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Abstract

Species distribution models (SDMs) have been widely used to project terrestrial species’ responses to climate change and are
increasingly being used for similar objectives in the marine realm. These projections are critically needed to develop strategies
for resource management and the conservation of marine ecosystems. SDMs are a powerful and necessary tool; however, they
are subject to many sources of uncertainty. To ensure that SDM projections are informative for management and conservation
decisions, sources of uncertainty must be considered and properly addressed. Here we provide ten overarching guidelines that
will aid researchers to identify, minimize, and account for uncertainty through the entire model development process, from the
formation of a study question to the presentation of results. These guidelines were developed at an international workshop
attended by over 50 researchers and practitioners. Although our guidelines are broadly applicable across biological realms, we
provide particular focus to the challenges and uncertainties associated with projecting the impacts of climate change on marine

species and ecosystems.
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Abstract

Species distribution models (SDMs) have been widely used to project terrestrial species’ responses to climate
change and are increasingly being used for similar objectives in the marine realm. These projections are
critically needed to develop strategies for resource management and the conservation of marine ecosystems.
SDMs are a powerful and necessary tool; however, they are subject to many sources of uncertainty. To
ensure that SDM projections are informative for management and conservation decisions, sources of uncer-
tainty must be considered and properly addressed. Here we provide ten overarching guidelines that will aid
researchers to identify, minimize, and account for uncertainty through the entire model development process,



from the formation of a study question to the presentation of results. These guidelines were developed at
an international workshop attended by over 50 researchers and practitioners. Although our guidelines are
broadly applicable across biological realms, we provide particular focus to the challenges and uncertainties
associated with projecting the impacts of climate change on marine species and ecosystems.

Introduction

Managing natural ecosystems in this era of global change requires accounting for the ongoing and anticipated
impacts of climate change. In general, species are tracking climates poleward (sensu IPCC 2022, Iverson et
al. 2019), but the rate, extent, and direction of movement for any individual species is highly uncertain.
While the primary application of species distribution models (SDMs) has been to predict the contemporary
distribution of a species based on the spatial variation of environmental covariates, they are becoming a
valuable tool to project the potential future distribution of those same species.

In the marine environment, increasing temperatures and other effects of climate change on ecosystems are
already impacting species, with changes in physiology and range shifts being among the most recognized
(Fredston-Hermann et al. 2020, Pecl Gretta et al. 2017, Portner and Peck 2010, Weiskopf et al. 2020).
Species will either shift their distribution and attempt to track changing environments, acclimate or evolve
in response to changing conditions, or become extirpated or possibly extinct (English et al. 2021, Holt
1990, Tittensor et al. 2021, Wiens et al. 2009). The three-dimensional marine realm presents some unique
challenges to adaptation. For example, the stratification of the water column and the strong correlation
between depth and dissolved oxygen can limit the ability of species to track colder water as it moves to
deeper depths (English et al. 2021, Wiens 2016). In addition, while marine species are better at tracking
climate shifts poleward than terrestrial species (Lenoir et al. 2020), human extractive activities (i.e., fishing)
are also shifting poleward, making it difficult to disentangle the different pressures (Pinsky and Fogarty
2012). In light of these challenges, SDM predictions have been successfully used to support various marine
resource management initiatives including conservation planning, fisheries management, risk assessments,
marine spatial planning, and emergency response initiatives (Baker et al. 2021, Sofaer et al. 2019, Young
and Carr 2015), and are a valuable tool to project the distributions of marine species (Brodie et al. 2022).

While there are many sources of uncertainty inherent to SDM predictions (Aradjo et al. 2019, Zurell et
al. 2020), the additional uncertainty associated with projections of species distributions into the future is
the focus of this paper. When SDMs are used to project how species will respond to environmental change
in the future, they rely on a space-for-time substitution (Elith and Leathwick 2009); in other words, they
assume that the current associations between species and environmental gradients across space will be
predictive of the way those species respond as the climate changes through time. Projecting SDMs into new
time periods, with potentially new climate conditions, introduces three additional sources of uncertainty:
(1) climate model uncertainty; (2) emissions scenario uncertainty; and (3) eco-evolutionary uncertainty.
These additional sources of uncertainty stem from the underlying biological and environmental data, the
climate projections, as well as the complexity and context dependency of natural ecological systems (Urban
2019). This uncertainty can hamper confidence in model results or interpretation and can include both
parametric (uncertainty in model parameters or quantities of interest), and structural uncertainty (model
misspecification) (Elith et al. 2002).

SDMs can provide critical information to fisheries and conservation managers, such as the identification of
areas where species are projected to persist, increase, or decline under climate change. However, if uncertainty
is not accounted for and addressed, there is a risk that species projections will, at best, fail to be informative
for making management decisions, and at worst, lead to poor management decisions by presenting overcon-
fident or inaccurate results. We argue that to produce rigorous SDM projections that meaningfully inform
management decisions, uncertainty must be identified, minimized when possible, and communicated to end
users. The themes of this paper were discussed by over 50 researchers and practitioners at an international
workshop hosted by Fisheries and Oceans Canada in March 2021. Here, we propose a set of ten guidelines
for addressing uncertainties when projecting marine species distributions under climate change, including
identifying the sources of uncertainty, their impacts on the analytical process and results, approaches to



manage these uncertainties, and how to appropriately communicate them to end users.
Guidelines for using SDMs to project marine species

We break down the SDM analysis process into six main steps: goal setting, data selection, model building,
model evaluation and validation, interpretation of results, and communication of results. We propose guide-
lines that support a logical workflow starting from articulating the goals of the study, through the modeling
process, and finally communicating results to other scientists, resource managers, and policy makers (Figure
1). For each step in the SDM process, we have identified key questions for analysts to consider and linked
them to the guidelines that will help to answer those questions. At each step, we outline best practices with
a focus on how to identify and minimize uncertainty, when possible, and how to transparently communicate
the uncertainty that cannot be avoided.

1. Frame the research question

Clearly stating the research questions (i.e., the problem, the objectives, and the hypotheses) is essential
to ensure that objectives are considered throughout the analysis and support transparent and reproducible
SDM results (Aratjo et al. 2019, Zurell et al. 2020). A research outline (Table 1) can communicate the
intention of the research, explicitly state the scope of the study, and help identify any assumptions that may
impact the outcome of the study. This understanding can support qualitative identification of the tolerance
for uncertainty. For example, if projections of occurrence, rather than biomass or abundance, are suitable
for the objectives of the study, it may be possible to combine data collected using different surveys because
presence-absence data are less sensitive than biomass data to differences in gear type and methodology.
Laying out the study plan provides a clear communication tool for all parties involved in the research and
its outcomes.

2. Ensure the scope of study is relevant, both in space and in time

The choice of extent and resolution in both space and time can impact the accuracy of SDM projections and
affect their utility to support management decisions. It is assumed when projecting distributions into future
climates that species distributions across spatial climate gradients will match species responses to temporal
changes in climate.

Applications of SDMs to marine species have often involved fitting models with observations from a subset
of the species’ range within geopolitical boundaries (e.g., Thorson et al. 2015). While these types of SDMs
may be appropriate for questions related to specific assessments, they are ill-suited to climate change ap-
plications. Using only a subset of data in space or time will usually lead to truncated species-environment
relationships and introduce uncertainty in the fitted SDM parameters. When projecting into future climates,
these truncated models are likely to have reduced transferability as they are extrapolating beyond the range
of observed conditions where they are not calibrated or validated, and therefore generate poor distribution
projections (Charney et al. 2021, Muhling et al. 2020, Thuiller et al. 2004). To characterize the species’ full
niche, species observations should be sourced from the widest spatial and temporal extent available that best
addresses the research question (Barbet-Massin et al. 2010, Thuiller et al. 2004).

The spatial resolution of environmental covariates should also be at a biologically relevant scale for the
taxa being modeled (Austin and Van Niel 2011). For example, the relevant scale for the relationship between
bathymetry and a highly migratory pelagic fish species (e.g., tuna) is likely coarser than that for an intertidal
invertebrate (e.g., oyster). One challenge with modeling at an appropriate scale is that the available spatial
resolution of environmental covariates may not match the resolution of the species observations. In these
cases, environmental covariates should be up- or down-scaled (Aratjo et al. 2019, Hijmans et al. 2005). Future
climatic variables are necessarily coarse since they are typically modeled at a global scale. Downscaling
methods can be applied to match the desired scale in an attempt to capture the variability at the scale
relevant to the organism; however, this process may introduce additional uncertainty. Modeling at coarser
spatial resolutions than is biologically appropriate can increase uncertainty in projections by over- or under-
predicting habitat (Franklin et al. 2013, Gottschalk et al. 2011, Randin et al. 2009, Seo et al. 2008, Willis



and Bhagwat 2009). Importantly, the spatial scale at which species projections are generated should be
considered when making management decisions. Coarser resolution models (e.g.,100 km) that do not resolve
local topographic features, for example, may not be well suited to support local management decisions (e.g.,
within a 10 km squared coastal protected area).

The temporal resolution of environmental covariates is another important consideration for building models
that characterize the full species niche. Ideally, the temporal resolution of the environmental covariates should
match the scale of the species data to reduce uncertainty in the species-environment relationship (Aratjo
et al. 2019, Batalden et al. 2007). Many SDMs are static and are built using environmental covariates
derived from climatologies (i.e., long-term means) (Bateman et al. 2012). These models ignore interannual
variability and exclude extreme weather events and thus will not be well calibrated to the full range of
conditions experienced by the species over time (Bateman et al. 2012). Comparison between models built
with different temporal data may be necessary.

Errors in the observation and environmental data, as well as spatial and temporal sampling biases can impact
the extent of available data and create uncertainty in projections (Fernandes et al. 2019, Naimi et al. 2014,
Osborne and Leitao 2009). Although it may not be feasible to resolve these issues, mapping both observations
and environmental data can illustrate where these gaps occur and may be important information to share
with end users.

3. Identify appropriate species data

While consistent and standardized datasets of presence/absence or abundance are ideal for minimizing un-
certainty when building SDMs, they may not be readily available or logistically feasible. For example, marine
species of commercial importance may have standardized stock assessment or catch monitoring data availa-
ble, whereas non-commercial species may only have sporadic presence-only data. Existing data may also come
from a biased subset of a species range or be biased to a certain time of year due to logistical constraints or
data collection priorities.

