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Abstract

Background: Patients are admitted to the hospital for respiratory illness at different stages of their disease course. It is important
to appropriately analyse this heterogeneity in surveillance data to accurately measure disease severity among those hospitalized.
The purpose of this study was to determine if unique baseline clusters of influenza patients exist, and to examine the association
between cluster membership and in-hospital outcomes. Methods: Patients hospitalized with influenza at two hospitals in
Southeast Michigan during the 2017/2018 (n=242) and 2018/2019 (n=115) influenza seasons were included. Physiologic and
laboratory variables were collected for the first 24 hours of the hospital stay. K-medoids clustering was used to determine
groups of individuals based on these values. Multivariable linear regression or Firth’s logistic regression were used to examine
the association between cluster membership and clinical outcomes. Results: Three clusters were selected for 2017/2018, mainly
differentiated by blood glucose level. After adjustment, those in C171 had 5.6 times the odds of mechanical ventilator use than
those in C172 (95%CI: 1.49,21.1) and a significantly longer mean hospital length of stay than those in both C172 (mean 1.5 days
longer, 95%CI: 0.2,2.7) and C173 (mean 1.4 days longer, 95%CI: 0.3,2.5). Similar results were seen between the two clusters
selected for 2018/2019. Conclusion: In this study of hospitalized influenza patients, we show that distinct clusters with higher
disease acuity can be identified and could be targeted for evaluations of vaccine and influenza antiviral effectiveness against

disease attenuation. The association of higher disease acuity with glucose level merits evaluation.

INTRODUCTION

Infectious respiratory diseases caused by influenza virus, respiratory syncytial virus, and SARS-CoV-2 can
cause significant illness and are responsible for hundreds of thousands of hospitalizations in the United States
annually'. Data on in-hospital progression of disease and treatment course are broadly available and used
to evaluate severity of illness?>, or the impact of vaccination®® and treatment5®. However, the primary
cause of admission, particularly in those with baseline multimorbidity, might not be due to acute illness but
other causes either exacerbated by milder respiratory tract infection (e.g., asthma) or possibly unrelated to
infection (e.g., dehydration). This might bias results of vaccine or antiviral effectiveness against prevention
or attenuation of severe disease. Differences in general health and health care seeking behaviour are difficult
to directly measure”'?, and individuals may present and be admitted to the hospital at different stages in
their disease course with varying disease severity. These patterns vary by population, health system, and



specific etiology''-14. While patients hospitalized with respiratory diseases such as influenza have historically
been older with significant comorbidity!'!''%, the pattern has differed in various phases of the COVID-19

pandemic'6.

The heterogeneity of the hospitalized population at admission creates challenges when examining events
occurring during hospitalization. Differential baseline comorbidity and presenting symptomology can signif-
icantly confound the use of hospital data as a surveillance metric for respiratory disease severity, and can
bias estimates of the effectiveness of interventions to reduce influenza morbidity or progression of disease.

Unsupervised machine learning algorithms provide a way to derive and characterize different groups of
patients independent of an outcomes or treatment framework!”'®. When applied to clinical data, this
methodology can help identify distinct phenotypes of individuals driven by underlying relationships between
health metrics. The aims of the current study were to develop clinically distinct clusters of patients based on
laboratory and physiologic measurements within the first 24 hours of hospitalization, to determine if cluster
membership was associated with worse in-hospital outcomes, and to evaluate the association of influenza
vaccination on in-hospital outcomes within a given cluster.

METHODS

Institutional review board approval for the US Hospitalized Adult Influenza Vaccine Effectiveness Network
(HAIVEN) study was obtained from the University of Michigan. Cases were identified from 2017-2018 and
2018-2019 enrollees from a single site of the HAIVEN study, encompassing two major hospital systems in
southeast Michigan (Michigan Medicine Hospital, Ann Arbor and Henry Ford Hospital, Detroit). Inclusion
criteria for the HATVEN cohort have been described elsewhere!®19. Briefly, adult patients [?]18 years of age
were eligible for participation if they presented to the hospital within 10 days of symptom onset or worsening
and had a diagnosis or chief complaint broadly consistent with an acute respiratory illness such as influenza
or pneumonia. Patients were prospectively recruited and completed a brief interview and research-assistant
performed specimen collection to determine laboratory-confirmed influenza illness. Only individuals who
tested positive for influenza were included in our analysis.

