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network controller and a new compensating signal are designed. Differently from the traditional Backstepping technique, the
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error is always limited to the specified region bounded by the performance functions. Two simulation examples are used to
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Adaptive NN Control for Nominal Backstepping
Form with Periodically Time-varying and

Nonlinearly Parameterized Switching Functions
Xiaoli Yang, Jing Li∗, Shuzhi Sam Ge, Fellow, IEEE and Xiaobo Li

Abstract—In this paper, the prescribed tracking performance
control problem is addressed for uncertain nonlinear systems
with unknown periodically time-varying parameters and arbi-
trary switching signal. By utilizing radial basis function neu-
ral network and fourier series expansion, an approximator is
developed to overcome the difficulty of identifying unknown
periodically time-varying and nonlinearly parameterized func-
tions. To achieve the ideal tracking control performance and
eliminate the influence of filtering error, a performance function
is constructed in advance, and then, a novel command filter-based
adaptive neural network controller and a new compensating
signal are designed. Differently from the traditional Backstepping
technique, the proposed control scheme eliminates the “explosion
of complexity” problem and relaxes the constraint condition on
the reference signal. And then, it is warranted that the closed-loop
system is semi-globally ultimately uniformly bounded and the
tracking error is always limited to the specified region bounded
by the performance functions. Two simulation examples are used
to demonstrate the feasibility of the developed technique in this
paper.

Index Terms—Periodically Time-Varying Parameters, Track-
ing Control, Prescribed Performance, Command Filter, Neural
Networks

I. INTRODUCTION

As a distinct type of hybrid systems, switched systems are
composed of several subsystems and a logical switching law
that governs how to switch between subsystems. Switched
systems have captured many scholars’ attention because
of their wide applications, where quintessential examples
include networked systems, robotic systems [1], traffic
surveillance control systems [2] and switched RLC circuits
[3]. It is common knowledge that the asymptotically stability
of the switched systems with arbitrary switching can be
guaranteed if a common Lyapunov function (CLF) exists for
all subsystems satisfy [4]. However, constructing the CLF for
an arbitrary switching systems is not an effortless task. By
constructing proper CLFs, some important results on arbitrary
switching systems have been deduced in [5]–[8]. For instance,
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by introducing two switching functions in [5] and [6], the
tracking control problems with prior tracking accuracy have
been examined for the arbitrarily switched nonlinear systems.
Noted that, these control strategies reported in [5]–[8] are
designed in the framework of the traditional Backstepping
method. Nevertheless, when order n of the controlled
systems rises, the repeated derivatives of the virtual control
functions will become very complicated, which is called as
the “explosion of complexity” (EOC) problem. The EOC
issue results in the implementation difficulty of the designed
controllers. Thus, there naturally arises a problem that how
to deal with the EOC issue.

In order to tackle the EOC problem, Swaroop D et al.,
in [9], propose a dynamic surface control (DSC) strategy
for the first time. In [10] and [11], by combining the DSC
strategy with the Backstepping method, the EOC problem is
solved successfully. However, in these studies, the filtering
errors caused by the filtering process are ignored, which may
affect the system control performance. To avoid the influence
of the filtering error, afterwards, a mechanism with error
compensation is introduced to compensate the filtering error,
and then, a command filtered Backstepping (CFB) control
method is proposed in [12]. Recently, quiet a few remarkable
advances have been made by using the command filter and
adaptive Backstepping (CFAB) method, see [13]–[20]. For
instance, a CFB control scheme is reported in [13] to deal
with the tracking control problem for the strict-feedback
nonlinear systems. For a kind of the nonlinear systems
with unknown constant parameter, a new implementation
technique is proposed [14] by combining the CFAB control
method. In addition, by combining CFB design with some
approximation techniques, e.g., fuzzy logic systems (FLSs)
and neural networks (NNs), some adaptive control strategies
are developed for uncertain switched nonlinear system [18]–
[20]. Noted that there is considerable amount of literatures
on the systems with constant parameters. However, to date,
far too little attention has been paid to control the systems
with periodically time-varying parameters (PTVPs).

The periodically time-varying disturbances/parameters play
a significant role in practical applications, such as numerical
control machines [21], [22] and van der Pol oscillator [23].
Obviously, the PTVPs are more complex than constants
parameters, so thus its existence increases the difficulty of
system control design undoubtedly. Recently, a new adaptive
learning control technique is constructed for the nonlinear
systems [24], where an fourier series expansion (FSE) method
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is leveraged to overcome the challenges that arise from the
periodically time-varying reference signals. Coincidentally,
some appropriate techniques have been carried out by
combining FSE [22], [25]–[30]. For instance, in [25] and
[26], FSE and radial basis function neural network (RBFNN)
are combined together to handle the nonlinearly parameterised
and periodically disturbed functions, and two adaptive neural
DSC schemes are constructed for strict-feedback nonlinear
systems with unknown control gain functions and uncertain
multiple input multiple output (MIMO) strict-feedback
nonlinear systems, respectively. In addition, the tracking
control problems are addressed in [27], [28] by introducing
the DSC into the backstepping method, and the unknown
periodically disturbed system functions are approximated
by using FLS and FSE. Moreover, Chen et al. in [29],
[30] propose a novel approximation method by utilizing
multilayer neural network and FSE to model the periodically
time-varying and nonlinearly parameterized (PTVNP) system
functions. However, the previously published studies are
limited to nonlinear systems without switching function, and
the PTVNP switching systems have rarely been studied up to
now.