Alternative information sources may confirm or expand species observation data. For example, environmental
DNA (eDNA) is becoming increasingly viable, particularly for bony fishes (Muha et al. 2017). Advancements
in imagery analysis also allow for biological surveys of coastal habitats with remotely piloted aircraft (e.g.,
drones; (Monteiro et al. 2021). Citizen science platforms and global databases can provide observational
data, trading sample size for potential inaccuracy and spatial bias (Beck et al. 2014, Johnston et al. 2020).
Expert and Indigenous Knowledge can also be used in conjunction with survey data to capture the extent of
a species’ distribution (Merow et al. 2017, Skroblin et al. 2021). Although they each have limitations, these
data sources are increasing the availability of species data.

Combining data sources can fill in gaps in any individual dataset. For example, this approach has been used
to define the spatio-temporal distribution of Killer Whales (Watson et al. 2019). However, analysts must
consider the biases that may result from differences across data sources. For example, catchability often
varies by fishing gear type, and data collected from fisheries may be non-random and preferentially sampled
(Fletcher et al. 2019). Hybrid models using more complex statistical structures to combine datasets from
different sources can increase the power of a model while still accounting for biases and variances of the
individual datasets (Rufener et al. 2021, Thorson et al. 2021).

Information on a species’ ecology can be used to improve the uncertainty regarding the accuracy of model
predictions. For instance, dispersal barriers, ontogenetic shifts, and biotic influences on aggregations (e.g.,
spawning) affect model accuracy and performance (Robinson et al. 2011). Dispersal barriers are less common
in marine systems (Carr et al. 2003), but may be important to incorporate as post-hoc constraints to SDM
predictions for species with lower dispersal capacities (Robinson et al. 2011). Uncertainty may be reduced
by splitting observation data between adults and juveniles if a species occupies habitats with different
environmental conditions across its life stages (Petitgas et al. 2013). Experimentally derived responses can
be applied to compare the fundamental niche of a species relative to the realized niche modeled by SDMs
(Franco et al. 2018, Martinez et al. 2015) or incorporated as priors in Bayesian SDMs (Gamliel et al. 2020).



Though physiological limits are unknown for many marine species, this information is particularly valuable
for SDM projections as distributions will be underestimated when observed locations are constrained by
non-climatic factors (Araujo and Peterson 2012).

4. Determine relevant climatic and non-climatic environmental variables

There are two key considerations when identifying relevant environmental variables: 1) their ability to des-
cribe species responses to current environmental conditions; and 2) the uncertainties that exist in how those
responses may change in future climates (guideline #8). Many studies have shown temperature-related va-
riables to be among the most powerful predictors of species distributions (Bosch et al. 2018, Bradie and
Leung 2017). A variety of mechanisms have been identified through experiments, models, and observations
of extreme thermal events whereby temperature affects biological processes such as development, dispersal,
growth, and species interactions (Boyd et al. 2013, Kordas et al. 2011, O’Connor et al. 2007, Sunday et
al. 2012). Understanding these mechanisms can help to determine the most suitable temporal values (e.g.,
average daily maximum temperature, warmest month, or cumulative values such as growing degree days).
However, data availability and realism must also be considered when selecting climatic variables. If biological
knowledge suggests that extreme temperature events contribute to limiting the local-scale distribution of a
species, it is necessary to determine whether the spatial and temporal resolution of the data (both from
observations and climate models) are sufficient to resolve such events. Global climate models are most suited
to projecting changes in the statistics of a climate phenomenon (e.g., mean temperature or the frequency
of an event), rather than the magnitude of an extreme event, and the confidence in those extreme event
projections can depend on the variable and region (Seneviratne et al. 2012).

Static, non-climatic variables are essential to reduce uncertainty when projecting species distributions (Willis
and Bhagwat 2009). Ignoring non-climatic variables that limit species distributions increases the risk of over-
fitting the climatic variables, and over- or under-estimating changes in a species’ distribution and extinction
risk under climate change (Beaumont et al. 2005, Hof et al. 2012, Virkkala et al. 2010, Zangiabadi et al.
2021). In the marine realm, excluding physical habitat variables such as bathymetry can be problematic as
they are often correlated with climatic variables that are difficult to measure or model, such as food availabi-
lity, but integral to predicting habitat (Luoto and Heikkinen 2008). Unlike climatic variables, static variables
can either be used as predictors in a model or used as a filter to constrain the model domain depending
on the question and research objective. For example, when projecting kelp distribution, which requires hard
substrate for attachment, substrate type can be included as a model covariate, or the model projections can
be restricted to areas with hard substrate.

Highly complex and overfit models tend to perform well within the environmental space the model was
trained with but may perform poorly when projecting into future conditions (Bell and Schlaepfer 2016,
Moreno-Amat et al. 2015). To limit model complexity, biological knowledge should be relied on to select
the relevant environmental variables (Austin and Van Niel 2011). Preference should be to include the most
proximate variables, those that have a direct physiological effect on the species being modeled, over more
distal or indirect variables that are often used as proxies when proximal variables are missing (Anderson 2013,
Garduner et al. 2019). Some commonly used static variables (e.g., depth and distance from shore; (Bosch et al.
2018, Johnson et al. 2019)) are considered proxies for other variables, such as pressure and exposure. When
proxy variables are needed to represent important processes, practitioners should note that an assumption
of stationarity between the proxy variable and the more direct variable it aims to represent is implicit when
projecting species distributions.

Variable selection can simplify complex models by seeking subsets of predictor variables that still allow good
predictive accuracy (Piironen and Vehtari 2017). Nevertheless, careful consideration of the causal link between
each environmental variable and the focal species is needed to prevent the removal of an environmental
variable that may be influential in a different set of conditions. In addition, collinearity between variables can
make their independent influence on a species range hard to distinguish. This can be particularly problematic
for temperature and depth in marine systems; although they are often highly correlated at regional scales,
temperature is projected to warm while depth remains constant (e.g., Thompson et al. 2022a). Projections



require that SDMs have accurately estimated how these two variables shape species ranges. A solution is to
include species data from across a broader spatial extent where latitudinal temperature gradients can break
down the collinearity between temperature and depth (Thompson et al. 2022b).

5. Select the SDM model

SDM models range from parametric, to semiparametric (e.g., Shelton et al. 2014), to various forms of non-
parametric approaches including MaxEnt (Phillips et al. 2006) and machine- or deep-learning models (e.g.,
Christin et al. 2019, Elith et al. 2008). Furthermore, SDMs can be purely phenomenological (e.g., correlative,
Jarnevich et al. 2015) or built on assumed mechanisms and calibrated to data (e.g.,Essington et al. 2022,
Kearney and Porter 2009). Correlative models may perform well on existing data but not extrapolate well if
those correlations break down (e.g., Davis et al. 1998). Mechanistic models are grounded in physiological and
biological principles, and may outperform correlative models in future conditions, but are often challenging
to construct (Kearney and Porter 2009, Urban 2019). Hybrid models incorporate known mechanisms in
addition to phenomenological correlations, and have the potential to borrow advantages from both kinds of
models (Kearney and Porter 2009). Creating ensembles by combining the outputs from several individual
models utilizing different algorithms can improve predictive ability (Aratjo and New 2007, but see Hao et
al. 2020) and can be as simple as unweighted or weighted averages (Araijo and New 2007) or as complex
as super-ensembles tuned to simulated or trusted data (Anderson et al. 2017). However, an ensemble is only
as good as the individual models used to build it, therefore some effort is required to choose a high quality
candidate set; using models with different covariates or structure may help identify misspecification of any
single model.

A recent advance in SDMs is the move from single-species models to multi-species models known as Joint
Species Distribution Models (JSDMs; Warton et al. 2015). For example, JSDMs have been used to understand
the joint influence of ongoing environmental change and fishing pressure on groundfish species richness in
Canada’s Pacific waters (Thompson et al. 2022a). The flexible hierarchical structure makes it possible to
account for correlation among species and provide more robust uncertainty estimates, and allows relevant
biological information (e.g., functional trait and phylogenetic information) to be added to the model. While
species correlations from JSDMs do not necessarily represent species interactions (Dormann et al. 2018,
Pollock et al. 2014), they can be used to understand when there is substantial statistical correlation between
species in their shared response to the environment (as represented in the model) or residual correlation (not
explained by the model). Finally, there are models for different taxonomic and spatial scales (e.g., for alpha,
beta, and gamma diversity; (summarized in Pollock et al. 2020)) that can be appropriate depending on the
specific objectives. For example, if the objective can be evaluated with species diversity or biomass rather
than information from individual species, then macroecological models could provide sufficient results with
fewer input data.

Model choice can influence uncertainty and should therefore be guided by the objectives of the analysis,
the model fit, and model evaluation. For this reason, it is critical to start with a set of candidate models
that can support the objectives of the analysis. These candidate models may include different variables or
differing parameterization of these variables. Second, it is necessary to evaluate candidate models for any
problems in the fit itself (e.g., failure to converge, non-sensible response curves) as well as violations of their
assumptions (e.g., residual analysis, (Rufener et al. 2021); posterior predictive checks, (Gelman et al. 1996)).
Several approaches are available to compare among candidate models meeting the above criteria. Information
theoretic approaches such as AIC (Akaike 1973) or predictive model selection tools such as the Leave One Out
Cross-Validation Information Criterion (LOOIC) (Vehtari et al. 2017) can help evaluate model parsimony;
a more parsimonious model should in theory make better predictions (e.g., Aho et al. 2014). However, these
approaches are not typically designed to evaluate projections and are generally limited to parametric models.
Finally, practitioners should compare the predictive accuracy of all candidate models using hold-out data,
such as in cross-validation. Threshold-independent statistics (e.g., receiver operator curve plots) can be used
to assess overall model performance and the models’ discriminatory ability across species and locations;
while threshold-dependent statistics (e.g., sensitivity, specificity, true skill statistic) can support accuracy



assessment (Freeman and Moisen 2008, Liu et al. 2011).
6. Identify climate model uncertainty

Global Climate Models (GCMs) are process-based models that include coupled atmosphere, ocean and land
models, representing the fundamental components of the climate system (Flato 2011). When coupled to
models of biogeochemical cycling, they are known as Earth System Models (ESMs) and are the primary
scientific tools for estimating future climate states. ESMs from major climate modeling centres participate in
coordinated experiments, including the Coupled Model Intercomparison Project (CMIP), which has evolved
through six discrete phases of activity over the past 30 years. The future trajectory of human activity and the
associated greenhouse gas emissions are unknown, so future socio-economically based emissions scenarios are
developed to illustrate the range of possible pathways. Climate models driven by these emissions scenarios
produce projections of the future climate state. Each phase of CMIP contains new scenarios and updated
models, and concludes with the release of open data for downstream climate change studies (Eyring et al.
2016).