All participants were interviewed in-person at the time of study enrollment by research personnel. Data
obtained from the electronic health record (EHR) via trained research staff chart review or database queries
included demographics and comorbid conditions, acute illness characteristics such as symptom duration/type,
laboratory and physiologic measures, and outcomes including ICU admission and hospital length of stay!1?.

Physiologic characteristics of interest

Minimum and maximum values for physiologic and laboratory variables of interest were collected from the
EHR for the first 24 hours of the hospital stay. Physiologic data collected included heart rate, respiratory rate,
systolic blood pressure (SBP), temperature, and oxygen saturation®’. Laboratory data collected included
blood glucose, haematocrit, haemoglobin, blood urea nitrogen (BUN), sodium, pH, white blood cell (WBC)
count, creatinine, platelets, bilirubin, and lactic acid?’. Estimated glomerular filtration rate (eGFR) was

computed using the maximum creatinine value within the 24-hour window?'.

Clustering of data

Variables were selected for clustering algorithm inclusion based on clinical relevance to indicating illness
severity. Specific variables selected for inclusion were as follows. Both minimum and maximum values were
included unless otherwise specified: temperature, heart rate (maximum), SBP, blood glucose, creatinine
(maximum), haematocrit (minimum), sodium, WBC, platelets (minimum), respiratory rate (maximum),
oxygen saturation (minimum), eGFR, and time from symptom onset to admission. Missing data for all
selected physiologic measures were imputed using the study population mean stratified by age group (18-49,
50-64, 65+) and hospital. A table of selected metrics can be found in Supplemental Table 1.

Prior to the creation of clusters, Hopkin’s statistic was used to assess the randomness of the distribution
of the data in relation to a uniform distribution. Values of 0.5 for this statistic indicate data are similar



to the univariate distribution, while values closer to 1 indicate the data may contain clusters. The use of
this statistic helps reduce the risk of a machine learning algorithm detecting clusters when the data do not
actually have clusters within?2.

Data were classified separately for each influenza season using the k-medoids Partitioning Around the
Medoids (PAM) algorithm with Manhattan distance. Briefly, k-medoids clustering assigns groups to a
set of data based on the distance to an assigned central data point of a cluster?®. At the start, these medoids
are randomly assigned, and the algorithm iterates through different selections of data centroids and cluster
groupings until the distance from the centroid is minimized to all other data points in the cluster. K-medoids
clustering is more robust in the presence of outliers than other centroid-based clustering algorithms such as
k-means since the chosen centroid is an observed data point. Additionally, this algorithm assigns all data
observations to a cluster; this is preferred in a cohort of hospitalized individuals where biologically plausible
data outliers are of interest. The appropriate number of clusters to be assigned for a given season was chosen
using the largest average silhouette width, a measure of the distance from points in one cluster to another,
with one to a maximum of ten clusters tested.

The k-medoids clustering was performed using the “pam” function in R. Following group assignment, the
silhouette width of each cluster was computed using the “silhouette” function. An average silhouette width
close to 1 indicates perfect clusters, and an average silhouette width around 0 indicates clusters lie close
together. A negative silhouette width for a given observation indicates that the data point may have been
misclassified.

Additional Covariates

Additional covariates of interest for adjusted analyses included age group (18-49 years, 50-64 years, 65+
years), sex, BMI, Charlson Comorbidity Index (CCI), admitting hospital, influenza strain and subtype, and
influenza vaccination status.

Hospitalization Severity Metrics

Outcomes considered for severity of illness during the hospitalization included intensive care unit (ICU)
admission, mechanical ventilator use, and total hospital length of stay (continuous, and prolonged defined
as [?7]8 days?%).

Statistical Analysis

General descriptive statistics of all data were computed separately for each influenza season (2017/2018
and 2018/2019) and were reported as means with standard deviations, medians with interquartile range,
or frequency and percentage, as appropriate. The normality of data and presence of outliers were assessed
using histograms and box-and-whisker plots. Data clustering was performed as above with each year using
the PAM algorithm, and model results reported. Patient and clinical characteristics between clusters were
compared using Chi-squared or Fisher’s exact tests for categorical variables and independent t-tests, ANOVA,
Mann-Whitney U, or Kruskal-Wallis tests for continuous variables, as appropriate.