Another, the tracking control, as one of the important
issues in the control field, has received much attention
recently. In practical applications, high tracking control
performances, such as convergence domain, convergence
speed and overshoot, are required. However, the most existing
results only assure that the tracking error falls into to a small
but unknown neighborhood of zero [28]–[31]. To obtain
better performance, predefined performance control (PPC) is
proposed in [32], [33], where the tracking error converges
to a predetermined small set of residuals, the speed of
convergence is great than or equal a pre-specified value and
the maximum permissible overshoot is below a sufficiently
small pre-specified constant. Obviously, this method takes
into account the transient and steady-state performance of
the system simultaneously, and thus, in recent years, a large
number of meaningful results are reported [34]–[38] by using
the PPC technique. For instance, by introducing a novel error
transformation function, an event-triggered PPC scheme is
developed for the nonlinear system with unknown control
direction and actuator fault [34]. Moreover, the tracking
control with prescribed performance is addressed for the
uncertain strict-feedback nonlinear systems in [35], [36].
Furthermore, some control strategies by combining with the
PPC method are proposed for the switching systems in [37],
[38], such that tracking performance is ensured. However, it is
worth noting that few scholars pay attention to the prescribed
tracking control performance for the nonlinear systems with
unknown PTVPs and switching functions.

As a result of the foregoing observation, we first attempt to
address the predefined tracking control performance issue for
a category of uncertain nonlinear systems subject to unknown
nonlinear parameterized switching functions with PTVPs. The
approximator by combining FSE with RBFNN is constructed
to approximate the unknown PTVNP functions. By using
an error transformation method and the CFAB technique, a
novel command filter-based adaptive NN control scheme is

developed and the new compensating signals are constructed,
such that the predefined performance of the tracking error is
warranted. In comparison to existing works, the following
contributions are worth to be emphasized:

1) This paper focuses on a class of nonlinear systems
with unknown PTVNP switching functions. The considered
systems are more realistic and more complex than those
with unknown functions of constant parameters published
in [18]–[20]. Moreover, in comparison with the results in
[25], [26], where the approximation errors are ignored, the
estimates of these approximation errors’s upper bounds can
be acquired by the designed adaptive laws in our paper, and
the performance of the approximation is presented in a more
concise way.

2) The prescribed tracking performance control problem
of the considered system is first investigated. Compared with
the tracking control performance obtained in [28]–[31] where
the tracking error converges to a small but unknown residual
set, in this context, the tracking error is always restricted
to the given region defined by the performance functions
and converges with the performance function. Although the
PPC problem is solved [10], [34]–[38], they do not consider
nonlinear systems with unknown PTVNP switching functions.

3) A new command filter-based adaptive prescribed tracking
performance control scheme is developed. Differently from
the traditional Backstepping technique in [5]–[8], [29],
[30], the method proposed in our paper eliminates the EOC
problem, reduces the computational burden, and relaxes
the assumption of the reference signal whose nth-order
derivatives are continuous. Additionally, in contrast to the
control strategies published [10] based on DSC technique, to
achieve better system performance, the novel compensating
signals are designed to compensate for the filtering errors.

This paper is structured as follows: Section 2 contains the
description of the problem and some preliminaries for the
reference signal, performance function and unknown system
functions. In Section 3, a command-filter-based adaptive
NN control is provided. And the stability of the closed-loop
system is analyzed in Section 4. Two simulation studies are
performed in the next section to indicate the validity of the
created control approach. Finally, Section V provides the
conclusions of our paper.

Notations

Rn n-dimensional Euclidean space
‖X‖ the Euclidean norm of vector X
c[m] m-dimensional column vector with elements c
diag{c[m]} the m×m diagonal matrix with elements c
Λ > 0 positive definite matrix Λ
ΛT the transposition matrix of matrix Λ
‖Λ‖F the Frobenius norm of matrix Λ
tr(ΛT Λ) the trace of matrix ΛT Λ

(i.e., sum of diagonal elements of matrix ΛT Λ)
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II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem Formulation

Consider the following class of nonlinear systems: ẋi = xi+1 + fi,%(t)(x̄i, θi(t)), i = 1, 2, . . . , n− 1,
ẋn = u+ fn,%(t)(x̄n, θn(t)),
y = x1,

(1)

where x̄i = [x1, x2, . . . , xi]
T ∈ Ri, i = 1, . . . , n is the system

state vector; u and y denote the system control input and
output, respectively; %(t) : [0,+∞)→M = {1, 2, . . . ,m} is
a switching signal; for any i = 1, 2, . . . , n, fi,%(t)(x̄i, θi(t)) is
an unknown smooth nonlinear function with unknown periodic
parameter θi(t), and satisfies fi,%(t)(0, 0) = 0.

Remark 1. Parameter θi(t) in (1) is bounded and represents
any periodic signal or any compound periodical function, such
as sine function, tangent function, and so forth.

The objective of this paper is to design a command filter-
based adaptive NN control strategy, such that all the signals of
the closed-loop system is semi-globally ultimately uniformly
bounded (SGUUB) [39] and it can be guaranteed that the
tracking error signal keeps within the prescribed bounds of
the performance function.

To achieve this purpose, some preliminaries are provided
for the next controller design.

Assumption 1. [14]. Reference trajectory yd(t) and its first
derivative are continuous.

Remark 2. Compared with the constraint condition on the
reference signal which is nth-order differentiable in [5]–[8],
[29], [30], in our paper, the continuity of the reference signal
and its first derivative is requested. Obviously, the condition
is more relaxed.