Global climate projections have three sources of uncertainty: 1) internal variability; 2) model uncertainty; and
3) scenario uncertainty (Hawkins and Sutton 2009). Internal variability arises from fluctuations in climate
(such as El Nifio), and within a single year this fluctuation can be larger than the climate signal itself.
The precise evolution of internal variability in future decades cannot be predicted. However, the range of
possible outcomes resulting from internal variability can be quantified by the spread across an ensemble of
realizations from the same model and scenario. Each realization starts from different initial conditions, and
while they will differ in their variability, they will each experience the same overall climate change.

Climate model uncertainty results from an imperfect understanding of the climate system, and from ass-
umptions and compromises made in representing this understanding in software-based numerical models. For
example, the global scale and process complexity in ESMs and limited supercomputing capacity constrains
the feasible resolution to about 100 km. Processes that are not resolved at this scale (e.g., mesoscale ocean
eddies) are approximately represented by parameterizations that are imperfect and often differ between mo-
dels. Climate model uncertainty can be quantified by the spread obtained when multiple independent climate
models are run using the same climate scenario. Summary reports such as the IPCC Assessments normally
report on the multi-model mean result (IPCC 2021), which is generally more accurate than the projections
from any one model.

Regional SDMs often require information at finer spatial scales than ESMs can resolve, so the ESM outputs
must be downscaled to a finer spatial resolution. Dynamical downscaling uses a nested modeling approach
in which regional models are forced at their boundaries by ESMs to generate finer resolution projections
(e.g., Holdsworth et al. 2021, Penia et al. 2019). These models directly solve the equations of motion at
regional scales and are particularly effective in regions where topographic effects on wind, temperature, and
precipitation are important. Regional model uncertainty can be quantified by the spread obtained when an
ensemble of independent regional models is run using the same driving ESMs and climate scenario. Statistical
downscaling can be used to downscale ensembles of climate models. They rely on the assumption that regional
climates are driven by large-scale influences and often require a target fine-resolution simulation to train on.
Both downscaling techniques inherit all the uncertainties from their parent ESMs and also introduce their
own sources of uncertainty (e.g., Giorgi and Gutowski 2015). To minimize model uncertainty, bias correction
methods can be applied prior to using global or regionally downscaled climate variables in SDMs, though
depending on the research question, this may add additional uncertainty to the analysis process (Maraun
2016, Xu et al. 2021).

Finally, scenario uncertainty arises because the future of human behavior, and the resulting emissions and
land use changes, are unknown. Scenario uncertainty is quantified by comparing different scenarios run by
the same model (or ensemble of models). CMIP6 created an ensemble of projections for a discrete range of
climate scenarios. Broadly, the uncertainty is given by the range between the highest and lowest emissions
scenarios (SSP585 and SSP119 in CMIP6). Though, it has been argued that the extreme high and low



scenarios are less plausible and unnecessarily inflate uncertainty (Hausfather and Peters 2020). Communities
of practice are forming to help inform relevant scenario selection by users (Stammer et al. 2021).

The relative magnitude of each source of uncertainty (internal, model, and scenario) largely depends on the
spatial and temporal scales and variables of interest (Hawkins and Sutton 2009). At global averaging scales,
scenario uncertainty tends to dominate, and internal variability is typically the least important, particularly
in the distant future. However, at regional scales and for nearer-term time horizons (<20 years), model
variability and internal variability can be significantly larger (Frolicher et al. 2016).

Propagation of climate projection uncertainties into downstream SDM models presents a challenge. Ideally,
SDM projections would be generated from all possible regional models, which had downscaled all possible
ESMs, for all possible scenarios. While this approach is not practically possible, it conceptually illustrates
the full cascade of uncertainty, which increases at each step of the process in moving from ESM climate
projections to end-use impact studies such as species distributions (Falloon et al. 2014). A more feasible
approach to estimating these uncertainties is to generate several SDM projections from a representative
range of regional models, which themselves are driven by a representative ensemble of ESMs and scenarios.
Unfortunately, the necessary data for these robust uncertainty estimates are often not available. While there
is some coordination under projects like the Coordinated Regional Downscaling Experiment (CORDEX;
Giorgi and Gutowski 2015), there is no equivalent to the CMIP ensemble, particularly for the ocean. Hence,
users are forced to construct these representative downscaled ensembles themselves, and to be explicit about
the uncertainties that cannot be represented in their SDM projections.

7. Identify SDM uncertainty

Species distribution models can have at least three main sources of uncertainty (sensu Hilborn 1987). The
first is from regular environmental and biological variation (‘noise’) that influences a species’ distribution
but is well observed and can be accounted for in a model and contributes to parameter uncertainty and
observation error. The second source of uncertainty is the impact of extreme and unpredictable events, and
their effect on species distributions, which can be dramatic (Anderson and Ward 2019). Unanticipated events
(e.g., tsunamis, disease outbreaks, extreme heat waves) not captured in the observations used to fit the SDM
may only be partially accounted for in the SDM projections. For example, it may be unknown how a species
will respond to extreme temperatures that are beyond observed values used to build the projections and
beyond the documented temperature range for the species. Finally, there is the uncertainty stemming from
ecological patterns and processes that are only partially understood, or what Hilborn (1987) calls uncertain
states of nature. This can include uncertainty related to climate model outputs (guideline #6), the suitability
of one environmental variable as a proxy for another, and the influence of eco-evolutionary processes (e.g.,
species interactions, dispersal limitation, local adaptation; guideline #38).

A variety of approaches are available to account for uncertainty across possible states of nature. Multiple
models can be used to evaluate the influence of different combinations of covariates, or to characterize the
effect of a given covariate via linear or non-linear relationships. For example, Brodie et al. (2020) applied
three model types with different covariate configurations (spatiotemporal only, environmental only, and
both spatiotemporal and environmental) to estimate responses of fish species in the eastern Bering Sea.
Predictions from multiple SDM models or modeling assumptions can also be used to characterize the range
of such uncertainty (e.g., Nephin et al. 2020, Thuiller et al. 2019).

It is also critical to evaluate model accuracy and whether uncertainty intervals encompass true values. Cross-
validation provides a general tool to characterize how well an SDM may be accounting for uncertainty. Central
to effective cross-validation is choosing an appropriate blocking scheme to characterize the uncertainty of
interest (e.g., Roberts et al. 2017). For example, spatial blocking can assess how well an SDM can predict
into areas that are omitted from the training data, and temporal blocks can assess how well an SDM can
forecast periods of time that are omitted from the training data. Despite the importance of cross-validation,
it is important to consider that no cross-validation strategy will fully encompass the uncertainty introduced
by predicting under new climate change conditions.



In addition, to accurately project uncertainty from SDMs, the model needs to be statistically valid, accounting
for major sources of residual correlation caused by sampling schemes or spatial correlation from unmodeled
covariates (Legendre and Fortin 1989). Whenever possible, SDM model uncertainty should be included in
projections through error propagation methods (e.g., via hierarchical modeling or simulation—extrapolation;
Stoklosa et al. 2015). Random effects can provide a unified framework with which to integrate over uncertainty
from latent variables and residual correlation (Anderson et al. 2022, Shelton et al. 2014, Thorson and Minto
2014). However, the omission of relevant climate variables may cause spatial or spatiotemporal random effects
to absorb climate-driven variation and thereby underestimate projected impacts of climate change (guideline

#4).
8. Identify eco-evolutionary uncertainty

SDM modeling assumes that a species’ environmental niche can be estimated by correlating occurrences
or abundances with environmental variation across space. However, environmental conditions are only one
determinant of species distributions. Distributions are also influenced by interactions with other species,
spatial patterns of dispersal, and stochasticity (i.e., random events; Thompson et al. 2020, Vellend 2016).
Furthermore, SDMs also assume that all individuals of a species share the same environmental response
curves (Zurell et al. 2020) but this may not be true if subpopulations are locally adapted to the conditions
they experience (Aitken et al. 2008) or if environmental responses differ across life stages in an organism
(Kingsolver et al. 2011). Together, eco-evolutionary processes make the relationship between species distri-
butions and environmental conditions context-dependent (Urban et al. 2016) which introduces three types
of uncertainty when SDMs are used to project responses to future conditions: 1) uncertainty in the model
parameters, 2) uncertainty in the assumption that all individuals within a species will share the same en-
vironmental responses, and 3) uncertainty in how well current species-environment relationships will reflect
future species-environment relationships.

While parameter uncertainty may be partially captured in that of the fitted model (guideline #7), uncer-
tainty regarding how eco-evolutionary processes will alter species-environment relationships will not be. This
uncertainty stems from eco-evolutionary processes influencing whether or not a species will shift its distri-
bution at the same rate as the climate changes (Urban et al. 2016). If species are dispersal limited or if
habitat connectivity is low, they may not be able to shift their distributions fast enough to keep pace with
the changing climate (Schloss et al. 2012). Species will also only be able to establish in new habitats if there
is sufficient food, if obligate mutualists are also present, and if predators, competitors, parasites, and diseases
are not too abundant or prevalent (Alexander et al. 2015, Brown and Vellend 2014, Thompson and Gonzalez
2017, Zarnetske et al. 2012). The northward movement of the predatory whelk Mezacanthina lugubris into
new habitats is an example of range expansion that is mediated by a trophic interaction (Wallingford and
Sorte 2022). Alternatively, the loss of a competitor or predator may allow a species to expand its distribution
to a wider range of environmental conditions than it historically occupied (Urli et al. 2016). Additionally, spe-
cies that adapt—either evolutionarily or behaviorally—quickly to changing environmental conditions will not
need to shift their distributions as quickly, if at all (Bell and Gonzalez 2009, Carlson et al. 2014, Thompson
and Fronhofer 2019). These complex eco-evolutionary processes mean that species distributions under future
climates will inevitably differ from what SDMs project based on current species environmental associations,
and thus should be communicated as hypotheses (Urban et al. 2016). Such deviations may be due to the
emergence of extreme and unpredictable events (Anderson et al. 2017) such as disease outbreaks, species
interactions, invasive species, or simply from the fact that species ranges may not perfectly track changes in
climate (Wiens 2016).

