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Abstract

This paper is concerned with a diffusive predator-prey model with prey-taxis and prey-structure under the homogeneous

Neumann boundary condition. The stability of the unique positive constant equilibrium of the predator-prey model is derived.

Hopf bifurcation and steady state bifurcation are also concluded.

1



Dynamics of a diffusive predator-prey1

model with prey-stage structure and2

prey-taxis∗
3

Yan Li†,Zhiyi Lv, Xiuzhen Fan4

College of Science, China University of Petroleum(East China),5

Qingdao 266580, PR China6

Abstract7

This paper is concerned with a diffusive predator-prey model with8

prey-taxis and prey-structure under the homogeneous Neumann boundary9

condition. The stability of the unique positive constant equilibrium of10

the predator-prey model is derived. Hopf bifurcation and steady state11

bifurcation are also concluded.12

Keywords: Predator-prey model; Hopf bifurcation; Steady state bi-13

furcation; Prey-taxis.14

1 Introduction15

Predator-prey models have always been considered to be classical, and the source16

of all the research work in population models during the past century is the17

Lotka-Volterra model [1, 2]. In the predator-prey models, the functional re-18

sponse is one of the crucial factors, which affect population dynamics. Typically,19

the Lotka-Volterra interaction term can be classified into many different types,20

for instance, Holling type I-IV [3, 4], Holling-Tanner type [5, 6], Beddington-21

DeAngelis type [7, 8, 9], ratio-dependent type [10], and Ivlev type [11]. Dy-22

namic structure of the system is not only related to the response function but23

also may depend on many other factors such as location, age and mature delay24

and so on. The life histories of plants, insects, and animal life histories exhibit25

enormous diversity. Metamorphosis may carry the same individual through26

several totally different niches during a lifetime. Specialized stages may ex-27

ist for dispersal or dormancy. The vital rates (rates of survival, development,28

and reproduction) almost always depend on age, size, or development stage.29

Population growth models that include age, stage or body size structure often30

predict complex population dynamics. Due to the above realistic evidences,31

the stage-structured models have received much attention in recent years, see32

[13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. Generally speaking, population growth33

models that include stage structure predict more complex population dynamics34

than those without stage structure.35
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In the spatial-temporal predator-prey interaction, with the exception of the1

random diffusion of predators and the prey, the variations of the predator’s ve-2

locity are often directed by prey gradient i.e. prey-taxis. Kareiva and Odell3

[23] first derived a prey-taxis model to describe the predator aggregation in4

high prey density areas. Since then, more and more scholars have studied the5

predator-prey model with prey-taxis. For example, Lee et all showed that the6

prey-taxis tends to reduce the likelihood of pattern formation and effective bio-7

control in [24]. Wang et al. [25] investigated the global existence, boundedness8

and global stabilities of the equilibria for a two predators and one prey model9

with prey-taxis. We refer to [26, 27, 28, 29, 30] for other interesting works on10

models with prey-taxis. It has been recognized that the systems with prey-taxis11

may undergo more rich dynamics and generate different spatial patterns than12

without prey-taxis.13

In [12], the authors established the following predator-prey model with gen-14

eral functional response and stage-structure for the prey:15 

du

dt
= av − bu− γu2 − g(u)w, t > 0,

dv

dt
= u− v, t > 0,

dw

dt
= w(−r + δg(u)), t > 0

(1)

where u, v are the population densities of immature and mature prey species,16

respectively. w denotes the density of predator population. a, b, r, δ > 0, and17

the functional response g(u) also satisfies18

g(0) = 0, g′(u) > 0(u ≥ 0), and 0 < g(u) < L, L is a positive constant.19

For the background of (1), the readers can refer to [12]. The authors studied20

the stability of equilibrium points for this ODE system via linearization and the21

Lyapunov method, and showed that Hopf bifurcation occurs in paper [12].22

It is known that the distributions of populations, in general, being heteroge-23

neous, depend not only on time, but also on the spatial positions in habitat. So it24

is natural and more precise to study the corresponding PDE problem. In paper25

[12], the authors also considered the following corresponding reaction-diffusion26

system:27 

∂u

∂t
− d1∆u = av − bu− γu2 − g(u)w, x ∈ Ω, t > 0,

∂v

∂t
− d2∆v = u− v, x ∈ Ω, t > 0,

∂w

∂t
− d3∆w = w(−r + δg(u)), x ∈ Ω, t > 0,

∂u

∂n
=
∂v

∂n
=
∂w

∂n
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x) ≥ 0 x ∈ Ω

(2)
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where Ω ⊆ RN (N ≥ 1) is a bounded domain with smooth boundary ∂Ω, n1

is the outward unit normal vector of the boundary ∂Ω. d1, d2 and d3 are2

positive constants which stand for the random diffusion rates of the three species,3