B. Performance Function

In this section, performance function ρ(t) originally pro-
posed by Bechlioulis et in [32], [33] is introduced to confine
that tracking error e1(t) = y1(t)− yd(t) satisfies that

−gρ(t) < e1(t) < ḡρ(t), (2)

where g, ḡ are positive constants, and smooth function ρ(t)
has the following properties [32]: 1) ρ(t) > 0; 2) ρ̇(t) ≤ 0;
3) limt→∞ ρ(t) = ρ∞ > 0. Apparently, from (2), for initial
error e1(0), one has the following inequality

−gρ(0) < e1(0) < ḡρ(0). (3)

The relationship between tracking error e1(t) and performance
function ρ(t) stated above is clearly shown in Fig. 1.

Throughout this paper, ρ(t) = (ρ0 − ρ∞) e−ct + ρ∞, (ρ0,
ρ∞ and c are positive constants) is used as a performance
function, which satisfies all aforementioned properties of ρ(t)
obviously.

Remark 3. Constant ρ∞ indicates the maximum permissible
dimension of tracking error e1(t) in steady state. Moreover,
c is the decreasing pace of ρ(t), which controls the speed of
convergence of e1(t). And the maximum overshoot of e1(t)

Fig. 1. performance function

is less than ḡρ(0) and is more than gρ(0), and ḡ and g are
arbitrary positive constant values and may not be equal. Thus,
different tracking performance can be achieved by selecting
appropriate performance functions ρ(t) and constants ḡ and
g. In other word, when parameters ρ0, ρ∞ and c are given,
the performance of the tracking error signal is predetermined.

To achieve the prescribed performance, an error transfor-
mation related to the performance function and tracking error
is introduced to transform constraint condition (2) into the
unconstrained one [10].

e1(t) = ρ(t)R
(
ζ

1

)
, (4)

where smooth function

R
(
ζ

1

)
=
ḡeζ1 − ge−ζ1

eζ1 + e−ζ1
(5)

is strictly increasing and satisfies that limζ
1
→−∞R

(
ζ

1

)
=

−g and limζ
1
→+∞R

(
ζ

1

)
= ḡ. And thus, the inverse function

of (4) is

ζ
1

= R−1

(
e1

ρ

)
=

1

2
ln

(
e1
ρ + g

ḡ − e1
ρ

)
. (6)

Afterwards, to solve the zero equilibrium point inconformity
problem in the state transformation, transformed error ζ

1
can

be rewritten as
ζ1 = ζ

1
− 1

2
ln

(
g

ḡ

)
, (7)

And then, the derivation of ζ1 is

ζ̇1 = χ1

(
ė1 −

ρ̇

ρ
e1

)
, (8)

where

χ1 =
1

2ρ

(
1

e1
ρ + g

− 1
e1
ρ − ḡ

)
> 0, (9)

ρ̇ = −c (ρ0 − ρ∞) e−ct. (10)

C. FSE-RBFNN based approximator

To successfully control system (1), the unknown system dy-
namics should first be addressed. In recent years, for unknown
system functions, several general intelligent approximators are
proposed, where the popular design methods mainly include
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Fig. 2. FSE-RBFNN Approximator

FLS and NNs. By combining FLS or NNs with the adaptive
method, several control problems for the uncertain systems
have been solved in [39]–[46].

In our article, the NN approximation method is applied to
identify unknown continuous function f(x, θ(t)). As cited in
[47], f(x, θ(t)) with constant parameter (θ(t) = θ) or no
parameter (θ(t) = 0) can be identified by using RBFNN
over a compact set Ω. However, when θ(t) is an unknown
periodically time-varying parameter (PTVP), it is not an easy
task to cope with unknown system functions. Inspired by [24]
and [47], the discussion on a new approximation method is
presented in what follows.

First of all, for unknown PTVP θ(t), a common linearly
parameterized approximation method, FSE reported in [24]
can be represented as

θ(t) = aTφ(t) + ε(t), (11)

where a = [a1, . . . , aq]
T ∈ Rq represents the weight vector;

and node number q is an odd integer; ε(t) is the trun-
cation error; φ(t) = [φ1(t), . . . , φq(t)]

T with φ1(t) = 1,
φ2j(t) =

√
2 sin(2πjt/T) and φ2j+1(t) =

√
2 cos(2πjt/T),

j = 1, . . . , (q− 1)/2, where T means the period of parameter
θ(t), which is a known constant.

Combining the RBFNN reported in [47], a new approxima-
tion method, FSE-RBFNN, is constructed over compact set Ω.
And it is described as (see Fig. 2)

f(x, θ(t)) = W ∗TS(A∗TZ) + µ(Z), |µ(Z)| ≤ µ̄ (12)

where Z = (x, φ(t)) ∈ Rq+1 is the NN input vec-
tor with number of FSE nodes q; µ denotes the inher-
ent NN approximation error and µ̄ is the upper bound
of µ; A∗ = [A1, A2, . . . , Ap]

T ∈ R(q+1)×p with Aι =
[1, aι,1, aι,2, . . . , aι,q]

T ∈ Rq+1 (ι = 1, 2, . . . , p) represents
the first-to-second layer interconnection weight; and W ∗ =
[w1, w2, . . . , wp]

T ∈ Rp is the second-to-third layer intercon-
nection vector with number of NN nodes p > 1. And the ideal
weight is

(W ∗, A∗) = arg min
(W,V )

{
sup
Z∈Ω
| f(x, θ(t))− ŴTS(ÂTZ) |

}
,

(13)
where Â and Ŵ are the estimates of ideal weight vectors
A∗ and W ∗. And S(Z) = [s1(Z), s2(Z), · · · , sp(Z)]T ∈ Rp
denotes the basis function vector. Throughout this paper, sι(Z)
are chosen as the commonly used Gaussian functions sι(Z) =

e
− ‖Z−cι‖

2

2σ2ι with cι = [cι1, cι2, . . . , cιi]
T (ι = 1, 2, . . . , p, i =

1, 2, . . . , q+ 1); Z, cιi and σι are input vector, the center and
width of Gaussian function sι(Z), respectively.