To determine if different classes of early hospitalization characteristics were associated with severe hospital
sequelae, a series of models were constructed separately for each influenza season. For binary outcomes
(ICU admission, ventilator use, and prolonged hospital length of stay), Firth’s logistic regression models
were constructed. Generalized linear models were used for the continuous outcome of hospital length of stay.
Variables chosen a priori for model inclusion were k-medoids cluster group, age, sex, CCI (as a continuous
variable), hospital, and influenza vaccination status. An exploratory analysis was conducted as in the
primary analysis with the removal of outliers prior to clustering, with an outlier conservatively defined as a
value less than the 1st quartile-1.5%(interquartile range) or greater than the 3rd quartile+1.5*(interquartile
range). Outliers were then imputed to the mean of remaining values stratified by age group and hospital.
To maintain comparability with the primary analysis, the same number of clusters were implemented within
a given influenza year.



Analysis was conducted using RStudio version 1.2.5042 and SAS v9.4 (SAS Institute, Cary, NC). A p-value
of 0.05 was considered statistically significant.

RESULTS

There were 242 individuals who met inclusion criteria from the 2017/2018 influenza season and 115 individu-
als from the 2018/2019 season (Supplemental Table 2). Overall, patients were predominantly female, obese,
and vaccinated against influenza. More individuals experienced ICU admission (13.0% vs. 6.2%; p=0.031)
and mechanical ventilation (16.5% vs. 9.9%; p=0.074) in the 18/19 influenza season than the preceding
season. Overall characteristics of values included in the clustering algorithm are shown in Table 1.

2017/2018 Cohort

The Hopkin’s statistic for 2017/2018 was 0.810. The 3-cluster model was selected with the highest average
silhouette width of 0.15 (Figure 1). The silhouette plots indicate the possibility of minor misclassification of
some individuals. There were significant differences in race, age, CCI, and diabetes between clusters (Table
2). For the variables included in the PAM algorithm, those in Cluster 1 (Cq71) had significantly higher mean
glucose (minimum mean 210.4mg/dL, SD 66.9) than those in Cluster 2 (C172) (minimum mean 90.5mg/dL,
SD 16.4) and Cluster 3 (C173) (minimum mean 110.0mg/dL, SD 26.7). Those in C;72 had significantly lower
maximum heart rate, maximum systolic blood pressure, minimum white blood cell count, minimum platelets,
and estimated glomerular filtration rate than the other two clusters. Those in C172 also had significantly
higher maximum creatinine than the other clusters. The rate of being mechanically ventilated was higher in
Ci171 than C172 (22.6% vs. 6.9%), and the overall hospital length of stay was longer for those in C;71 than
C173 (mean 4.5 days (SD 4.4) vs. mean 2.8 days (SD 2.4)).

After adjustment for age group, sex, hospital, continuous CCI, and influenza vaccination status, those in
C171 had 5.6 times the odds of having a mechanical ventilator than those in C172 (95%CI:1.49,21.1; Figure
2). Additionally, those in Cq71 had a significantly longer model-adjusted mean hospital length of stay than
those in both C172 (mean 1.5 days longer, 95%CI:0.2,2.7) and C173 (mean 1.4 days longer, 95%CI:0.3,2.5).
There were no significant differences between clusters for the outcomes of ICU stay or prolonged hospital
stay. Vaccination status was not associated with adverse outcomes in the fully adjusted models.

2018/2019 Cohort

The Hopkin’s statistic for 2018/2019 was 0.837. The 2-cluster model was selected with the highest average
silhouette width of 0.27 (Figure 3). The silhouette plots indicate the possibility of moderate misclassification
of some individuals in Cluster 1 (C1g1). There were significant differences in underlying comorbidity between
clusters, though there were no major differences in demographics (Table 2). For the variables included in
the PAM algorithm, those in C;g1 had significantly higher mean glucose (minimum mean 157.2mg/dL, SD
82.2) than those in Cluster 2 (C152) (minimum mean 99.7mg/dL, SD 21.4). Additionally, those in C181 had
significantly lower minimum oxygen saturation than those in C152 (mean 88.5 (SD 6.7) vs. mean 91.6 (SD
3.7)). The Cy31 group had higher rates of mechanical ventilation (32.4% vs. 9.0%) and prolonged hospital
stay [?7] 8 days (16.2% vs. 3.9%) than those in Cy52, as well as a longer hospital stay (mean 5.3 days (SD
5.7) vs. mean 2.8 days (SD 2.0)).