Eco-evolutionary uncertainty is distinct from uncertainty associated with statistical model fitting (guideline
#7) and from climate model uncertainty (guideline #6). In cases where evidence of local adaptation or
phenotypic plasticity to climate variation is available, this information can be incorporated into SDMs (e.g.,
Benito Garzon et al. 2011, Homburg et al. 2014, Lowen et al. 2019, Valladares et al. 2014); however, for
most species, this information is lacking. One signal of local adaptation is that SDM parameter coefficients
may vary across the species range. This uncertainty can be assessed using spatial block cross-validation



or spatially varying coefficients. In addition, practitioners can account for eco-evolutionary uncertainty in
the interpretation and communication of the results (guideline #9). Much of the uncertainty associated
with eco-evolutionary processes stems from whether species will successfully establish in new locations, and
whether they will be lost in areas where conditions are projected to become unsuitable. Researchers can be
reasonably certain of areas where species are projected to persist in future climates, but less certain of areas
where species are projected to shift, and this can be highlighted when communicating SDM results (see Box
1). Where species are expected to shift, either as a range retraction or an expansion, monitoring programs
can help to understand species’ range dynamics and provide data to refine model(s) over time.

Box 1: No Regrets Strategy No regrets strategies for climate change adaptation are based on present day actions that can t

9. Communicate the results and uncertainties

For SDM projections to be used appropriately in science-based decision-making, it is imperative that the
results and associated uncertainty are communicated effectively to both technical and non-technical audiences
(Baron 2010, Corner et al. 2018, Raimi et al. 2017). In the context of the changing ocean, where ideal marine
management decisions achieve objectives both now and in the future, the clear communication of results aids
in reducing misinterpretation or dismissal of important findings (Brodie et al. 2022). Involving end users
throughout the development of SDM projections, from developing the study objectives to communication of
SDM outputs, will enhance mutual understanding (Dietz 2013, Guillera-Arroita et al. 2015, Villero et al.
2017). Such collaborations ensure that researchers are aware of the values held by end users in the decision
context, while end users understand the scope, proper interpretation, usage, and limitations of model outputs
(Dietz 2013, Villero et al. 2017).

Communication with the end users should consider their knowledge, expertise, and values. Use of common
and non-technical language to state the intent and spatial and temporal context of the SDM will clarify to
end users how the SDM can support operational needs. Where possible, it is important to communicate
results for time scales relevant to management. Managers often seek advice for operational needs over the
next five years, while climate change models project over a 50-100-year time scale. This time scale mismatch
and its implications for decision-making must be clearly stated and understood.

The narrative should lead first with all the information that is known or more certain, followed by the
process of discussing uncertainties and strategies to address them (Corner et al. 2018). It is important to
acknowledge that uncertainties exist in the modeling process and cannot be fully eliminated. Study caveats,
and the potential for major assumption violations during the analytical process, should be transparently
communicated (US National Research Council 2008). Communication strategies could include using stan-
dardized descriptions for statements of uncertainty (Budescu et al. 2012, IPCC 2021), as well as carefully
crafted analogies comparing climate change to other familiar decision making scenarios, such as disaster
preparedness (Raimi et al. 2017). Model outputs should be presented in the context of their certainty, and
effort should be directed to identifying and targeting advice using a no regrets strategy (Box 1). A certainty-
focused approach could help reduce uncertainty paralysis and improve objectives-based risk management
associated with climate-mediated change (Duplisea et al. 2021, Roux et al. 2022).

10. Build a collaborative community for SDMs in future climates

Teams with multidisciplinary expertise (e.g., biology, oceanography, climate science, statistics, data man-
agement, computer science) are essential to properly develop SDM projections and address the associated
uncertainty. Each step of the SDM analysis process (goal setting, data selection, model building, model
evaluation and validation, interpretation of results, and communication of results) may require a unique set
of experts to guide decisions. For example, data selection for a single species SDM projection would not
only involve species experts with a strong statistical background but would also require collaboration with
oceanographers and climatologists. Modeling steps in the analysis could involve additional support from

10



statisticians and computer scientists that include both biological and climate modeler expertise. Connec-
tions amongst communities of practice working on common objectives and building complimentary tools
can increase efficiency, reduce duplication of effort, and boost outcomes of research findings (e.g., Gomez
et al. 2021). Collaborative efforts can both facilitate, and be facilitated by, improved accessibility of all
predictors, species data, and model results; Bio-ORACLE is an example initiative aggregating geophysical,
biotic, and climate layers with common spatial resolution (Assis et al. 2018, Tyberghein et al. 2012). It
is important to make all input data, modeling methodology (including code), and decisions made during
the analysis process publicly available to facilitate reproducible research and greater collaboration (Nature
Editorials 2022, Nephin et al. 2020, Zurell et al. 2020).

Conclusion

Based on recommendations of an international workshop of SDM experts, we have outlined potential sources
of uncertainty linked to the various stages of analysis needed to complete an SDM projection into future
climates (Table 2). This begins with the need to identify sources of uncertainty during goal setting and
at the onset of an analysis (guidelines #1 and 2), while selecting relevant data sources (guidelines #3 and
4), throughout model building and evaluation (guideline #5), right through uncertainty estimation and the
interpretation of results (guidelines #6-8), and finally, during the communication of results (guidelines #9
and 10).

Through the application of SDM outputs, researchers and end users may identify important data gaps or
other elements that need to be reassessed for clarity; this feedback can lead to iterative improvement of
both the analytical process and resulting outputs. The need to build a community of practice that includes
a diversity of perspectives and skills for projecting marine species distributions is a challenge and a gap.
Partnerships between scientists, practitioners, and managers are necessary to evaluate approaches that can
lead to clear and consistent standards and science advice to support a variety of marine spatial planning
decisions now and in the years to come.

Many ecosystems have species and environmental data shortfalls that will limit a modeler’s ability to mini-
mize some sources of uncertainty in SDM projections. For example, there are currently few datasets available
of downscaled, high-resolution climate variables for marine regions and no coordinated global effort to de-
velop them. However, even in the absence of such data, these guidelines provide practical steps for identifying
the relevant sources of uncertainty, quantifying their magnitude, and communicating their effects. Following
these guidelines will help practitioners to identify areas of higher confidence where species distributions are
not expected to change. SDM projections may represent the best available knowledge to inform manage-
ment strategies; thus, it is essential to acknowledge and report on uncertainty to avoid poor management
decisions. By following the guidelines laid out in this review and communicating the decisions that were
made throughout the analysis process, SDM projections can be informative to researchers, managers, and
policy makers interested in planning for a changing and uncertain future climate.

Literature Cited

Aho, K., Derryberry, D. and Peterson, T. 2014. Model selection for ecologists: the worldviews of AIC and
BIC. Ecology 95 (3): 631-636.

Aitken, S.N., Yeaman, S., Holliday, J.A., Wang, T. and Curtis-McLane, S. 2008. Adaptation, migration or
extirpation: climate change outcomes for tree populations. Evolutionary applications 1 (1): 95-111.

Akaike, H. 1973. Information theory and an extension of the maximum likelihood principle. In 2nd Inter-
national Symposium on Information Theory. Akadémiai Kiadd, Budapest, Hungary. pp. 267-281.

Alexander, J.M., Diez, J.M. and Levine, J.M. 2015. Novel competitors shape species’ responses to climate
change. Nature 525 (7570): 515-518.

Anderson, R.P. 2013. A framework for using niche models to estimate impacts of climate change on species dis-
tributions. Annals of the New York Academy of Sciences 1297 (1): 8-28. https://doi.org/10.1111/nyas.12264.

11



Anderson, S.C. and Ward, E.J. 2019. Black swans in space: modeling spatiotemporal processes with extremes.
Ecology 100 (1): e02403. https://doi.org/10.1002/ecy.2403.

Anderson, S.C., Ward, E.J., English, P.A. and Barnett, L.A.K. 2022. sdmTMB: an R package for fast,
flexible, and user-friendly generalized linear mixed effects models with spatial and spatiotemporal random
fields. bioRxiv: 2022.2003.2024.485545. 10.1101,/2022.03.24.485545.

Anderson, S.C., Cooper, A.B., Jensen, O.P., Minto, C., Thorson, J.T., Walsh, J.C., Afflerbach, J., Dickey-
Collas, M., Kleisner, K.M. and Longo, C. 2017. Improving estimates of population status and trend with
superensemble models. Fish and Fisheries 18 (4): 732-741.

Araujo, M. and Peterson, A. 2012. Uses and misuses of bioclimatic envelope models. Ecology 93 : 1527-1539.
10.2307/23225219.

Araujo, M.B. and New, M. 2007. Ensemble forecasting of species distributions. Trends in ecology & evolution
22 (1): 42-47.

Araujo, M.B., Anderson, R.P., Marcia Barbosa, A., Beale, C.M., Dormann, C.F., Early, R., Garcia, R.A.,
Guisan, A., Maiorano, L., Naimi, B., O’Hara, R.B., Zimmermann, N.E. and Rahbek, C. 2019. Standards for
distribution models in biodiversity assessments. Science Advances5 (1): eaat4858. 10.1126/sciadv.aat4858.

Assis, J., Tyberghein, L., Bosch, S., Verbruggen, H., Serrao, E.A. and De Clerck, O. 2018. Bio-ORACLE
v2.0: Extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography 27 (3):
277-284. https://doi.org/10.1111/geb.12693.

Austin, M.P. and Van Niel, K.P. 2011. Improving species distribution models for climate change stud-
ies: variable selection and scale. Journal of Biogeography 38 (1): 1-8. https://doi.org/10.1111/j.1365-
2699.2010.02416.x.

Baker, D.J., Maclean, I.M.D., Goodall, M. and Gaston, K.J. 2021. Species distribution modelling
is needed to support ecological impact assessments. Journal of Applied Ecology 58 (1): 21-26.
https://doi.org/10.1111/1365-2664.13782.

Barbet-Massin, M., Thuiller, W. and Jiguet, F. 2010. How much do we overestimate future local extinction
rates when restricting the range of occurrence data in climate suitability models? Ecography 33 (5): 878-886.
https://doi.org/10.1111/j.1600-0587.2010.06181 .x.

Baron, N. 2010. Escape from the ivory tower : a guide to making your science matter. Island Press.

Batalden, R.V., Oberhauser, K. and Peterson, A.T. 2007. Ecological Niches in Sequential Generations
of Eastern North American Monarch Butterflies (Lepidoptera: Danaidae): The Ecology of Migration
and Likely Climate Change Implications. Environmental Entomology 36 (6): 1365-1373. 10.1603/0046-
225X(2007)36[1365:ENISGO|2.0.CO;2.