Lemma 1. [47]. The estimation error of approximator (12)
can be described as

ŴTS
(
ÂTZ

)
−W ∗TS

(
A∗TZ

)
= W̃T

(
Ŝ − Ŝ′ÂTZ

)
+ ŴT Ŝ′ÃTZ + du,

(14)

where Ŝ = S
(
ÂTZ

)
, Ŝ′ = diag

{
ŝ′1, ŝ

′
2, . . . , ŝ

′
p

}
with ŝ′l =

d[s(Za)]
dZa

|Za=ÂTι Z
, (ι = 1, 2, . . . , p); and error du satisfies that

‖du‖ ≤ ‖A‖F
∥∥∥ZŴT Ŝ′

∥∥∥
F

+ ‖W ∗‖
∥∥∥Ŝ′ÂTZ∥∥∥+ |W ∗|1 ,

(15)
and ‖du‖ ≤ d with upper bound d > 0.

III. COMMAND FILTER-BASED ADAPTIVE NN CONTROL
DESIGN

The command filter-based adaptive NN controllers are p-
resented for the considered nonlinear system in this section.
Before displaying the designed controllers, we first define the
tracking errors and their compensating signals.

Define error variables{
z1 = ζ1,
zi = xi − xi,c, i = 2, . . . , n,

(16)

where xi,c (i = 2, 3, . . . , n) are the outputs of the command
filter. The command filter reported in [12] is defined as{

η̇i,1 = ωnηi,2, i = 1, 2, . . . , n− 1,
η̇i,2 = −2ζωnηi,2 − ωn (ηi,1 − αi) ,

(17)

with xi+1,c(t) = ηi,1 and ẋi+1,c(t) = ωnηi,2 as the filter
outputs. The initial values of filter (17) are ηi,1(0) = 0 and
ηi,2(0) = 0. The design parameters of filter (17) satisfy ωn >
0 and ζ ∈ (0, 1].

Next, we define compensated error signal vi{
v1 = z1 − ξ1,
vi = zi − ξi. i = 2, . . . , n,

(18)

where ξi is a compensating signal to be devised.

Remark 4. It should be pointed out that a filtering error
will be generated when virtual function αi passes through the
filter, which will add the difficulty to obtain better tracking
performance. Thus, to eliminate the effect of errors xi+1,c−αi
(i = 1, 2, . . . , n), the compensating signals are introduced.

To achieve the tracking control performance, when i = 1,
the virtual controller is designed as

α1 = −c1v1χ1Ŵ
T
1 S(ÂT1 Z1)− c1v1χ1δ̂1 + ẏd +

ρ̇

ρ
e1 − l1z1.

(19)
And the dynamic of compensating signal ξ1 is constructed as

ξ̇1 = χ1[−l1ξ1 + (x2,c − α1) + ξ2], (20)

with ξ1(0) = 0. The adaptive laws are
˙̂
W1 = Γ1(Ŝ1 − Ŝ′1ÂT1 Z1)c1v

2
1χ

2
1,

˙̂
A1 = Υ1Z1Ŵ

T
1 Ŝ
′
1c1v

2
1χ

2
1,

˙̂
δ1 = λ1c1v

2
1χ

2
1.

(21)
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In what follows, the i-th (i = 2, . . . , n) virtual controllers
are constructed as

αi = −kizi+ẋi,c−χ1(vi−1−ξi−1)−civiδ̂i−civiŴT
i S(ÂTi Zi).

(22)
Controller αn represents system (1) control input u. And then,
the dynamics of compensating signal ξi are designed as{

ξ̇i = −kiξi + (xi+1,c − αi) + ξi+1 − χ1ξi−1,

ξ̇n = −knξn − ξn−1,
(23)

with ξi(0) = 0. The adaptive laws are designed as
˙̂
Wi = Γi(Ŝi − Ŝ′iÂTi Zi)civ2

i ,
˙̂
Ai = ΥiZiŴ

T
i Ŝ
′
iciv

2
i , i = 2, . . . , n,

˙̂
δi = λiciv

2
i .

(24)

In Eqs. (19)–(24), for i = 1, 2, . . . , n, parameters l1, ci and
ki are positive constants; Ŵi, Âi and δ̂i are the estimations
of W ∗i , A∗i and δi, W̃i = Ŵi − W ∗i , Ãi = Âi − Ai and
δ̃i = δ̂i − δi; λi are positive constants; Γi = ΓTi > 0 and
Υi = ΥT

i > 0 are both the adaptive gain matrixes.

IV. STABILITY ANALYSIS

The stability of the closed-loop system will be analyzed and
proved in this section. In what follows, the system stability is
summarized as Theorem 1.

Theorem 1. Under Assumption 1, consider the plant consist-
ing of system (1), controllers (19) and (22), the dynamics of
compensating signal (20) and (23), and parameters adaptive
laws (21) and (24), such that

a) all the signals of the closed-loop system keep uniformly
ultimately bounded, and

b) the prescribed tracking control performance is assured.