After adjustment for age group, sex, hospital, continuous CCI, and influenza vaccination status, those in
Cis1 had 4.9 times the odds of being mechanically ventilated than those in C1g2 (95%CI:1.7,14.3; Figure
2), and 4.3 times the odds of having a prolonged hospital stay (95% CI:1.2,16.4). After adjustment, those
in Cig1 had a significantly longer model-adjusted mean hospital length of stay than those in C152 (mean
2.5 days longer, 95%CI:1.1,3.9). Vaccination status was not associated with adverse outcomes in the fully
adjusted models.

Sensitivity Analysis

Imputation of outliers in both influenza cohorts and their effect on the sample are shown in Supplemental
Table 3. After model adjustment with the new clusters, there were no statistically significant differences in



the odds or model-adjusted means of outcomes for the 2017/2018 influenza season (Supplemental Figure 1).
For the 2018/2019 influenza season, after adjustment those in new cluster 1 had significantly higher odds of
an intensive care unit stay compared with those in new cluster 2 (OR 4.62, 95%C1:1.34,15.97; Supplemental
Figure 1).

DISCUSSION

In this cohort of individuals in the 2017/2018 and 2018/2019 influenza seasons, we created clinically mean-
ingful groups using k-medoids clustering to improve the analysis of severity in a population of patients
hospitalized with influenza. Our results suggest that those who were in clusters with hyperglycemia and
lower oxygen saturation at admission had higher risk of adverse in-hospital sequelae, and are thus potential
cohorts of interest for further study of vaccine or antiviral effects.

We found glucose to be significantly different between clusters, with one cluster having significantly higher
glucose in both years. The distribution of diabetes was also consistent across years, with approximately 70%
prevalence in the high-glucose clusters and 30% prevalence in the non-hyperglycemic clusters. Together,
these results highlight that the use of simple dichotomous classifications for complex conditions such as
diabetes may not accurately indicate a patient’s risk for adverse outcomes. Indeed, controlling for such com-
plex confounding has long been problematic within infectious disease severity research, most recently when
examining treatments and hospital outcomes related to infection with SARS-CoV-2, leading to inconsistent
results?®27, This challenge is due in part to differential measurement and management of confounding,
including analyses at the point of hospitalization admission, given model limitations in the number of con-
founders which can be included and their often-complex interrelationships. The use of techniques such as
k-medoids clustering to simultaneously account for multiple measures of comorbidity and group like patients
together independent of outcomes-based analysis provides a tool to increase homogeneity within groups and
heterogeneity across groups for a more robust confounding adjustment.

More traditional dimensional reduction methods such as the use of propensity score matching have often
been used to account for differential patterns of comorbidities between groups of interest. While propen-
sity score matching is useful in reducing heterogeneity in the presence of a single exposure of interest, it
becomes complex in instances where multiple treatments or exposures are being compared simultaneously.
Additionally, there is inherent reduction in sample size when matching, limited by the number of individuals
with and without the exposure having similar propensity scores; individuals in either group with uncommon
comorbidity profiles may be overlooked and excluded from the matching if their propensity score does not
align. For example, a 2020 study by Groeneveld et al examining the effective of oseltamivir lost 36% of
oseltamivir patients and 65% of controls when matching, reducing the sample size to 88 pairs®. While use
of propensity score matching has been shown to reduce bias?®, such significant loss of data, especially in
a rare-outcomes setting, may lead to an increase in Type II error, and thus incorrect conclusions, due to
inadequate power2?3°, K-medoids clustering can be used to identify subgroups that are biologically different
without such restrictions, maintaining sample size for more robust analysis of effect modification by multiple
treatment types. It should be noted that outliers within the range of biologically normal values are of great
clinical significance, as these individuals may be at higher risk for adverse outcomes. K-medoids clustering is
robust to such outliers through use of data-derived centroids for the clusters, rather than an arbitrary mean.