Bateman, B., Vanderwal, J. and Johnson, C. 2012. Nice weather for bettongs: Using weather events, not
climate means, in species distribution models. Ecography 35 : 306-314. 10.2307/41418669.

Beaumont, L., Hughes, L. and Poulsen, M. 2005. Predicting species distributions: Use of climatic parameters
in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecological Modelling
186 : 251-270. 10.1016/j.ecolmodel.2005.01.030.

Beck, J., Boller, M., Erhardt, A. and Schwanghart, W. 2014. Spatial bias in the GBIF database
and its effect on modeling species’ geographic distributions.  Ecological Informatics 19 : 10-15.
https://doi.org/10.1016 /j.ecoinf.2013.11.002.

Bell, D. and Schlaepfer, D. 2016. On the dangers of model complexity without ecological justification in
species distribution modeling. Ecological Modelling 330 : 50-59. 10.1016/j.ecolmodel.2016.03.012.

12



Bell, G. and Gonzalez, A. 2009. Evolutionary rescue can prevent extinction following environmental change.
Ecology letters12 (9): 942-948.

Benito Garzon, M., Alia, R., Robson, T.M. and Zavala, M.A. 2011. Intra-specific variability and plasticity
influence potential tree species distributions under climate change. Global Ecology and Biogeography 20
(5): 766-778. https://doi.org/10.1111/;.1466-8238.2010.00646.x.

Bosch, S., Tyberghein, L., Deneudt, K., Hernandez, F. and De Clerck, O. 2018. In search of relevant
predictors for marine species distribution modelling using the MarineSPEED benchmark dataset. Diversity
and Distributions 24 (2): 144-157. https://doi.org/10.1111/ddi.12668.

Boyd, P.W., Rynearson, T.A., Armstrong, E.A., Fu, F., Hayashi, K., Hu, Z., Hutchins, D.A., Kudela,
R.M., Litchman, E., Mulholland, M.R., Passow, U., Strzepek, R.F., Whittaker, K.A., Yu, E. and Thomas,
M.K. 2013. Marine Phytoplankton Temperature versus Growth Responses from Polar to Tropical Waters —
Outcome of a Scientific Community-Wide Study. PLOS ONE 8 (5): ¢63091. 10.1371/journal.pone.0063091.

Bradie, J. and Leung, B. 2017. A quantitative synthesis of the importance of variables used in MaxEnt
species distribution models. Journal of Biogeography 44 (6): 1344-1361. https://doi.org/10.1111/jbi.12894.

Brodie, S., Smith, J.A., Muhling, B.A., Barnett, L.A.K., Carroll, G., Fiedler, P., Bograd, S.J., Hazen,
E.L., Jacox, M.G., Andrews, K.S., Barnes, C.L., Crozier, L.G., Fiechter, J., Fredston, A., Haltuch, M.A.,
Harvey, C.J., Holmes, E., Karp, M.A., Liu, O.R., Malick, M.J., Pozo Buil, M., Richerson, K., Rooper, C.N.,
Samhouri, J., Seary, R., Selden, R.L., Thompson, A.R., Tommasi, D., Ward, E.J. and Kaplan, 1.C. 2022.
Recommendations for quantifying and reducing uncertainty in climate projections of species distributions.
Global Change Biology28 (22): 6586— 6601. https://doi.org/10.1111/gcb.16371.

Brodie, S.J., Thorson, J.T., Carroll, G., Hazen, E.L., Bograd, S., Haltuch, M.A., Holsman, K.K., Kotwicki,
S., Samhouri, J.F., Willis-Norton, E. and Selden, R.L. 2020. Trade-offs in covariate selection for species distri-
bution models: a methodological comparison. Ecography 43 (1): 11-24. https://doi.org/10.1111/ecog.04707.

Brown, C.D. and Vellend, M. 2014. Non-climatic constraints on upper elevational plant range expansion
under climate change. Proceedings of the Royal Society B: Biological Sciences 281 (1794): 20141779.

Budescu, D.V., Por, H.-H. and Broomell, S.B. 2012. Effective communication of uncertainty in the IPCC
reports. Climatic Change113 (2): 181-200. 10.1007/s10584-011-0330-3.

Carlson, S.M., Cunningham, C.J. and Westley, P.A. 2014. Evolutionary rescue in a changing world. Trends
in Ecology & Evolution29 (9): 521-530.

Carr, M.H., Neigel, J.E., Estes, J.A., Andelman, S., Warner, R.R. and Largier, J.L. 2003. Comparing Marine
and Terrestrial Ecosystems: Implications for the Design of Coastal Marine Reserves. Ecological Applications
13 (1): S90-S107.

Charney, N.D., Record, S., Gerstner, B.E., Merow, C., Zarnetske, P.L. and Enquist, B.J. 2021. A Test of
Species Distribution Model Transferability Across Environmental and Geographic Space for 108 Western
North American Tree Species. Frontiers in Ecology and Evolution9 (393). 10.3389/fevo.2021.689295.

Christin, S., Hervet, E. and Lecomte, N. 2019. Applications for deep learning in ecology. Methods in Ecology
and Evolution 10 (10): 1632-1644.

Circles of Social Life. 1996. No Regrets: Circles of Climate Change Adaptation. Available from
https://www.circlesofclimate.org/ [accessed April 27, 2022].

Corner, A., Shaw, C. and Clarke, J. 2018. Principles for effective communication and public engagement on
climate change A Handbook for IPCC authors outreach Project team Lead Authors Contributing Author
Editing & Production.

Davis, A.J., Jenkinson, L.S., Lawton, J.H., Shorrocks, B. and Wood, S. 1998. Making mistakes when
predicting shifts in species range in response to global warming. Nature 391 (6669): 783-786.

13



Dietz, T. 2013. Bringing values and deliberation to science communication. Proceedings of the National
Academy of Sciences110 (Supplement 3): 14081. 10.1073/pnas.1212740110.

Dormann, C., Bobrowski, M., Dehling, M., Harris, D., Hartig, F., Lischke, H., Moretti, M., Pagel, J.,
Pinkert, S., Schleuning, M., Schmidt, S., Sheppard, C., Steinbauer, M., Zeuss, D. and Kraan, C. 2018.
Biotic interactions in species distribution modelling: 10 questions to guide interpretation and avoid false
conclusions. Global Ecology and Biogeography 27 . 10.1111/geb.12759.

Duplisea, D.E., Roux, M.-J., Hunter, K.L.. and Rice, J. 2021. Fish harvesting advice under climate change:
A risk-equivalent empirical approach. PLOS ONE 16 (2): €0239503. 10.1371/journal.pone.0239503.

Elith, J. and Leathwick, J.R. 2009. Species Distribution Models: Ecological Explanation and Prediction
Across Space and Time. Annual Review of Ecology, Evolution, and Systematics 40 (1): 677-697. 10.1146/an-
nurev.ecolsys.110308.120159.

Elith, J., Burgman, M.A. and Regan, H.M. 2002. Mapping epistemic uncertainties and vague concepts in
predictions of species distribution. Ecological Modelling 157 (2): 313-329. https://doi.org/10.1016,/S0304-
3800(02)00202-8.

Elith, J., Leathwick, J.R. and Hastie, T. 2008. A working guide to boosted regression trees. Journal of
Animal Ecology 77 (4): 802-813. 10.1111/j.1365-2656.2008.01390.x.

English, P.A., Ward, E.J., Rooper, C.N., Forrest, R.E., Rogers, L.A., Hunter, K.L., Edwards, A.M., Connors,
B.M. and Anderson, S.C. 2021. Contrasting climate velocity impacts in warm and cool locations show that
effects of marine warming are worse in already warmer temperate waters. Fish and Fisheries 23 (1): 239-
255. https://doi.org/10.1111/faf.12613.

Essington, T.E., Anderson, S.C., Barnett, L.A.K., Berger, H.M., Siedlecki, S.A. and Ward, E.J.
2022. Advancing statistical models to reveal the effect of dissolved oxygen on the spatial distribu-
tion of marine taxa using thresholds and a physiologically based index. Ecography 2022 (8): e06249.
https://doi.org/10.1111/ecog.06249.

Eyring, V., Bony, S., Meehl, G.A., Senior, C.A., Stevens, B., Stouffer, R.J. and Taylor, K.E. 2016. Overview
of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization.
Geosci. Model Dev. 9 (5): 1937-1958. 10.5194/gmd-9-1937-2016.

Falloon, P., Challinor, A., Dessai, S., Hoang, L., Johnson, J. and Koehler, A.-K. 2014. Ensembles and
uncertainty in climate change impacts. Frontiers in Environmental Science 2 (33). 10.3389/fenvs.2014.00033.

Fernandes, R.F., Scherrer, D. and Guisan, A. 2019. Effects of simulated observation errors on
the performance of species distribution models. Diversity and Distributions 25 (3):  400-413.
https://doi.org/10.1111/ddi.12868.

Flato, G.M. 2011. Earth system models: an overview. ~WIREs Climate Change2 (6): 783-800.
https://doi.org,/10.1002 /wec.148.

Fletcher, R.J., Hefley, T.J., Robertson, E.P., Zuckerberg, B., McCleery, R.A. and Dorazio, R.M.
2019. A practical guide for combining data to model species distributions. Ecology 100 (6): e02710.
https://doi.org/10.1002/ecy.2710.

Franco, J.N., Tuya, F., Bertocci, I., Rodriguez, L., Martinez, B., Sousa-Pinto, I. and Arenas, F. 2018. The
‘golden kelp’ Laminaria ochroleuca under global change: Integrating multiple eco-physiological responses with
species distribution models. Journal of Ecology106 (1): 47-58. https://doi.org/10.1111/1365-2745.12810.

Franklin, J., Davis, F., Ikegami, M., Syphard, A., Flint, L., Flint, A. and Hannah, L. 2013. Modeling plant
species distributions under future climates: How fine scale do climate projections need to be? Global change
biology 19 : 473-483. 10.1111/gcb.12051.

14



Fredston-Hermann, A., Selden, R., Pinsky, M., Gaines, S.D. and Halpern, B.S. 2020. Cold range edges
of marine fishes track climate change better than warm edges. Global Change Biology 26 (5): 2908-2922.
https://doi.org,/10.1111/gcb.15035.

Freeman, E. and Moisen, G. 2008. A Comparison of the Performance of Threshold Criteria for Bi-
nary Classification in Terms of Predicted Prevalence and Kappa. Ecological Modelling 217 : 48-58.
10.1016/j.ecolmodel.2008.05.015.

