illustrates the depth model for the document from Fig. 1.

2https://github.com/microsoft/FishStore

6 John Keiser and Daniel Lemire
From the point of viewof the programmer, wemay create arrays and objects (ondemand::array and ondemand::object).

Yet these instances are mere thin wrappers and the creation of the instance translates into a check for the presence
of the right structural characters (‘[’, ‘{’, ‘]’, ‘}’). They record their starting position and their document depth. They
provide access to corresponding iterators over the elements of the arrays or the fields of the object.

When reading an object’s key-value pair, the key’s location is accessed and the pointer is moved to the associated
value. We return to the user a field structure containing a pointer to the key that was just read, and a reference
to the value. We may also seek a key within an object: when doing so, we scan for the presence of string instances
(recognized by a quote character ‘"’) preceded by a colon character (‘:’) at the depth of the current object. The
programmer might seek different key values as in Fig. 2: each time we advance through the content, with a possible
restart from the beginning if we arrive at the end of the object. We know that a key cannot be found if we have
scanned through the object entirely, with a possible restart from the beginning, arriving back to our starting point.
We always scan for keys from our current position, instead of systematically starting from the beginning. If the key
is not found then we are left pointing at the either the start of the object or at a comma. We are at the depth of the
object itself. When searching for a key, if the key is found then we are left pointing at the colon, and we are one depth
below the object itself. We then immediately advance to the value.

As much as possible, we rely on std::string_view instances. Unlike the conventional C++ std::string which
allocate their ownmemory, the std::string_view instances are thinwrappers around a character pointer. Thuswhen
we return a string value, we do not copy need to allocate a new buffer and to copy the content. Given a JSON value
(string, number, Boolean or null), the raw_json_token()method provides a direct (unprocessed) std::string_view
instance mapped to the original JSON string. Because the document is indexed, such a method can be implemented
using few instructions. Given an array or an object, a programmer can have direct access to the correspondingmemory
region in the original document: the raw_json() method returns a std::string_view instance representing the
unprocessed string representation of the array or object.

Most functions may return an error. To provide flexible error handling, our functions often return a value of a type
corresponding to the template simdjson_result. This template contains a pair of value: an error code and the actual
value. Hence, a get_double() method might return a structure containing an error code and a 64-bit floating-point
value of the type double. A simdjson_result instance throws an exception when we attempt to cast it to its value
type (e.g., double) if the error condition indicates an error. For users who prefer to avoid exception handling, we make
it possible to recover the value from a simdjson_result instance after checking the error condition. Most of our
methods (get_array(), get_object(), get_bool(), . . .) return simdjson_result instances. For convenience, we
can cast values directly to a given type (e.g., double) without explicitly creating a simdjson_result instance.

Fig. 3 illustrates how the On Demand front-end might work with a non-trivial example. Given a JSON document
made of an array of objects, we initiate a loop, accessing each element of the array as an object (car). Given such
an object, we may query some fields (e.g., model) but not others (e.g., make): unqueried fields are skipped as much as
possible. We may cast a value to a string, to an integer or to a floating-point value. In this particular example, if the
value does not match the desired type, then a C++ exception would be thrown. We also support arbitrary schema
through the type() method: it indicates whether the current node is potentially a number, a string, a Boolean, an
array, an object, etc.

John Keiser and Daniel Lemire 7

data type pointed text (prefix) depth
+document { "Width": 800, "Height": 60 1
+object { "Width": 800, "Height": 60 1
double 800, "Height": 600, "Title": 2
double 600, "Title": "View from my r 2
string "View from my room", "Url": " 2
string "http://ex.com/img.png", "Pri 2
bool false, "Thumbnail": { "Url" 2
bool false, "Thumbnail": { "Url" 2
+object { "Url": "http://ex.com/th.p 2
string "http://ex.com/th.png", "Hei 3
double 125, "Width": 100 }, "arra 3
double 100 }, "array": [116, 9 3
-object }, "array": [116, 943, 2
+array [116, 943, 234], "Ow 2
double 116, 943, 234], "Owner" 3
double 943, 234], "Owner": null 3
double 234], "Owner": null } 3
-array], "Owner": null } 2
skip null } 2
-object } 1

TABLE 2 Representation of the state of our On-Demand pointer as we move through the document. The ‘+’ and
‘-’ prefix on the data types indicate the beginning and end of arrays and objects respectively.

4 | EXPERIMENTS
We benchmark our On-Demand front-end on a recent Intel architecture. We use a non-virtual (metal) server from
Amazon Web Services (c6i.metal) configured with Ubuntu 22.04. These servers use 32-core Intel Xeon 8375C (Ice
Lake) processors having 41MiB of L3 memory: the cores have 48 kB of L1 data cache memory and 1.25MiB of L2
cache memory. They are rated with a base clock frequency of 2.9GHz and a maximal frequency of 3.5GHz. The
servers have 256GiB of main memory (DDR4, 3200MHz). The benchmarks are single-threaded and we exclude disk
and network accesses from our tests.