respectively. The homogeneous Neumann boundary condition indicates that4

the predator-prey system is self-contained with zero population flux across the5

boundary. u0(x), v0(x) and w0(x) are nonnegative smooth functions on Ω̄. In6

[12], the existence and uniform boundedness of global solutions and stability7

of equilibrium points for the corresponding reaction-diffusion problem (2) were8

discussed. In addition, by using the topological degree theory, the existence9

of nontrivial steady states of system (2) under certain situations was showed,10

and some nonexistence of nontrivial steady state results were also obtained. We11

refer to [31, 32, 33, 34, 35] for the studies on the reaction-diffusion in other12

three-species predator-prey models.13

In this paper, we introduce prey-taxis term into problem (2) and investigate14

the effect of the prey-taxis on the dynamics of predator-prey model. Thus, we15

shall consider the following model:16 

∂u

∂t
− d1∆u+ χ∇(u∇v) = av − bu− γu2 − g(u)w, x ∈ Ω, t > 0,

∂v

∂t
− d2∆v = u− v, x ∈ Ω, t > 0,

∂w

∂t
− d3∆w + ρ∇(w∇u) = w(−r + δg(u)), x ∈ Ω, t > 0,

∂u

∂n
=
∂v

∂n
=
∂w

∂n
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x) ≥ 0 x ∈ Ω

(3)

where the terms χ∇(u∇v) and ρ∇(w∇u) are actually taxis mechanisms and17

χ, ρ > 0 are their taxis rates, respectively. The term χ∇(u∇v) models the18

movement of the immature prey which is directed toward the increasing mature19

prey densities. The term ρ∇(w∇u) accounts for prey-taxis which describes the20

phenomenon that the predator has the tendency to move increasingly toward21

the immature prey gradient direction. In the following paper, we will study the22

Hopf bifurcation and steady-state bifurcation of problem (3) by choosing the23

prey-taxis rate.24

The outline of this paper is as follows. In Section 2, after analyzing the25

characteristic equation, we conclude the stability of constant equilibria of prob-26

lem (3). In Section 3, we research the existence of periodic solutions bifurcating27

from the unique positive constant equilibrium of problem (3). In Section 4,28

we consider steady state bifurcations to show the existence of nontrivial steady29

state solutions of (3).30

Throughout the paper, µk denotes the eigenvalues of −∆ in Ω under the

homogeneous Neumann boundary condition satisfying

0 = µ0 < µ1 ≤ µ2 < · · ·µk < · · · <∞.
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2 Stability of constant equilibria of problem (3)1

In this section we will study the stability of constant equilibria of problem (3).2

It is easy to see that the trivial equilibrium point (0, 0, 0) always exists. If3

a > b, semi-trivial equilibrium point (ū, v̄, 0) = (a−bγ , a−bγ , 0) exists. Especially4

if5

a− b− γu? > 0, and δL > r (4)

a unique positive constant equilibrium (u?, v?, w?) also exists, where

u? = v? = g−1(
r

δ
), w? =

δ

r
(a− b− γu?)u?.

When χ = ρ = 0, in [12], the stability of constant equilibria of (1) and (2)6

has been studied. We shall perform linearized stability analysis to see the effects7

of prey-taxis coefficients χ and ρ.8

Theorem 2.1. For problem (3),9

10

(1) If a < b, then (0, 0, 0) is locally asymptotically stable; if a > b, then11

(0, 0, 0) is unstable;12

13

(2) Let a > b, r > δL hold. If

χ ≤ γ

a− b
[d1 + d2(2a− b)],

(ū, v̄, 0) is locally asymptotically stable;14

15

(3) Assume that (4) holds. If16

χ ≤ min{χ1, χ2}, and a ≤ η (5)

where17

χ1 = d1+d2η+d3(η+1)
u? ,

χ2 =
d1+d2η+

d2
d3
ρw?g(u?)

u? ,

η = b+ 2γu? + g′(u?)w?,

then (u?, v?, w?) is locally asymptotically stable.18

Proof We will prove the above points in turn.19

(1) Linearizing problem (3) at the trivial equilibrium (0, 0, 0), the Jacobi

matrix at (0, 0, 0) is as follows

J(0,0,0) =


−d1µk − b a 0

1 −d2µk − 1 0

0 0 −d3µk − r

 , k = 0, 1, 2, ...,

4



so the characteristic equation is

[λ2 + (d1µk + b+ d2µk + 1)λ+ d1d2µ
2
k + (d1 + d2b)µk + b− a](λ+ d3µk + r) = 0.

Hence, according to Routh-Hurwitz criterion, we obtain that if a < b, then

(0, 0, 0) is locally asymptotically stable; if a > b, then (0, 0, 0) is unstable; if

a = b, when k = 0, we have µk = 0, so the characteristic equation is

λ(λ+ b+ 1)(λ+ r) = 0,

then the roots of the equation are λ1 = 0, λ2 = −(b + 1) < 0, λ3 = −r < 0.1

There is a zero eigenvalue, so we need to use the manifold theorem to judge the2

stability, which will not be discussed here.3

(2) Similar to the above, the Jacobi matrix at (ū, v̄, 0) is

J(ū,v̄,0) =


−d1µk − b− 2γū µkχū+ a −g(ū)

1 −d2µk − 1 0

0 0 −d3µk − r + δg(ū)

 , k = 0, 1, 2, ...,

the characteristic equation at (ū, v̄, 0) is

[λ2+(d1µk+2a−b+d2µk+1)λ+(d1µk+2a−b)(d2µk+1)−(χ
a− b
γ

µk+a)](λ+d3µk+r−δg(
a− b
γ

)) = 0.