Frolicher, T.L., Rodgers, K.B., Stock, C.A. and Cheung, W.W.L. 2016. Sources of uncertainties in 21st
century projections of potential ocean ecosystem stressors. Global Biogeochemical Cycles 30 (8): 1224-1243.
https://doi.org/10.1002/2015GB005338.

Gamliel, I., Buba, Y., Guy-Haim, T., Garval, T., Willette, D., Rilov, G. and Belmaker, J. 2020. Incorpo-
rating physiology into species distribution models moderates the projected impact of warming on selected
Mediterranean marine species. Ecography 43 (7): 1090-1106. https://doi.org/10.1111/ecog.04423.

Gardner, A.S., Maclean, I.M.D. and Gaston, K.J. 2019. Climatic predictors of species distribu-
tions neglect biophysiologically meaningful variables. Diversity and Distributions 25 (8): 1318-1333.
https://doi.org/10.1111/ddi.12939.

Gelman, A., Meng, X.-L. and Stern, H. 1996. Posterior predictive assessment of model fitness via realized
discrepancies. Statistica sinica: 733-760.

Giorgi, F. and Gutowski, W.J. 2015. Regional Dynamical Downscaling and the CORDEX Initiative. Annual
Review of Environment and Resources40 (1): 467-490. 10.1146/annurev-environ-102014-021217.

Gomez, C., Nephin, J., Lang, S., Feyrer, L., Keyser, F. and Lazin, G. 2021. Spatial Data, Analysis and
Modelling Forums: An initiative to broaden the collaborative research potential at DFO. Can. Tech. Rep.
Aquat. Sci. . 3416, pp. v + 36 p.

Gottschalk, T.K., Aue, B., Hotes, S. and Ekschmitt, K. 2011. Influence of grain size on species—habitat
models. Ecological Modelling222 (18): 3403-3412. https://doi.org/10.1016/j.ecolmodel.2011.07.008.

Guillera-Arroita, G., Lahoz-Monfort, J.J., Elith, J., Gordon, A., Kujala, H., Lentini, P.E., McCarthy, M.A.,
Tingley, R. and Wintle, B.A. 2015. Is my species distribution model fit for purpose? Matching data and mod-
els to applications. Global Ecology and Biogeography24 (3): 276-292. https://doi.org/10.1111/geb.12268.

Hao, T., Elith, J., Lahoz-Monfort, J.J. and Guillera-Arroita, G. 2020. Testing whether ensemble modelling
is advantageous for maximising predictive performance of species distribution models. Ecography43 (4):
549-558.

Hausfather, Z. and Peters, G. 2020. Emissions — the ‘business as usual’ story is misleading. Nature 577 :
618-620.

Hawkins, E. and Sutton, R. 2009. The Potential to Narrow Uncertainty in Regional Climate Predictions.
Bulletin of the American Meteorological Society 90 (8): 1095-1108. 10.1175/2009BAMS2607.1.

Heltberg, R., Siegel, P.B. and Jorgensen, S.L. 2009. Addressing human vulnerability to cli-
mate change: Toward a ‘no-regrets’ approach. Global Environmental Change 19 (1): 89-99.
https://doi.org/10.1016/j.gloenvcha.2008.11.003.

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. and Jarvis, A. 2005. Very high resolution inter-
polated climate surfaces for global land areas. International Journal of Climatology 25 (15): 1965-1978.
https://doi.org,/10.1002/joc.1276.

Hilborn, R. 1987. Living with uncertainty in resource management. North American Journal of Fisheries
Management 7 (1): 1-5.

15



Hoegh-Guldberg, O. and Bruno John, F. 2010. The Impact of Climate Change on the World’s Marine
Ecosystems. Science 328 (5985): 1523-1528. 10.1126/science.1189930.

Hof, A., Jansson, R. and Nilsson, C. 2012. The usefulness of elevation as a predictor variable in species
distribution modelling. Ecological Modelling 246 : 86-90. 10.1016/j.ecolmodel.2012.07.028.

Holdsworth, A.M., Zhai, L., Lu, Y. and Christian, J.R. 2021. Future Changes in Oceanography and Biogeo-
chemistry Along the Canadian Pacific Continental Margin. Frontiers in Marine Science 8 .

Holt, R.D. 1990. The microevolutionary consequences of climate change. Trends in Ecology & Evolution 5
(9): 311-315. https://doi.org/10.1016,/0169-5347(90)90088-U.

Homburg, K., Brandt, P., Drees, C. and Assmann, T. 2014. Evolutionarily significant units in a flightless
ground beetle show different climate niches and high extinction risk due to climate change. Journal of Insect
Conservation 18 (5): 781-790. 10.1007/s10841-014-9685-x.

IPCC. 1996. A brief overview of the IPCC Second Assessment Report. Climate Change Bulletin (10).

IPCC. 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the
Sixth Assessment Report of the Intergovernmental Panel on Climate Change.

IPCC. 2022. Climate Change 2022 Impacts, Adaptation and Vulnerability: Summary for Policymakers.

Iverson, L.R., Peters, M.P., Prasad, A.M. and Matthews, S.N. 2019. Analysis of Climate Change Impacts
on Tree Species of the Eastern US: Results of DISTRIB-II Modeling. Forests 10 (4). 10.3390/f10040302.

Jarnevich, C.S., Stohlgren, T.J., Kumar, S., Morisette, J.T. and Holcombe, T.R. 2015. Caveats for correlative
species distribution modeling. Ecological Informatics 29 : 6-15.

Johnson, K.F., Thorson, J.T. and Punt, A.E. 2019. Investigating the value of includ-
ing depth during spatiotemporal index standardization. Fisheries Research 216 :  126-137.
https://doi.org/10.1016/j.fishres.2019.04.004.

Johnston, A., Moran, N., Musgrove, A., Fink, D. and Baillie, S.R. 2020. Estimating species
distributions from spatially biased -citizen science data. Ecological Modelling 422 : 108927.
https://doi.org/10.1016/j.ecolmodel.2019.108927.

Kearney, M. and Porter, W. 2009. Mechanistic niche modelling: combining physiological and spatial data
to predict species’ ranges. Ecology letters 12 (4): 334-350.

Kingsolver, J.G., Arthur Woods, H., Buckley, L.B., Potter, K.A., MacLean, H.J. and Higgins, J.K. 2011.
Complex life cycles and the responses of insects to climate change. In Oxford University Press.

Kordas, R.L., Harley, C.D.G. and O’Connor, M.I. 2011. Community ecology in a warming world: The
influence of temperature on interspecific interactions in marine systems. Journal of Experimental Marine
Biology and Ecology 400 (1): 218-226. https://doi.org/10.1016/j.jembe.2011.02.029.

Kujala, H., Burgman, M.A. and Moilanen, A. 2013a. Treatment of uncertainty in conservation under climate
change. Conservation Letters6 (2): 73-85. https://doi.org/10.1111/j.1755-263X.2012.00299.x.

Kujala, H., Moilanen, A., Araujo, M.B. and Cabeza, M. 2013b. Conservation Planning with Uncertain
Climate Change Projections. PLOS ONE 8 (2): €53315. 10.1371/journal.pone.0053315.

Legendre, P. and Fortin, M.J. 1989. Spatial pattern and ecological analysis. Vegetatio 80 (2): 107-138.

Lenoir, J., Bertrand, R., Comte, L., Bourgeaud, L., Hattab, T., Murienne, J. and Grenouillet, G. 2020.
Species better track climate warming in the oceans than on land. Nature Ecology & Evolution4 (8): 1044-
1059. 10.1038/s41559-020-1198-2.

Liu, C., White, M. and Newell, G. 2011. Measuring and comparing the accuracy of species distribution
models with presence-absence data. Ecography 34 (2): 232-243.

16



Lowen, J.B., Hart, D.R., Stanley, R.R.E., Lehnert, S.J., Bradbury, I.LR. and DiBacco, C. 2019. Assessing
effects of genetic, environmental, and biotic gradients in species distribution modelling. ICES Journal of
Marine Science 76 (6): 1762-1775. 10.1093 /icesjms/fsz049.

Luoto, M. and Heikkinen, R.K. 2008. Disregarding topographical heterogeneity biases species
turnover assessments based on bioclimatic models. Global Change Biology 14 (3): 483-494.
https://doi.org/10.1111/j.1365-2486.2007.01527 .x.

Makino, A., Klein, C.J., Possingham, H.P., Yamano, H., Yara, Y., Ariga, T., Matsuhasi, K. and Beger,
M. 2015. The Effect of Applying Alternate IPCC Climate Scenarios to Marine Reserve Design for Range
Changing Species. Conservation Letters 8 (5): 320-328. https://doi.org/10.1111/conl.12147.

Maraun, D. 2016. Bias Correcting Climate Change Simulations - a Critical Review. Current Climate Change
Reports 2 (4): 211-220. 10.1007 /s40641-016-0050-x.

Martinez, B., Arenas, F., Trilla, A., Viejo, R.M. and Carreno, F. 2015. Combining physiological threshold
knowledge to species distribution models is key to improving forecasts of the future niche for macroalgae.
Global Change Biology 21 (4): 1422-1433. https://doi.org/10.1111/gcb.12655.

Merow, C., Wilson, A.M. and Jetz, W. 2017. Integrating occurrence data and expert maps
for improved species range predictions. Global Ecology and Biogeography 26 (2): 243-258.
https://doi.org/10.1111/geb.12539.

Monteiro, J.G., Jimenez, J.L., Gizzi, F., Piikryl, P., Lefcheck, J.S., Santos, R.S. and Canning-Clode, J.
2021. Novel approach to enhance coastal habitat and biotope mapping with drone aerial imagery analysis.
Scientific Reports 11 (1): 574. 10.1038/s41598-020-80612-7.

Moreno-Amat, E., Mateo, R.G., Nieto-Lugilde, D., Morueta-Holme, N., Svenning, J.-C. and Garcia-
Amorena, 1. 2015. Impact of model complexity on cross-temporal transferability in Maxent species dis-
tribution models: An assessment using paleobotanical data. Ecological Modelling312 : 308-317. htt-
ps://doi.org/10.1016/j.ecolmodel.2015.05.035.

Muha, T.P., Rodriguez-Rey, M., Rolla, M. and Tricarico, E. 2017. Using Environmental DNA to Improve
Species Distribution Models for Freshwater Invaders. Frontiers in Ecology and Evolution 5 : 158.