This study has several strengths, most notably that the cohort was nested within a large prospective two-
center study of influenza vaccine effectiveness across multiple seasons, allowing for a robust and diverse
analytic cohort. Both case definition and EHR data capture were standardized across sites, reducing het-
erogeneity of data quality. Additionally, the use of two hospitals within our region allowed for a more
generalizable analysis. The biggest limitation of the study is small sample size and small number of out-
comes; however, we believe our analysis has minimized some of the bias from this limitation.

The use of k-medoids clustering to characterize heterogeneity in severity analysis has many direct and
current applications. One of the most immediate applications can be for evaluating the effectiveness of
new and existing antivirals for severe respiratory disease. Previous studies of such treatments have utilized



traditional methods of covariate adjustment, which may contribute to heterogeneity of study findings®'. The
use of this clustering method to phenotype baseline presentation can reduce this confounding, and can be
quickly implemented for these analyses. Such a technique will be needed as we continue understand how
new antiviral treatments affect severity, and how vaccination impacts severity in instances of low vaccine
effectiveness.

CONCLUSIONS

In conclusion, we found it was possible to cluster adult patients hospitalized with influenza into clinically
distinct groups by baseline characteristics independent of a clinical outcome. Those with hyperglycaemia
and lower oxygen saturation at admission were more likely to experience adverse events in our cohort,
including prolonged hospitalization. The k-medoids algorithm is a promising approach to disentangling the
heterogeneity surrounding hospital admissions.
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Table 1. Patient characteristics included in k-medoids algorithm overall by influenza season.



2017/2018 Season (N=242)

Clustering Metrics Measured Within 24 Hours of Admission

Time from symptom onset to admission (days)

Clustering Metrics Measured Within 24 Hot
2.4 (2.1)

Temperature
Min 97.9 (0.6)
Max 100.0 (1.5)
Heart Rate (Max) 107.0 (18.3)
Systolic Blood Pressure
Min 111.5 (16.7)
Max 137.0 (30.3)
Glucose
Min 117.0 (49.1)
Max 159.5 (83.5)
Creatinine (Max) 1.3 (1.6)
Hematocrit (Min) 35.6 (5.4)
Sodium
Min 135.7 (3.1)
Max 138.1 (3.3)
White Blood Cells
Min 6.5 (3.7)
Max 8.6 (7.6)
Platelets (Min) 178.6 (67.2)
Respiratory Rate (Max) 24.2 (5.5)
Oxygen Saturation (Min) 91.6 (4.4)
Estimated glomerular filtration rate 75.0 (39.8)
Data are presented as mean (standard deviation).
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Figure 1. Clustering metrics for the 2017/2018 influenza season, including the silhouette plot of k-medoids
clusters(A) and the top two principal components of data in the k-medoids clustering algorithm(B), with
cluster membership highlighted.

Table 2. Patient characteristics by k-medoids cluster by influenza season

2017/2018 2017/2018 2017/2018 2017/2018 2018/2019 2018/2019 2018/2019

Influenza Influenza Influenza Influenza Influenza Influenza Influenza
Season Season Season Season Season Season Season
Cluster 1 Cluster 2 Cluster 3 P-Value Cluster 1 Cluster 2 P-Value
(N=31) (N=72) (N=139) (N=37) (N=78)
DemographicDemographicdDemographicdDemographicDemographicdDemographicdDemographicDemographi
Age 0.029°¢ 0.704
18-49 6 (19.4) 15 (20.8) 44 (31.7) 14 (37.8) 24 (30.8)
50-64 14 (45.2) 18 (25.0) 48 (34.5) 10 (27.0) 26 (33.3)
[7165 11 (35.5) 39 (54.2) 47 (33.8) 13 (35.1) 28 (35.9)
Male Sex 10 (32.3) 35 (48.6) 54 (38.9) 0.226 14 (37.8) 40 (51.3) 0.177
Race
White 10 (32.3) 51 (70.8) 48 (34.5) <0.0012¢ 19 (51.4) 33 (42.3) 0.363
Black 18 (58.1) 20 (27.8) 79 (56.8) <0.0012¢ 18 (48.7) 42 (53.9) 0.602
Asian 2 (6.5) 0 (0.0) 1(0.7) 0.018 0 (0.0) 1(1.3) 0.489
Hispanic 1(3.2) 0 (0.0) 7 (5.0) 0.152 0 (0.0) 5 (6.4) 0.105
Hospital <0.0013¢ 0.995
1 8 (25.8) 46 (63.9) 35 (25.2) 19 (51.4) 40 (51.3)
2 23 (74.2) 26 (36.1) 104 (74.8) 18 (48.7) 38 (48.7)
Flu Strain 0.852 0.744
and
Subtype/Lineage
Type 1(3.2) 4 (5.6) 10 (7.2) 15 (40.5) 29 (37.2)
A-H1