Proof. Based on the Lyapunov function theory, a new com-
mand filter-based prescribed tracking performance control
strategy is developed to prove Theorem 1 by using Backstep-
ping method and the PPC technique. For clarity, the design
process of the proposed control algorithm is shown as follows.

Step 1. According to the error definitions in (7), (16) and
(18), the dynamic of compensated error signal v1 is

v̇1 = χ1(ẋ1 − ẏd −
ρ̇

ρ
e1)− ξ̇1

= χ1(x2 + f1,%(t)(x̄1, θ1(t))− ẏd −
ρ̇

ρ
e1)− ξ̇1.

(25)

Consider Lyapunov function candidate

V1 =
1

2
v2

1 ,

and its time derivative is obtained as
dV1

dt
=v1χ1[(x2 − x2,c) + (x2,c − α1) + α1

+ f1,%(t)(x̄1, θ1(t))− ẏd −
ρ̇

ρ
e1 − χ−1

1 ξ̇1],
(26)

where α1 is a virtual controller.
By using the Young’s inequality, we obtain

ν1χ1f1,%(t)(x̄1, θ1(t)) ≤ c1ν2
1χ

2
1Λ1 +

1

4c1
, (27)

where Λ1 =
∑m
l=1 f

2
1,l(x̄1, θ1(t)) is an unknown smooth

function with unknown PTVP θ1(t), l = %(t) ∈ M =
{1, 2, . . . ,m} represents l-th subsystem is active, c1 is an
arbitrarily positive constant.

By using (12), we have

Λ1 = W ∗T1 S(A∗T1 Z1) + µ1(Z1), |µ1(Z1)| ≤ µ̄1, (28)

where the input of basis function S(A∗T1 Z1) is vector Z1 =
[x̄1, φ(t)]T ∈ Ω, and µ̄1 > 0 is an unknown constant.

Substituting (19), (20) and (28) into (26) and based on
Lemma 1, we get

dV1

dt
≤v1χ1

[
(x2 − x2,c) + (x2,c − α1)− l1v1

]
+

1

4c1
+ c1v

2
1χ

2
1

[
W ∗T1 S(A∗T1 Z1)

− ŴT
1 S(ÂT1 Z1) + µ̄1 − δ̂1

]
≤− l1χ1v

2
1 + χ1v1v2 − c1v2

1χ
2
1[ŴT

1 Ŝ
′
1Ã

T
1 Z1

+ W̃T
1 (Ŝ1 − Ŝ′1ÂT1 Z1) + δ̃1] +

1

4c1
,

(29)

where δ1 = µ̄1 − d1.
Further, consider

V̄1 = V1 +
1

2
W̃T

1 Γ−1
1 W̃1 +

1

2
tr{ÃT1 Υ−1

1 Ã1}+
1

2λ1
δ̃2
1 . (30)

From (29), the first derivative of V̄1 is obtained

dV̄1

dt
≤− l1χ1v

2
1 + χ1v1v2 − c1v2

1χ
2
1[ŴT

1 Ŝ
′
1Ã

T
1 Z1

+ W̃T
1 (Ŝ1 − Ŝ′1ÂT1 Z1) + δ̃1] +

1

λ1
δ̃1

˙̂
δ1 +

1

4c1

+ W̃T
1 Γ−1

1
˙̂
W1 + tr

{
ÃT1 Υ−1

1
˙̂
A1

}
.

(31)

It is known that

ŴT
1 Ŝ
′
1Ã

T
1 Z1 = tr

{
ÃT1 Z1Ŵ

T
1 Ŝ
′
1

}
. (32)

By substituting (32) into (31), we obtain

dV̄1

dt
≤− l1χ1v

2
1 + χ1v1v2 +

1

λ1
δ̃1(

˙̂
δ1 − λ1c1v

2
1χ

2
1)

+ W̃T
1 Γ−1

1

(
˙̂
W1 − Γ1(Ŝ1 − Ŝ′1ÂT1 Z1)c1v

2
1χ

2
1

)
+ tr

{
ÃT1 Υ−1

1 (
˙̂
A1 −Υ1Z1Ŵ

T
1 Ŝ
′
1c1v

2
1χ

2
1)
}
.

(33)

From (21), Eq. (33) can be further written as

˙̄V1 ≤ −k1χ1v
2
1 + χ1v1v2 +

1

4c1
, (34)

where k1 := l1χ1 > 0 since l1 > 0 and χ1 > 0.
Step i (2 ≤ i ≤ n − 1). Combining (1) with (16), the

dynamic of compensating error vi is expressed as

v̇i = xi+1 + fi,%(t)(x̄i, θi(t))− ẋi,c − ξ̇i. (35)

Define

Vi = V̄i−1 +
1

2
v2
i . (36)
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Subsequently, we achieve

dVi
dt

=
dV̄i−1

dt
+ vi

[
(xi+1 − xi+1,c) + (xi+1,c − αi)

+ αi + fi,%(t)(x̄i, θi(t))− ẋi,c − ξ̇i
]
,

(37)

where αi is a virtual controller.
By using a ≤ ca2 + 1/(4c), similar to (27), Eq. (37) can be

rewritten as

dVi
dt
≤−

i−1∑
j=1

kjv
2
j +

i∑
j=1

1

4cj
+vi

[
vi−1 + (xi+1−xi+1,c)

+ (xi+1,c − αi) + αi + civiΛi − ẋi,c − ξ̇i
]
,

(38)

where Λi =
∑m
l=1 f

2
i,l(x̄i, θi(t)) is an smooth unknown

function needing to be identified.
From (12), we get

Λi = W ∗Ti S(A∗Ti Zi) + µi(Zi), |µi(Zi)| ≤ µ̄i, (39)

where µ̄i > 0 has the same meaning as µ̄1 in (28).
Substituting (22), (23) and (39) into (38) results in

dVi
dt
≤−

i∑
j=1

kjv
2
j + vivi+1 + civ

2
i

[
W ∗Ti S(A∗Ti Zi)

− ŴT
i S(ÂTi Zi) + µ̄i − δ̂i

]
+

i∑
j=1

1

4cj
.