Mubhling, B.A., Brodie, S., Smith, J.A., Tommasi, D., Gaitan, C.F., Hazen, E.L., Jacox, M.G., Auth, T.D.
and Brodeur, R.D. 2020. Predictability of Species Distributions Deteriorates Under Novel Environmental
Conditions in the California Current System. Frontiers in Marine Science 7 (589). 10.3389/fmars.2020.00589.

Naimi, B., Hamm, N.A.S., Groen, T.A., Skidmore, A.K. and Toxopeus, A.G. 2014. Where is
positional uncertainty a problem for species distribution modelling? Ecography 37 (2): 191-203.
https://doi.org/10.1111/j.1600-0587.2013.00205.x.

Nature Editorials. 2022. Time to recognize authorship of open data. Nature 604 (8).

Nephin, J., Gregr, E.J., St. Germain, C., Fields, C. and Finney, J.L. 2020. Development of a Species Distri-
bution Modelling Framework and its Application to Twelve Species on Canada’s Pacific Coast. DFO Can.
Sci. Advis. Sec. Res. Doc. . 2020/004, pp. xii + 107 p.

O’Connor, M., Bruno, J., Gaines, S., Halpern, B., Lester, S., Kinlan, B. and Weiss, J. 2007. Temperature
control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proceedings of
the National Academy of Sciences of the United States of America 104 : 1266-1271. 10.1073 /pnas.0603422104.

Osborne, P.E. and Leitao, P.J. 2009. Effects of species and habitat positional errors on the perfor-
mance and interpretation of species distribution models. Diversity and Distributions 15 (4): 671-681.
https://doi.org/10.1111/j.1472-4642.2009.00572.x.

Pecl Gretta, T., Aradjo Miguel, B., Bell Johann, D., Blanchard, J., Bonebrake Timothy, C., Chen, I.C.,
Clark Timothy, D., Colwell Robert, K., Danielsen, F., Evengard, B., Falconi, L., Ferrier, S., Frusher, S.,

17



Garcia Raquel, A., Griffis Roger, B., Hobday Alistair, J., Janion-Scheepers, C., Jarzyna Marta, A., Jennings,
S., Lenoir, J., Linnetved HIif, I., Martin Victoria, Y., McCormack Phillipa, C., McDonald, J., Mitchell
Nicola, J., Mustonen, T., Pandolfi John, M., Pettorelli, N., Popova, E., Robinson Sharon, A., Scheffers
Brett, R., Shaw Justine, D., Sorte Cascade, J.B., Strugnell Jan, M., Sunday Jennifer, M., Tuanmu, M.-
N., Vergés, A., Villanueva, C., Wernberg, T., Wapstra, E. and Williams Stephen, E. 2017. Biodiversity
redistribution under climate change: Impacts on ecosystems and human well-being. Science 355 (6332):
eaai9214. 10.1126/science.aai9214.

Pena, M.A., Fine, I. and Callendar, W. 2019. Interannual variability in primary production and shelf-offshore
transport of nutrients along the northeast Pacific Ocean margin. Deep Sea Research Part II: Topical Studies
in Oceanography 169-170 : 104637. https://doi.org/10.1016/j.dsr2.2019.104637.

Petitgas, P., Rijnsdorp, A.D., Dickey-Collas, M., Engelhard, G.H., Peck, M.A., Pinnegar, J.K., Drinkwater,
K., Huret, M. and Nash, R.D.M. 2013. Impacts of climate change on the complex life cycles of fish. Fisheries
Oceanography 22 (2): 121-139. https://doi.org/10.1111/fog.12010.

Phillips, S.J., Anderson, R.P. and Schapire, R.E. 2006. Maximum entropy modeling of species geographic
distributions. Ecological modelling190 (3-4): 231-259.

Piironen, J. and Vehtari, A. 2017. Comparison of Bayesian predictive methods for model selection. Statistics
and Computing 27 (3): 711-735.

Pinsky, M.L. and Fogarty, M. 2012. Lagged social-ecological responses to climate and range shifts in fisheries.
Climatic Change 115 (3): 883-891. 10.1007,/s10584-012-0599-x.

Pollock, L.J., O’Connor, L.M.J., Mokany, K., Rosauer, D.F., Talluto, M.V. and Thuiller, W. 2020. Protecting
Biodiversity (in All Its Complexity): New Models and Methods. Trends in Ecology & Evolution35 (12): 1119-
1128. https://doi.org/10.1016/].tree.2020.08.015.

Pollock, L.J., Tingley, R., Morris, W.K., Golding, N., O’Hara, R.B., Parris, K.M., Vesk, P.A. and Mc-
Carthy, M.A. 2014. Understanding co-occurrence by modelling species simultaneously with a Joint Species
Distribution Model (JSDM). Methods in Ecology and Evolution5 (5): 397-406. https://doi.org/10.1111/2041-
210X.12180.

Portner, H.O. and Peck, M.A. 2010. Climate change effects on fishes and fisheries: towards a cause-and-effect
understanding. Journal of Fish Biology 77 (8): 1745-1779. https://doi.org,/10.1111/j.1095-8649.2010.02783 x.

Raimi, K.T., Stern, P.C. and Maki, A. 2017. The Promise and Limitations of Using Analogies to Im-
prove Decision-Relevant Understanding of Climate Change. PLOS ONE 12 (1): e0171130. 10.1371/jour-
nal.pone.0171130.

Randin, C.F., Engler, R., Normand, S., Zappa, M., Zimmermann, N.E., Pearman, P.B., Vittoz, P., Thuil-
ler, W. and Guisan, A. 2009. Climate change and plant distribution: local models predict high-elevation
persistence. Global Change Biology 15 (6): 1557-1569. https://doi.org/10.1111/j.1365-2486.2008.01766.x.

Roberts, D.R., Bahn, V., Ciuti, S., Boyce, M.S., Elith, J., Guillera-Arroita, G., Hauenstein, S., Lahoz-
Monfort, J.J., Schroder, B. and Thuiller, W. 2017. Cross-validation strategies for data with temporal,
spatial, hierarchical, or phylogenetic structure. Ecography40 (8): 913-929.

Robinson, L.M., Elith, J., Hobday, A.J., Pearson, R.G., Kendall, B.E., Possingham, H.P. and
Richardson, A.J. 2011. Pushing the limits in marine species distribution modelling: lessons from
the land present challenges and opportunities. Global Ecology and Biogeography 20 (6): 789-802.
https://doi.org/10.1111/j.1466-8238.2010.00636.x.

Roux, M.-J., Duplisea, D.E., Hunter, K.L. and Rice, J. 2022. Consistent Risk Management in a Changing
World: Risk Equivalence in Fisheries and Other Human Activities Affecting Marine Resources and Ecosys-
tems. Frontiers in Climate 3 .

18



Rufener, M.C., Kristensen, K., Nielsen, J.R. and Bastardie, F. 2021. Bridging the gap between commercial
fisheries and survey data to model the spatiotemporal dynamics of marine species. Ecological Applications:
e02453.

Schloss, C.A., Nunez, T.A. and Lawler, J.J. 2012. Dispersal will limit ability of mammals to track climate
change in the Western Hemisphere. Proceedings of the National Academy of Sciences 109 (22): 8606-8611.

Seneviratne, S., Nicholls, N., Easterling, D., Goodess, C., Kanae, S., Kossin, J., Luo, Y., Marengo, J.,
Mclnnes, K., Rahimi, M., Reichstein, M., Sorteberg, A., Vera, C. and Zhang, X. 2012. Changes in climate
extremes and their impacts on the natural physical environment: An overview of the IPCC SREX report.
In p. 12566.

Seo, C., Thorne, J., Hannah, L. and Thuiller, W. 2008. Scale effects in species distribution models: Impli-
cations for conservation planning under climate change. Biology letters 5 : 39-43. 10.1098/rsbl.2008.0476.

Shelton, A.O., Thorson, J.T., Ward, E.J. and Feist, B.E. 2014. Spatial semiparametric models improve
estimates of species abundance and distribution. Canadian Journal of Fisheries and Aquatic Sciences71
(11): 1655-1666.

Skroblin, A., Carboon, T., Bidu, G., Chapman, N., Miller, M., Taylor, K., Taylor, W., Game, E.T. and
Wintle, B.A. 2021. Including indigenous knowledge in species distribution modeling for increased ecological
insights. Conservation Biology 35 (2): 587-597. https://doi.org/10.1111/cobi.13373.

Sofaer, H.R., Jarnevich, C.S., Pearse, 1.S., Smyth, R.L., Auer, S., Cook, G.L., Edwards Jr, T.C., Guala,
G.F., Howard, T.G. and Morisette, J.T. 2019. Development and delivery of species distribution models to
inform decision-making. BioScience 69 (7): 544-557.

Stammer, D., Engels, A., Marotzke, J., Gresse, E., Hedemann, C. and Petzold, J. 2021. Hamburg Climate
Futures Outlook 2021. Assessing the plausibility of deep decarbonization by 2050. Hamburg, Germany.

Stoklosa, J., Daly, C., Foster, S.D., Ashcroft, M.B. and Warton, D.I. 2015. A climate of uncertainty:
accounting for error in climate variables for species distribution models. Methods in Ecology and Evolution
6 (4): 412-423.

Sunday, J., Bates, A. and Dulvy, N. 2012. Thermal tolerance and the global redistribution of animals.
Nature Climate Change 2 : 686-690. 10.1038 /nclimatel539.

Thompson, P.L. and Gonzalez, A. 2017. Dispersal governs the reorganization of ecological networks under
environmental change. Nature Ecology & Evolution 1 (6): 1-8.

Thompson, P.L. and Fronhofer, E.A. 2019. The conflict between adaptation and dispersal for maintaining
biodiversity in changing environments. Proceedings of the National Academy of Sciences 116 (42): 21061-
21067.

Thompson, P.L., Guzman, L.M., De Meester, L., Horvath, Z., Ptacnik, R., Vanschoenwinkel, B., Viana,
D.S. and Chase, J.M. 2020. A process-based metacommunity framework linking local and regional scale
community ecology. bioRxiv: 832170. 10.1101/832170.

Thompson, P.L., Anderson, S.C., Nephin, J., Haggarty, D.R., Pena, M.A., English, P.A., Gale, K.S.P. and
Rubidge, E. 2022a. Disentangling the impacts of environmental change and commercial fishing on demersal
fish biodiversity in a northeast Pacific ecosystem. Marine Ecology Progress Series 689 : 137-154.