2017/2018 2017/2018 2017/2018 2017,/2018 2018/2019 2018/2019 2018/2019
Influenza Influenza Influenza Influenza Influenza Influenza Influenza
Season Season Season Season Season Season Season

Type 22 (71.0) 41 (56.9) 86 (61.9) 14 (37.8) 33 (42.3)

A-H3

Type B- 0 (0.0) 0 (0.0) 2 (1.4) 0 (0.0) 2 (2.6)

Victoria

Type B- 7 (22.6) 23 (31.9) 32 (23.0) 0 (0.0) 1(1.3)

Yamagata

Unknown 1(3.2) 4 (5.6) 8 (5.8) 8 (21.6) 13 (16.7)

Subtype/Lineage

Unknown 0 (0.0) 0 (0.0) 1(0.7) 0 (0.0) 0 (0.0)

Type

Received 17 (54.8) 48 (66.7) 82 (59.0) 0.429 24 (64.9) 49 (62.8) 0.832

Influenza

Vaccine

ComorbiditieComorbiditieComorbiditiedComorbiditieComorbiditie€ComorbiditieComorbiditie€Comorbiditie

Charlson 3.9 (2.8) 4.3 (3.1) 2.4 (2.3) <0.001b¢ 4.4 (2.7) 3.5 (3.0) 0.139

Comorbid-

ity Index,

mean

(SD)

Charlson <0.001b¢ 0.031

Comorbid-

ity Index

Group

0 1(3.2) 8 (11.1) 25 (18.0) 0 (0.0) 13 (16.7)

1-2 11 (35.5) 16 (22.2) 64 (46.0) 13 (35.1) 22 (28.2)

[7]3 19 (61.3) 48 (66.7) 50 (36.0) 24 (64.9) 43 (55.1)

BMI 0.353 0.177

Category

Underweight 0 (0.0) 2 (2.8) 5 (3.6) 1(2.7) 4 (5.1)

(<18.5)

Normal/Healthy3 (9.7) 14 (19.4) 34 (24.5) 7 (18.9) 17 (21.8)

weight

(18.5-24.9)

Overweight 7 (22.6) 23 (31.9) 29 (20.9) 4 (10.8) 22 (28.2)

(25-29.9)

Obese 17 (54.8) 26 (36.1) 53 (38.1) 17 (46.0) 23 (29.5)

(30-39.9)

Morbidly 4 (12.9) 7(9.7) 18 (13.0) 8 (21.6) 12 (15.4)

obese

([7]40)