(40)

Based on Lemma 1, it is easy to acquire

dVi
dt
≤−

i∑
j=1

kjv
2
j + vivi+1 + civ

2
i

[
ŴT
i Ŝ
′
iÃ

T
i Zi

+ W̃T
i (Ŝi − Ŝ′iÂTi Zi) + δ̃i

]
+

i∑
j=1

1

4cj
,

(41)

where δi = µ̄i − di.
Consider

V̄i = Vi +
1

2
W̃T
i Γ−1

i W̃i +
1

2
tr{ÃTi Υ−1

i Ãi}+
1

2λi
δ̃2
i . (42)

Then, we have

dV̄i
dt

=
dVi
dt

+ W̃T
i Γ−1

i
˙̂
Wi + tr{ÃTi Υ−1

i
˙̂
Ai}+

1

λi
δ̃i

˙̂
δi

≤−
i∑

j=1

kjv
2
j +

i∑
j=1

1

4cj
+vivi+1+

1

λi
δ̃i(

˙̂
δi−λiciv2

i )

+ W̃T
i Γ−1

i

(
˙̂
Wi − Γi(Ŝ1 − Ŝ′1ÂTi φ(t))civ

2
i

)
+ tr

{
ÃTi Υ−1

i (
˙̂
Ai −ΥiZiŴ

T
i Ŝ
′
iciv

2
i )
}
.

(43)

According to (24), we obtain

dV̄i
dt
≤ −

i∑
j=1

kjv
2
j +

i∑
j=1

1

4cj
+ vivi+1. (44)

Remark 5. From (44) with i = 2, it is obtained that when i >
2, Eqs (22)–(23) will be independent of χ1. That is, χ1(vi−1−

ξi−1) of controller (22) and χ1ξi−1 of (23) becomes vi−1 −
ξi−1 and ξi−1, respectively.

Step n. Consider

V̄n = Vn+
1

2
W̃T
n Γ−1

n W̃n+
1

2
tr{ÃTnΥ−1

n Ãn}+
1

2λn
δ̃2
n, (45)

and Vn = V̄n−1 + 1
2v

2
n.

Using the same computational process as done in Step i,
noticing (44) with i = n − 1 and combining (22) and (24)
with i = n, it is easy to obtain that

dV̄n
dt
≤ −

n∑
i=1

kiv
2
i +

n∑
i=1

1

4ci
. (46)

From (46), it is clearly evident that dV̄n
dt ≤ 0. According to

the Boundedness Theorem (e.g., Theorem 4.18 in [48]), we
can conclude directly that for 1 ≤ i ≤ n, error signals vi, W̃i,
Ãi and δ̃i are uniformly ultimately bounded. And then, Ŵi, Âi
and δ̂i are bounded owing to W̃i = Ŵi−W ∗i , Ãi = Âi−A∗i ,
and δ̃i = δ̂i−δi. Furthermore, the stability of the compensated
error signal is provided. Choose the Lyapunov function of the
compensating system as follows:

Vξ =
1

2

n∑
i

ξ2
i . (47)

Substituting (20) and (23) into the time derivative of function
Vξ, we have

dVξ

dt
=ξ1ξ̇1 + ξ2ξ̇2 + · · ·+ ξnξ̇n

=− l1χ1ξ
2
1 + χ1ξ1(x2,c − α1) + χ1ξ1ξ2

− k2ξ
2
2 + ξ2(xi+1,c − αi) + ξ2ξ3 − χ1ξ1ξ2

− kiξ2
i + ξi(xi+1,c − αi) + ξiξi+1 − ξiξi−1

+ · · · − knξ2
n − ξnξn−1,

(48)

As cited in [12], |xi+1,c−αi| ≤ $i can be ensured with arbi-
trarily small positive constants $i (i = 1, 2, . . . , n). Therefore,
with the help of the inequality that ab ≤ 1/2a2 + 1/2b2, Eq.
(48) can be rewritten as

Vn+1

dt
≤ −KVn+1 + 1/2

n−1∑
i=1

$2
i (49)

where K = 2 min{l1χ1−1/2, k2−1/2, . . . , kn−1/2}. Thus,
according to the Boundedness Theorem [48], the compensating
signals are bounded. And then, based on the boundedness of
vi and ξi and from (18), we can obtain that error signals zi
are bounded. Furthermore, when z1 is bounded, the prescribed
performance of tracking error e1 is warranted, which is proved
in [33].

In conclusion, from (46), it can be readily available that all
the signals are SGUUB, and the prescribed performance of
tracking error e1 is guaranteed. That is, Eq. (2) holds.

Consequently, the proof of Theorem 1 is completed.