The software is written in C++ and compiled with GCC 12 using the default CMake setting for a release build:
-O3 -DNDEBUG. We do not compile for a specific processor architecture. The benchmarks are written using the Google
Benchmark (v1.6.0) framework.3

3https://github.com/google/benchmark

8 John Keiser and Daniel Lemire

ondemand: : parser parser ;
auto cars_json = R" ([
{ "make" : "Toyota" , "model" : "Camry" , "year":2018,
" tire_pressure" :[40.1 ,39.9 ,37.7 ,40.4]} ,
{ "make" : "Kia" , "model" : "Soul" , "year":2012,
" tire_pressure" :[30.1 ,31.0 ,28.6 ,28.7]} ,
{ "make" : "Toyota" , "model" : "Tercel" , "year":1999,
" tire_pressure" :[29.8 ,30.0 ,30.2 ,30.5]}
]) "_padded;
// Iterat ing through an array of objects
for (ondemand: : object car : parser . iterate (cars_json)) {
// Accessing a f ie ld by name
cout << "Model: " << std : : string_view (car ["model"]) << endl ;
// Casting a JSON element to an integer
uint64_t year = car ["year"] ;
cout << "− This car is " << 2020 − year << "years old . " << endl ;
// Iterat ing through an array of numbers
double total_tire_pressure = 0;
for (double tire_pressure : car [" tire_pressure"]) {
total_tire_pressure += tire_pressure ;

}
cout << "− Average t ire pressure : " << (total_tire_pressure / 4) << endl ;

}

F IGURE 3 On-Demand C++ example: it illustrates how we access key-value elements, handle integers and
strings.

Our benchmarking code is instrumented: we use the performance counters of the processors to record the number
instructions retired, the number of cycles and the number of mispredicted branches. It allows us to compute the actual
average processor frequency: we verify that it can reach 3.5GHz as expected.

To benchmark and validate our work, we need various tasks. Our goal is to compare On-Demand with existing
generic JSON parsers. We choose to compare against the following state-of-the-art C++ standard-compliant parsers.
• The yyjson parser is a C library that was released shortly after the first release of the simdjson library. According

to the author (private communication), the goal of the yyjson was to get as close as possible to simdjson, while
using only generic C code. We use the version 0.5.1, released on June 17, 2022.

• In earlier work, Langdale and Lemire selected RapidJSON and sajson as references. In 2018, RapidJSON was
described as the fastest raditional state-machine-based parser available [23]. Though they both have similar per-
formance, sajson only does partial UTF-8 validation. Given the introduction of yyjson, we keep only RapidJSON
(version 1.1.0, released in September 2018).

• We also include JSON for Modern C++ (version 3.10.5, from January 2022)—it is also known as Nlohmann/json.
It is a popular parser.

Though there are many other libraries, in different programming languages, we believe that these three choices rep-

John Keiser and Daniel Lemire 9
resent a good sample of competitive solutions. To test On-Demand, we use the simdjson library version 3.0 (released
in October 20224).

We use the JSON input as a database, and we seek to resolve some queries. We load all JSON documents
in memory prior to running the benchmark; we omit disk and network accesses. Our main test document is the
twitter.json file [8]: it is the result of a search for the character one in Japanese and Chinese using the Twitter API.
It contains 631 515 bytes, 2108 integers, 18 099 strings, 1264 objects and 1050 arrays. We picked the following tasks.
• json2msgpack: We must validate and convert the twitter.json file into a binary MessagePack (MsgPack for

short) equivalent. MessagePack is a binary format comparable to JSON [24]. We use a simple conversion: all
numbers are mapped to double types, all strings are prefixed by a 32-bit counter, and so forth. All our implemen-
tations rely on a recursive function call where the type of the current document node is queried and used as part
of a switch/case query. When an array or an object is encountered, its content is processed recursively. It is an
instance where the entire content of the file is consumed.

• partial tweets: The twitter.json file file consists of an object containing a field with the key statuses having as
a value an array. Each element of the array is a tweet as a JSON object. We seek to extract from each tweet the
fields created_at, id, text, in_reply_to_status_id, retweet_count, favorite_count and from a subobject
associated with the key user, we want to acquire the user’s id and the user’s screen_name. We expect that such
partial extraction of the content of a JSON document is common in practice.

• distinct user: In the twitter.json file, we seek to find all user identifiers (id) as 64-bit identifiers and store them
in an array implemented as a std::vector<uint64_t> instance. They are found as part of tweets (user/id) or
within retweet metadata (keys retweeted_status/user/id).

• find tweet: We seek the textual content (text) of the tweet having identifier 505874901689851904. There is only
one such tweet.