High-Risk

Comorbidities

Heart 14 (45.2) 45 (62.5) 50 (36.0) 0.001¢ 23 (62.2) 38 (48.7) 0.177

Disease

Heart 6 (19.4) 25 (34.7) 27 (19.4) 0.039¢ 17 (46.0) 17 (21.8) 0.008

Failure

Asthma 9 (29.0) 17 (23.6) 46 (33.1) 0.359 10 (27.0) 17 (21.8) 0.536

COPD 11 (35.5) 23 (31.9) 49 (35.3) 0.881 16 (43.2) 28 (35.9) 0.449



2017/2018 2017/2018 2017/2018 2017,/2018 2018/2019 2018/2019 2018/2019
Influenza Influenza Influenza Influenza Influenza Influenza Influenza
Season Season Season Season Season Season Season
Other 14 (45.2) 24 (33.3) 44 (31.7) 0.354 21 (56.8) 35 (44.9) 0.234
Lung
Conditions
Diabetes 24 (77.4) 24 (33.3) 38 (27.3) <0.0012P 29 (78.4) 25 (32.1) <0.001
Renal 13 (41.9) 42 (58.3) 36 (25.9) <0.001¢ 21 (56.8) 30 (38.5) 0.065
Blood 2 (6.5) 16 (22.2) 4 (2.9) <0.001¢ 6 (16.2) 9 (11.5) 0.557
Disorders
Immunosuppressi¢n6.1) 24 (33.3) 31 (22.3) 0.104 10 (27.0) 25 (32.1) 0.584
Malignancy 8 (25.8) 25 (34.7) 13 (9.4) <0.001b¢ 7 (18.9) 22 (28.2) 0.284
Metabolic 20 (64.5) 39 (54.2) 49 (35.3) 0.002bc 20 (54.1) 43 (55.1) 0.914
Disorders
Liver 3(9.7) 11 (15.3) 14 (10.1) 0.501 5 (13.5) 5(6.4) 0.288
Disorders
Neurological/Miidc(B3oskeletal 20 (27.8) 30 (21.6) 0.228 11 (29.7) 26 (33.3) 0.699
Cerebrovascular3 (9.7) 2(2.8) 5 (3.6) 0.242 1(2.7) 3 (3.9) 0.999
Disorders
Endocrine 3 (9.7) 16 (22.2) 22 (15.8) 0.258 8 (21.6) 13 (16.7) 0.521
Long-term 4 (12.9) 13 (18.1) 18 (13.0) 0.586 8 (21.6) 17 (21.8) 0.983
Medication
Morbid 5 (16.1) 11 (15.3) 18 (13.0) 0.844 12 (32.4) 12 (15.4) 0.036
Obesity
Clustering Clustering Clustering Clustering Clustering Clustering Clustering Clustering
Metrics Metrics Metrics Metrics Metrics Metrics Metrics Metrics
Mea- Mea- Mea- Mea- Mea- Mea- Mea- Mea-
sured sured sured sured sured sured sured sured
Within Within Within Within Within Within Within Within
24 Hours 24 Hours 24 Hours 24 Hours 24 Hours 24 Hours 24 Hours 24 Hours
of Ad- of Ad- of Ad- of Ad- of Ad- of Ad- of Ad- of Ad-
mission mission mission mission mission mission mission mission
Time from 2.6 (2.1) 2.2 (2.0) 2.5 (2.0) 0.597 2.6 (1.7) 2.6 (2.1) 0.886
symptom
onset to
admission
(days),
mean
(SD)
Temperature
Min 97.8 (0.6) 97.9 (0.5) 97.9 (0.6) 0.691 97.9 (0.5) 98.1 (0.6) 0.036
Max 99.7 (1.5) 100.2 (1.5) 100.0 (1.5) 0.190 99.9 (1.4) 100.2 (1.5) 0.301
Heart 109.1 101.3 109.5 0.006%¢ 110.5 110.7 0.966
Rate (16.1) (18.7) (18.0) (20.6) (18.7)
(Max),
mean
(SD)
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2017/2018 2017/2018 2017/2018 2017,/2018 2018/2019 2018/2019 2018/2019
Influenza Influenza Influenza Influenza Influenza Influenza Influenza
Season Season Season Season Season Season Season

Systolic

Blood

Pressure,

mean

(SD)

Min 117.0 111.2 110.3 0.134 104.4 105.4 0.732
(15.2) (17.0) (16.7) (18.2) (14.3)

Max 149.5 126.5 139.7 0.0013¢ 127.3 125.9 0.828
(30.3) (29.2) (29.4) (38.9) (28.9)

Glucose,

mean

(SD)

Min 210.4 90.5 (16.4)  110.0 <0.0012b¢ 157.2(82.2)  99.7 (21.4)  <0.001
(66.9) (26.7)

Max 311.6 139.4 136.0 <0.0012P 292.0 119.5 <0.001
(106.0) (68.5) (37.0) (133.4) (26.3)

Creatinine 1.2 (0.8) 1.8 (2.5) 1.2 (0.9) 0.018a¢ 1.9 (2.4) 1.6 (2.0) 0.502

(Max),

mean

(SD)