Remark 6. From (5) and the boundedness of transformation
error ξ1, it is concluded that the value of e(t) will not be
infinitely close to the value of ḡρ(t) or −gρ(t). That is, the
tracking error is always limited in the bound (−gρ(t), ḡρ(t)),
which means that inequality (2) holds.
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TABLE I: Control Parameters

Parameters in (53) Other parameters
Γ1 diag{10[5]} Node numbers p 5
Γ2 diag{10[5]} q 5
Υ1 diag{2[5]} Control gains l1 5
Υ2 diag{10[5]} k2 10
λ1 2 Command filter (17) ζ 0.5
λ2 5 ωn 100
g 1

performance function
ρ0 2

ḡ 1 ρ∞ 0.02
c 2

V. SIMULATION STUDIES

In this section, two simulations are performed to the validity
of the constructed control strategy.

Consider the nonlinear system described below ẋ1 = x2 + f1,%(t)(x̄1, θ1(t)),
ẋ2 = u+ f2,%(t)(x̄2, θ2(t)), %(t) = 1, 2,
y = x1,

(50)

where u, y and x̄2 = [x1, x2]T denote the system control
input, output and state vector, respectively; θ1(t) and θ2(t)
are unknown PTVPs; reference signal yd(t) is chosen as
yd(t) = sin(2t) + 2 cos(t); the performance function is
ρ(t) = (2 − 0.1)e2t + 0.1; the system functions are f1,1 =
x1 cos(t), f1,2 = cos(x1 sin(2t)), f2,1 = sin2(t) cos(x1x2),
and f2,2 = sin(x1x2 cos(2t)). Given a set of initial values
x1(0) = 1, x2(0) = 1.5, ξ1(0) = 0, Ŵ1(0) = 0[5],
Ŵ2(0) = 0[5], Â1(0) = 0[5], Â2(0) = 0[5], δ̂1(0) = 0 and
δ̂2(0) = 0.

The control strategy developed in Section III are employed
to control system (50). Similar to the design process of
controllers (19) and (22), the controllers for system (50) are
formulated as

u = −k2z2 + ẋ2,c−χ1(v1−ξ1)−c2v2Ŵ
T
2 S(ÂT2 Z2)−c2v2δ̂2,

(51)

α1 = −c1χ1v1Ŵ
T
1 S(ÂT1 Z1)− c1χ1v1δ̂1 + ẏd +

ρ̇

ρ
e1 − l1z1.

(52)
At the same time, the parameter learning laws are

˙̂
W1 = Γ1(Ŝ1 − Ŝ′1ÂT1 Z1)c1v

2
1χ

2
1,

˙̂
A1 = Υ1Z1Ŵ

T
1 Ŝ
′
1c1v

2
1χ

2
1,

˙̂
δ1 = λ1c1v

2
1χ

2
1,

˙̂
W2 = Γ2(Ŝ2 − Ŝ′2ÂT2 Z2)c2v

2
2 ,

˙̂
A2 = Υ2Z2Ŵ

T
2 Ŝ
′
2c2v

2
2 ,

˙̂
δ2 = λ2c2v

2
2 ,

(53)

and the adaptive law of the compensating signal is{
ξ̇1 = χ1[−l1ξ1 + (x2,c − α1) + ξ2],

ξ̇2 = −k2ξ2 − χ1ξ1.
(54)

Moreover, the corresponding control parameters in (51)–(54)
are displayed in Table I.

The simulation results for system (50) are shown in Figs.
3–9. The output signal follows the reference signal, as seen in
Fig. 3. To further display clearly, Fig. 4 is provided, where
the dotted line represents error signal e1(t) and the solid
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Fig. 3. Reference signal yd(t) and output signal y(t)
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Fig. 4. Error signal e1(t) and performance function ρ(t)

lines indicates performance function ρ(t). From Fig. 4, we
can see that the trajectory of the tracking error fluctuates
between the bounds predetermined by performance function
ρ(t). The tracking performance is unquestionably assured. And
the trajectories of the designed compensated signal and the
control input is shown in Fig. 5 and Fig. 6. Moreover, Fig. 7
depicts the arbitrarily given switching signal’s trajectory. The
norms of weight estimations Ŵ1, Ŵ2, Â1, Â2 and the upper
bound estimations of approximation errors δ1, δ2 are shown in
Figs. 8–10, respectively. Seeing from Figs. 8–10, apparently,
these estimated trajectories are settled within bounded regions.

Example 2: To further illustrate the vitality of the proposed
algorithm, the designed adaptive NN controller is applied to
the following well-known van der Pol oscillator (van der Pol,
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Fig. 5. Compensating signal ξ1(t)
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Fig. 6. Control input u(t)
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Fig. 7. Switching signal %(t)
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Fig. 8. Norms of the weight estimations ‖Ŵ1‖ and ‖Ŵ2‖
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Fig. 9. F-Norms of the weight estimations ‖Â1‖F and ‖Â2‖F
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Fig. 10. Estimations of the approximation errors δ̂1 and δ̂2

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Fig. 11. Van der Pol chaotic attractor

1927):  ẋ1 = x1 − 1
3x

3
1 − x2 + p+ F (t),

ẋ2 = 0.1 (x1 + a− bx2) + u,
y = x1,

(55)

where F (t) = q cos(ωt) is a periodically function. In [23], the
chaotic behavior of system (55) without control input (i.e., u =
0 ) is shown in Fig. 11 with a = 0.7, b = 0.8, p = 0, q = 0.74
and ω = 1.