• top tweet: We scan all tweets and report the most retweeted one (according to retweet_count), returning the
screen_name of the author and the textual content (text).

• kostya: We reproduce the Kostya benchmark (see § 1 and Fig. 2), with less overhead and in a more controlled
setting (Google Benchmark). We use 524 288 triples stored in memory. The benchmark computes the sums of the
x, y, and z values.

• large random: We proceed with a task similar to the Kostya benchmark except that instead of summing up the
values, we construction three-value vectors and we append them to an array. We create, in memory, a temporary
JSON document made of 1 000 000 triples of floating-point values within objects (e.g., "x":0.14323412321,

"y":0.931321111, "z":0.0111141232312).
Table 3 presents the processing speed for various tasks. We define the speed as the size of the input divided by the

estimated elapsed time. Performance timings are heavily skewed toward the minimum; they do not follow a normal
distribution [25]. Accordingly, we present the best processing speed (out of all runs) and the average processing speed.
Except for the json2msgpack task, the On-Demand front-end is more than twice as fast as any competitor, except
maybe for the DOM version of simdjson.

Table 4 presents the number of CPU instructions retired by input byte. The number of instructions required
is stable in our tests (within 1%). We find that the On-Demand front-end requires far fewer instructions than the
competitors.

4https://github.com/simdjson/simdjson

10 John Keiser and Daniel Lemire
TABLE 3 Best and average processing speed in GiB s−1 for various tasks and implementations.
task simdjson (On Demand) simdjson (DOM) yyjson RapidJSON JSON for Modern C++
json2msgpack 2.5–2.7 1.8–2.0 0.81–1.3 0.41–0.45 0.025–0.027
partial tweets 5.3–5.8 3.2–3.4 1.0–2.0 0.40–0.49 0.096–0.11
distinct user 5.5–5.9 3.2–3.5 1.0–1.9 0.40–0.49 0.10–0.12
find tweet 9.0–9.8 3.4–3.7 1.0–2.1 0.41–0.51 0.12–0.13
top tweet 5.5–6.0 3.3–3.6 1.0–1.9 0.41–0.50 0.088–0.093
kostya 2.7–3.0 1.6–1.8 0.73–0.77 0.54–0.57 0.096–0.10
large random 0.94–0.99 0.53–0.56 0.37–0.39 0.24–0.26 0.045–0.048

TABLE 4 Instructions per input byte for various task and JSON implementations.
task simdjson (On Demand) simdjson (DOM) yyjson RapidJSON JSON for Modern C++
json2msgpack 4.4 5.7 6.6 24.9 391.
partial tweets 2.3 3.5 4.7 23.0 110.
distinct user 2.2 3.4 4.7 23.0 102.
find tweet 1.3 3.3 4.6 22.8 84.7
top tweet 2.2 3.4 4.6 22.9 121.
kostya 3.7 5.9 7.0 19.3 111.
large random 11.5 20.1 19.4 44.3 260.

5 | CONCLUSION
Our work suggests that On-Demand might be a better approach for parsing semi-structured text documents when
high efficiency and high expressivity are important. To ensure reproducibility, our work is freely available as open
source software.

Future work should assess the generality of On-Demand. We should write On-Demand front-end in other pro-
gramming languages (e.g., Java, Rust, Go). We should apply it to other data sources (e.g., XML, CSV).

There are implementation design strategies that warrant further investigation. For example, our implementation
relies on a precomputed index, giving us the location of structural characters: it makes our implementation convenient
and the construction of the index is fast, but an On-Demand front-end may not require an index. Yet an even richer
document index might prove more beneficial in some cases: instead of merely indexing the location of the objects,
arrays and values, the index could be built with more information about the schema: e.g., the index could inform us
that we have encountered an array made of n integers.

Acknowledgements
We thank N. Boyer for his help writing benchmarks and tests.

John Keiser and Daniel Lemire 11
references
[1] Bray T, The JavaScript Object Notation (JSON)Data Interchange Format; 2017. Internet Engineering Task Force, Request

for Comments: 8259. https://tools.ietf.org/html/rfc8259.
[2] Durner D, Leis V, Neumann T. JSON Tiles: Fast Analytics on Semi-Structured Data. In: Proceedings of the 2021 Inter-

national Conference on Management of Data SIGMOD ’21, New York, NY, USA: Association for Computing Machinery;
2021. p. 445–458. https://doi.org/10.1145/3448016.3452809.

[3] Jiang L, Zhao Z. In: JSONSki: Streaming Semi-Structured Data with Bit-Parallel Fast-Forwarding New York, NY, USA:
Association for Computing Machinery; 2022. p. 200–211. https://doi.org/10.1145/3503222.3507719.

[4] Wood L, LeHors A, ApparaoV, Byrne S, ChampionM, Isaacs S, et al. DocumentObjectModel (DOM) level 1 specification.
W3C; 1998.