Hematocrit 36.7 (4.7) 34.6 (5.6) 36.0 (5.4) 0.096 35.4 (6.2) 35.6 (6.2) 0.885

(Min),

mean

(SD)

Sodium,

mean

(SD)

Min 134.4 (3.9) 136.0 (2.9) 135.9 (3.0) 0.0342b 134.0 (5.4) 135.9 (3.0) 0.015

Max 137.1 (4.1) 139.3 (3.4) 137.7 (3.0) 0.0012¢ 138.3 (4.7) 138.0 (3.5) 0.754

White

Blood

Cells,

mean

(SD)

Min 7.7 (34) 5.4 (5.0) 6.8 (2.7) 0.0053¢ 8.3 (4.2) 7.2 (9.8) 0.511

Max 9.4 (4.7) 8.9 (12.6) 8.3 (3.7) 0.710 12.0 (7.1) 9.4 (14.9) 0.317

Platelets 171.5 121.3 209.9 <0.0012P¢ 190.9 195.2 0.856

(Min), (44.7) (39.8) (62.5) (76.3) (135.5)

mean

(SD)

Respiratory 25.9 (5.7) 23.8 (5.3) 24.0 (5.6) 0.176 27.5 (9.3) 25.6 (7.7) 0.243

Rate

(Max),

mean

(SD)
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2017/2018
Influenza
Season

2017/2018
Influenza
Season

2017/2018
Influenza
Season

2017/2018
Influenza
Season

2018/2019
Influenza
Season

2018/2019
Influenza
Season

2018/2019
Influenza
Season

Oxygen
Saturation
(Min),
mean

(SD)
Estimated
glomerular
filtration
rate, mean
(SD)
Outcomes
ICU
Admission
Mechanical
Ventilator
use
Hospital
LOS,
mean

(SD)
Prolonged
LOS ([7]8
days)

90.7 (4.9)

71.6 (26.2)

Outcomes
3(9.7)
7 (22.6)

45 (4.4)

4 (12.9)

91.1 (5.3)

59.4 (28.2)

Outcomes
4 (5.6)
5 (6.9)

3.5 (2.9)

4 (5.6)

92.0 (3.7)

83.8 (44.7)

Outcomes
8 (5.8)
12 (8.6)

2.8 (2.4)

7 (5.0)

0.182

<0.001%¢

Outcomes
0.690
0.0382

0.009b

0.250

88.5 (6.7)

65.7 (40.8)

Outcomes
8 (21.6)
12 (32.4)

5.3 (5.7)

6 (16.2)

91.6 (3.7)

77.3 (40.6)

Outcomes
7(9.0)
7(9.0)

2.8 (2.0)

3 (3.9)

0.002

0.154

Outcomes
0.060
0.002

0.001

0.021

Data are presented as either column frequency (percentage) or mean (standard deviation(SD)), as appropri-
ate. Overall p-values were computed using chi-square for categorical variables and ANOVA or Kruskal-Wallis

for continuous variables.

* Missing data were imputed based on age- and hospital-specific mean values.

2 2017/2018 Cluster 1 vs 2017/2018 Cluster 2, p<0.05
b 2017/2018 Cluster 1 vs 2017/2018 Cluster 3, p<0.05
¢ 2017/2018 Cluster 2 vs 2017/2018 Cluster 3, p<0.05

Prolonged Hospital Length of Stay-

Intensive Care Unit Stay -

Mechanical Ventilation Use

0.1

1
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100

Adjusted Odds Ratio (95%Cl)

e Cluster 1 vs. Cluster 2 (Ref)
A Cluster 1 vs_ Cluster 3 (Ref)
m  Cluster 2 vs. Cluster 3 (Ref)
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Figure 2. Adjusted odds ratios(A,C) and difference in model-adjusted means(B,D) with 95% confidence
intervals for outcomes. * indicates statistically significant differences between comparison groups. Models
were adjusted for age, sex, hospital, continuous CCI, and influenza vaccination status.
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Figure 3. Clustering metrics for the 2018/2019 influenza season, including the silhouette plot of k-medoids
clusters(A) and the top two principal components of data in the k-medoids clustering algorithm(B), with
cluster membership highlighted.
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