In this study, it is assumed that the system exhibits the
switching phenomena and F (t) = q cos(ωt) is an unknown
function. The system with switching signal can be expressed
as  ẋ1 = −x2 + f1,%(t)(x1, F1(t)),

ẋ2 = u+ f2,%(t)(x1, x2),
y = x1,

(56)

where F1(t) = F (t) means the unknown periodic signal with
known period T = 2π; %(t) = {1, 2} and the system functions
are f1,2 = x1 − 1

3x
3
1 − 0.74 cos(0.5t), f1,2 = x1 − 1

3x
3
1 +

0.74 cos(t) and f2,1 = f2,2 = 0.1(x1+0.7+0.8x2). Moreover,
the reference signal is yd(t) = cos(t) + sin(2t).

The goal of the control is to design an adaptive controller
for system (56) such that i) all the signals of the closed-loop
system are SGUUB; ii) tracking error e1(t) is stable within the
prescribed bounds of the performance function, i.e., −gρ(t) <
e1(t) < ḡρ(t).
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TABLE II: Simulation Parameters

Parameters Values Parameters Values
x1(0) 0.2 p 5
x2(0) 1 q 5
Ŵ1(0) 0[5] l1 0.01
Ŵ2(0) 0[5] k2 10
Â1(0) 0[5] λ1 2
δ̂1(0) 0 λ2 5
δ̂2(0) 0 Γ1 diag{1[5]}
ζ 0.5 Γ2 diag{2[5]}
ωn 100 Υ1 diag{1[5]}
ρ0 2 g 1
ρ∞ 0.1 ḡ 1
c 3 c1 1

Apparently, the gain of system (56) state x2 is not positive
constant. Hence, the virtual controller is revised as

α1 = −[−c1v1χ1Ŵ
T
1 S(ÂT1 Z1)−c1v1χ1δ̂1 + ẏd+

ρ̇

ρ
e1−l1z1],

(57)
and the dynamics of compensating signal ξ1 is developed as

ξ̇1 = −χ1[−l1ξ1 + (x2,c − α1) + ξ2]. (58)

Moreover, the adaptive learning laws are
˙̂
W1 = Γ1(Ŝ1 − Ŝ′1ÂT1 Z1)c1v

2
1χ

2
1,

˙̂
A1 = Υ1Z1Ŵ

T
1 Ŝ
′
1c1v

2
1χ

2
1,

˙̂
δ1 = λ1c1v

2
1χ

2
1.

(59)

In addition, function f2,%(t)(x1, x2) is not related to the un-
known PTVPs, hence, for simplicity, RBFNN instead of FSE-
RBFNN is utilized to model the unknown system function.
And the controller is

u = −k2z2 + ẋ2,c + χ1(v1 − ξ1)− c2v2Ŵ
T
2 S(x̄2)− c2v2δ̂2,

(60)
and the dynamics of compensating signal ξ2 is developed as

ξ̇2 = −k2ξ2 − χ1ξ1. (61)

and the adaptive control laws are constructed as{
˙̂
W2 = Γ2S(x̄2)c2v

2
2 ,

˙̂
δ2 = λ2c2v

2
2 .

(62)

The simulation parameters are provided in Table II, which
contains the initial conditions, the number of the FSE-RBFNN
nodes, and the suggested parameters in controllers and param-
eter adaptive laws.

The simulation results are shown in Figs. 12–18. As shown
in Fig. 12, the output signal tracks the reference signal. Further
analysis showed in Fig. 13 that the tracking error trajectory
never exceeds the bounds defined by the performance function,
which suggests that the designed algorithm has achieved good
tracking performance. Furthermore, Fig. 14 exhibits the trajec-
tory of the arbitrarily chosen switching signal. In addition, the
trajectory of the compensating signal is presented in Fig.15.
Moreover, the norms of weight estimations Ŵ1, Ŵ2, Â1 and
the upper bound estimations of approximation errors δ1, δ2 are
shown in Figs. 16–18, respectively. From Fig. 15–18, we can
see that these trajectories are stable in a bounded zones.
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Fig. 12. Reference signal yd(t) and output signal y(t)
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Fig. 13. Error signal e1(t) and performance function ρ(t)

In summary, according to Examples 1 and 2, these simu-
lation results suggest that all the signals of the closed-loop
system are SGUUB and the performance of the tracking error
is achieve, which accord to Theorem 1. Furthermore, the
achieved control performance validates the proposed control
method’s efficacy.

VI. CONCLUSION

This paper is to address the prescribed tracking control
performance problem for PTVNP uncertain systems. The
unknown switching nonlinear functions with PTVPs are iden-
tified by exploiting the approximation method which combines
RBFNN with FSE. In addition, to avoid the EOC problem, a
new adaptive NN tracking control strategy is constructed by
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Fig. 14. Switching signal %(t)
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Fig. 15. Compensating signals ξ1(t) and ξ2(t)
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Fig. 16. Norms of the weight estimations ‖Ŵ1‖ and ‖Ŵ2‖
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Fig. 17. F-Norm of the weight estimation ‖Â1‖F
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Fig. 18. Estimations of the approximation errors δ̂1 and δ̂2

using CFAB technique. At the same time, the adaptive laws in-
cluding the approximation weights, the approximation errors’
upper bounds and the compensating signals, are proposed.
Furthermore, it can be proven that the closed-loop system
is SGUUB, and the tracking performance is warranted, i.e.,
the tracking error signal is always kept within the prescribed
bounds by the performance functions. Finally, the simulation
studies substantiated these properties.

In our context, the tracking control scheme is proposed for a
class of the strict-feedback nonlinear systems with switching
function and PTVPs. In the future work, we will consider
extending the results of this article to a class of the nonstrict-
feedback systems.
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