Thompson, P.L., Nephin, J., Davies, S.C., Park, A.E., Lyons, D.A., Rooper, C.N., Pena, M.A., Chris-
tian, J.R., Hunter, K.L., Rubidge, E. and Holdsworth, A.M. 2022b. Groundfish biodiversity change in
northeastern Pacific waters under projected warming and deoxygenation. bioRxiv: 2022.2005.2004.490690.
10.1101/2022.05.04.490690.

Thorson, J.T. and Minto, C. 2014. Mixed effects: a unifying framework for statistical modelling in fisheries
biology. ICES Journal of Marine Science 72 (5): 1245-1256. 10.1093/icesjms/fsu213.

19



Thorson, J.T., Shelton, A.O., Ward, E.J. and Skaug, H.J. 2015. Geostatistical delta-generalized linear mixed
models improve precision for estimated abundance indices for West Coast groundfishes. ICES Journal of
Marine Science 72 (5): 1297-1310. 10.1093 /icesjms/fsu243.

Thorson, J.T., Barbeaux, S.J., Goethel, D.R., Kearney, K.A., Laman, E.A., Nielsen, J.K., Siskey, M.R.,
Siwicke, K. and Thompson, G.G. 2021. Estimating fine-scale movement rates and habitat preferences using
multiple data sources. Fish and Fisheries 22 (6): 1359-1376. https://doi.org/10.1111 /faf.12592.

Thuiller, W., Brotons, L., Araujo, M. and Lavorel, S. 2004. Effects of restricting range of data to project
current and future species distributions. Ecography 27 : 165-172. 10.1111/j.0906-7590.2004.03673.x.

Thuiller, W., Gueguen, M., Renaud, J., Karger, D.N. and Zimmermann, N.E. 2019. Uncertainty in ensembles
of global biodiversity scenarios. Nature Communications 10 (1): 1-9.

Tittensor, D., Blanchard, J., Fulton, E., Cheung, W., Novaglio, C., Harrison, C., Heneghan, R., Barrier, N.,
Bianchi, D., Bopp, L., Bryndum-Buchholz, A., Britten, G., Buchner, M., Christensen, V., Coll, M., Dunne,
J., Eddy, T., Everett, J., Fernandes, J. and Stock, C. 2021. Next-generation ensemble projections reveal
higher climate risks for marine ecosystems. Nature Climate Change. 10.1038/s41558-021-01173-9.

Tyberghein, L., Verbruggen, H., Pauly, K., Troupin, C., Mineur, F. and De Clerck, O. 2012. Bio-ORACLE: a
global environmental dataset for marine species distribution modelling. Global Ecology and Biogeography21
(2): 272-281. https://doi.org/10.1111/;.1466-8238.2011.00656.x.

Urban, M.C. 2019. Projecting biological impacts from climate change like a climate scientist. WIREs
Climate Change 10 (4): e585. https://doi.org/10.1002/wcc.585.

Urban, M.C., Bocedi, G., Hendry, A.P., Mihoub, J.B., Pe’er, G., Singer, A., Bridle, J.R., Crozier, L.G.,
De Meester, L., Godsoe, W., Gonzalez, A., Hellmann, J.J., Holt, R.D., Huth, A., Johst, K., Krug, C.B.,
Leadley, P.W., Palmer, S.C.F., Pantel, J.H., Schmitz, A., Zollner, P.A. and Travis, J.M.J. 2016. Improving
the forecast for biodiversity under climate change. Science 353 (6304): aad8466. 10.1126/science.aad8466.

Urli, M., Brown, C.D., Narvaez Perez, R., Chagnon, P.L.. and Vellend, M. 2016. Increased seedling estab-
lishment via enemy release at the upper elevational range limit of sugar maple. Ecology 97 (11): 3058-3069.

US National Research Council. 2008. Public participation in environmental assessment and decision making.
National Academy Press, Washington, USA.

Valladares, F., Matesanz, S., Guilhaumon, F., Araujo, M.B., Balaguer, L., Benito-Garzon, M., Cornwell, W.,
Gianoli, E., van Kleunen, M., Naya, D.E., Nicotra, A.B., Poorter, H. and Zavala, M.A. 2014. The effects of
phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecology
Letters 17 (11): 1351-1364. https://doi.org/10.1111/ele.12348.

Vehtari, A., Gelman, A. and Gabry, J. 2017. Practical Bayesian model evaluation using leave-one-out cross-
validation and WAIC. Statistics and computing 27 (5): 1413-1432.

Vellend, M. 2016. The theory of ecological communities (MPB-57). Princeton University Press.

Villero, D., Pla, M., Camps, D., Ruiz-Olmo, J. and Brotons, L. 2017. Integrating species distribu-
tion modelling into decision-making to inform conservation actions. Biodiversity and Conservation 26 .
10.1007/s10531-016-1243-2.

Virkkala, R., Marmion, M., Heikkinen, R., Thuiller, W. and Luoto, M. 2010. Predicting range shifts of
northern bird species: Influence of modelling technique and topography. Acta Oecologica 36 : 269-281.
10.1016/j.acta0.2010.01.006.

Wallingford, P.D. and Sorte, C.J.B. 2022. Dynamic species interactions associated with the range-shifting
marine gastropod Mexacanthina lugubris. Oecologia. 10.1007/s00442-022-05128-5.

20



Warton, D.I., Blanchet, F.G., O’Hara, R.B., Ovaskainen, O., Taskinen, S., Walker, S.C. and Hui, F.K.C.
2015. So many variables: Joint modeling in community ecology. Trends in Ecology & Evolution 30 (12):
766-779. https://doi.org/10.1016/j.tree.2015.09.007.

Watson, J., Joy, R., Tollit, D.J., Thornton, S.J. and Auger Methe, M. 2019. Estimating animal utilization
distributions from multiple data types: a joint spatio-temporal point process framework. arXiv: Methodol-
ogy. https://doi.org/10.48550/arXiv.1911.00151.

Weiskopf, S.R., Rubenstein, M.A., Crozier, L.G., Gaichas, S., Griffis, R., Halofsky, J.E., Hyde, K.J.W.,
Morelli, T.L., Morisette, J.T., Munoz, R.C., Pershing, A.J., Peterson, D.L., Poudel, R., Staudinger, M.D.,
Sutton-Grier, A.E., Thompson, L., Vose, J., Weltzin, J.F. and Whyte, K.P. 2020. Climate change effects on
biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Science
of The Total Environment 733 : 137782. https://doi.org/10.1016/j.scitotenv.2020.137782.

Wiens, J.A., Stralberg, D., Jongsomjit, D., Howell, C.A. and Snyder, M.A. 2009. Niches, models, and climate
change: Assessing the assumptions and uncertainties. Proceedings of the National Academy of Sciences106
(Supplement 2): 19729. 10.1073/pnas.0901639106.

Wiens, J.J. 2016. Climate-Related Local Extinctions Are Already Widespread among Plant and Animal
Species. PLOS Biology 14 (12): €2001104. 10.1371/journal.pbio.2001104.

Willis, K. and Bhagwat, S. 2009. Biodiversity and Climate Change. Science (New York, N.Y.) 326 : 806-807.
10.1126/science.1178838.

Xu, Z., Han, Y., Tam, C.-Y., Yang, Z.-L. and Fu, C. 2021. Bias-corrected CMIP6 global dataset for dynamical
downscaling of the historical and future climate (1979-2100). Scientific Data 8 (1): 293. 10.1038/s41597-
021-01079-3.

Young, M. and Carr, M.H. 2015. Application of species distribution models to explain and predict the distri-
bution, abundance and assemblage structure of nearshore temperate reef fishes. Diversity and Distributions
21 (12): 1428-1440. https://doi.org/10.1111/ddi.12378.

Zangiabadi, S., Zaremaivan, H., Brotons, L., Mostafavi, H. and Ranjbar, H. 2021. Using climatic variables
alone overestimate climate change impacts on predicting distribution of an endemic species. PLOS ONE16
(9): €0256918. 10.1371 /journal.pone.0256918.

Zarnetske, P.L., Skelly, D.K. and Urban, M.C. 2012. Biotic multipliers of climate change. Science 336
(6088): 1516-1518.

Zurell, D., Franklin, J., Konig, C., Bouchet, P.J., Dormann, C.F., Elith, J., Fandos, G., Feng, X., Guillera-
Arroita, G., Guisan, A., Lahoz-Monfort, J.J., Leitao, P.J., Park, D.S., Peterson, A.T., Rapacciuolo, G.,
Schmatz, D.R., Schroder, B., Serra-Diaz, J.M., Thuiller, W., Yates, K.L., Zimmermann, N.E. and Merow,
C. 2020. A standard protocol for reporting species distribution models. Ecography43 (9): 1261-1277.
https://doi.org/10.1111/ecog.04960.

Hosted file

Addressing_uncertainty_figue.docx available at https://authorea.com/users/568358/articles/
614231-addressing-uncertainty-when-projecting-marine-species-distributions-under-
climate-change

Hosted file

Addressing_uncertainty_tablel.docx available at https://authorea.com/users/568358/articles/
614231-addressing-uncertainty-when-projecting-marine-species-distributions-under-
climate-change

Hosted file

21


https://authorea.com/users/568358/articles/614231-addressing-uncertainty-when-projecting-marine-species-distributions-under-climate-change
https://authorea.com/users/568358/articles/614231-addressing-uncertainty-when-projecting-marine-species-distributions-under-climate-change
https://authorea.com/users/568358/articles/614231-addressing-uncertainty-when-projecting-marine-species-distributions-under-climate-change
https://authorea.com/users/568358/articles/614231-addressing-uncertainty-when-projecting-marine-species-distributions-under-climate-change
https://authorea.com/users/568358/articles/614231-addressing-uncertainty-when-projecting-marine-species-distributions-under-climate-change
https://authorea.com/users/568358/articles/614231-addressing-uncertainty-when-projecting-marine-species-distributions-under-climate-change

Addressing_uncertainty_table2.docx available at https://authorea.com/users/568358/articles/
614231-addressing-uncertainty-when-projecting-marine-species-distributions-under-
climate-change

22


https://authorea.com/users/568358/articles/614231-addressing-uncertainty-when-projecting-marine-species-distributions-under-climate-change
https://authorea.com/users/568358/articles/614231-addressing-uncertainty-when-projecting-marine-species-distributions-under-climate-change
https://authorea.com/users/568358/articles/614231-addressing-uncertainty-when-projecting-marine-species-distributions-under-climate-change