[5] Means SS. The Book of SAX. USA: No Starch Press; 2002.
[6] Jiang L, Sun X, Farooq U, Zhao Z. Scalable Processing of Contemporary Semi-Structured Data on Commodity Parallel

Processors - A Compilation-Based Approach. In: Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems ASPLOS ’19, New York, NY, USA: Association for
Computing Machinery; 2019. p. 79–92. https://doi.org/10.1145/3297858.3304008.

[7] Scott NW, Hodson DD, Dill R, Grimaila MR. Using Serde to Serialize and Deserialize DIS PDUs. In: 2020 International
Conference on Computational Science and Computational Intelligence (CSCI) IEEE; 2020. p. 1425–1428.

[8] Langdale G, Lemire D. Parsing gigabytes of JSON per second. The VLDB Journal 2019;28(6):941–960.
[9] Henderson P,Morris Jr JH. A lazy evaluator. In: Proceedings of the 3rd ACMSIGACT-SIGPLAN Symposium on Principles

on Programming Languages; 1976. p. 95–103.
[10] Lemire D. Number parsing at a gigabyte per second. Software: Practice and Experience 2021;51(8):1700–1727.
[11] Keiser J, Lemire D. Validating UTF-8 in less than one instruction per byte. Software: Practice and Experience

2021;51(5):950–964.
[12] Dann J, Wagner R, Ritter D, Faerber C, Froening H. PipeJSON: Parsing JSON at Line Speed on FPGAs. In: Data

Management on New Hardware DaMoN’22, New York, NY, USA: Association for Computing Machinery; 2022. https:
//doi.org/10.1145/3533737.3535094.

[13] Hahn T, Becher A, Wildermann S, Teich J. Raw filtering of JSON data on FPGAs. In: 2022 Design, Automation & Test in
Europe Conference & Exhibition (DATE) IEEE; 2022. p. 250–255.

[14] Peltenburg J, Hadnagy Á, Brobbel M, Morrow R, Al-Ars Z. Tens of gigabytes per second JSON-to-Arrow conversion
with FPGA accelerators. In: 2021 International Conference on Field-Programmable Technology (ICFPT) IEEE; 2021. p.
1–9.

[15] Stehle E, Jacobsen HA. ParPaRaw: Massively Parallel Parsing of Delimiter-Separated Raw Data. Proc VLDB Endow
2020 jan;13(5):616–628. https://doi.org/10.14778/3377369.3377372.

[16] Jiang L, Qiu J, Zhao Z. Scalable Structural Index Construction for JSON Analytics. Proc VLDB Endow 2020
dec;14(4):694–707. https://doi.org/10.14778/3436905.3436926.

[17] Pavlopoulou C, Carman Jr EP, Westmann T, Carey MJ, Tsotras VJ. A Parallel and Scalable Processor for JSON Data. In:
EDBT’18; 2018. .

[18] Alagiannis I, Borovica R, BrancoM, Idreos S, Ailamaki A. NoDB in Action: Adaptive Query Processing on Raw Data. Proc
VLDB Endow 2012 Aug;5(12):1942–1945.

12 John Keiser and Daniel Lemire
[19] Bonetta D, Brantner M. FAD.Js: Fast JSON Data Access Using JIT-based Speculative Optimizations. Proc VLDB Endow

2017 Aug;10(12):1778–1789.
[20] Li Y, Katsipoulakis NR, Chandramouli B, Goldstein J, Kossmann D. Mison: A Fast JSON Parser for Data Analytics. Proc

VLDB Endow 2017 Jun;10(10):1118–1129.
[21] Xie D, Chandramouli B, Li Y, Kossmann D. FishStore: Faster Ingestion with Subset Hashing. In: Proceedings of the 2019

International Conference on Management of Data SIGMOD ’19, New York, NY, USA: ACM; 2019. p. 1711–1728.
[22] Chandramouli B, Prasaad G, Kossmann D, Levandoski J, Hunter J, Barnett M. FASTER: A Concurrent Key-Value Store

with In-Place Updates. In: Proceedings of the 2018 International Conference on Management of Data SIGMOD ’18,
New York, NY, USA: ACM; 2018. p. 275–290.

[23] Palkar S, Abuzaid F, Bailis P, Zaharia M. Filter before you parse: faster analytics on raw data with Sparser. Proceedings
of the VLDB Endowment 2018;11(11):1576–1589.

[24] Ching T, Eddelbuettel D. RcppMsgPack: MessagePack Headers and Interface Functions for R. R Journal 2018;10(2).
[25] Hoefler T, Belli R. Scientific benchmarking of parallel computing systems: twelve ways to tell the masses when reporting

performance results. In: Proceedings of the international conference for high performance computing, networking,
storage and analysis; 2015. p. 1–12.