It is observed that r − δg(a−bγ ) > 0 since r > δL holds. Moreover according to

Routh-Hurwitz criterion, it is easy to get that if

χ ≤ γ

a− b
[d1 + d2(2a− b)],

then (ū, v̄, 0) is locally asymptotically stable.4

(3) Due to the standard linearized stability principle, the linearized stability5

of (u?, v?, w?) is determined by eigenvalues of the following matrixes6

Nk =


−d1µk − η µkχu

? + a −g(u?)

1 −d2µk − 1 0

µkρw
? + δw?g′(u?) 0 −d3µk

 , k = 0, 1, 2, .... (6)

Hence, the characteristic equation for Nk is as follows:7

λ3 +A1λ
2 +A2λ+A3 = 0, (7)
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where1

A1 = (d1 + d2 + d3)µk + η + 1,

A2 = (d1d2 + d1d3 + d2d3)µ2
k + [d1 + d2η + d3(η + 1) + ρw?g(u?)− χu?]µk

+[η + δw?g(u?)g′(u?)− a],

A3 = d1d2d3µ
3
k + [(d1 + d2η)d3 + d2ρw

?g(u?)− d3χu
?]µ2

k

+[d3η + d2δw
?g(u?)g′(u?) + ρw?g(u?)− ad3]µk + δw?g(u?)g′(u?).

Firstly it is noted that A1 > 0 for any k ≥ 0. In addition, if2

χ < χ3, a < η + δw?g(u?)g′(u?), (8)

then A2 > 0 for any k ≥ 0, where χ3 = d1+d2η+d3(η+1)+ρw?g(u?)
u? . And if3

χ ≤ χ2, a ≤ η +
d2

d3
δw?g(u?)g′(u?) +

1

d3
ρw?g(u?), (9)

then A3 > 0 for any k ≥ 0, where χ2 has been mentioned above.4

Next, direct computations show that

A1A2 −A3 = B1µ
3
k +B2µ

2
k +B3µk +B4

where5

B1 = (d1 + d2 + d3)(d1d2 + d1d3 + d2d3)− d1d2d3,

B2 = (d1d2 + d1d3 + d2d3)(η + 1) + d1[d1 + d2η + d3(η + 1) + ρw?g(u?)− χu?]

+d2[d1 + d2η + d3(η + 1)− χu?] + d3[d3(η + 1) + ρw?g(u?)],

B3 = η[d1 + d2η + d3(η + 1) + ρw?g(u?)− χu?] + d1[η + δw?g(u?)g′(u?)− a]

+d2(η − a) + d3δw
?g(u?)g′(u?) + [d1 + d2η + d3(η + 1)− χu?],

B4 = η[η + δw?g(u?)g′(u?)− a] + η − a.

According to the above formula, we can easily get B1 > 0 for any k ≥ 0; if6

χ ≤ χ1, then B2 > 0 holds; if χ ≤ χ1, and a ≤ η, then B3 > 0; if a ≤ η, then7

B4 > 0. Therefore, A1A2−A3 > 0 holds if χ ≤ χ1, and a ≤ η, where χ1, η have8

been mentioned above.9

In summary, if (8), (9) and χ ≤ χ1, a ≤ η hold, that is χ ≤ min{χ1, χ2, χ3} =10

min{χ1, χ2} and a ≤ η hold, then we have A1, A2, A3 > 0 and A1A2 − A3 > 0.11

According to Routh-Hurwitz criterion, if (4) and (5) hold, then (u?, v?, w?) is12

locally asymptotically stable.13

Remark14

When ρ = 0, we get χ2 < χ1 = χ3. Therefore, condition (5) can be changed15

to χ ≤ χ2 and a ≤ η, which makes the stability conditions more concise. When16

6



ρ 6= 0, we have χ1 < χ3, but the relationship between χ2 and χ1, χ3 cannot be1

determined. It can be seen that ρ has a direct influence on the size relationship2

of χ1, χ2 and χ3, also indirectly affects the stability conditions.3

Compared with the case of χ = ρ = 0, the stability of constant equilibria of4

the model after introducing the prey-taxis is controlled by the prey-taxis rates.5

The fluctuation of the value of χ has a direct impact on the stability.6

3 Hopf bifurcation of problem (3)7

In this section we are going to analyze the conditions about the parameters8

under which Hopf bifurcation occurs near the unique positive constant solution9

(u?, v?, w?) of problem (3). We shall apply Theorem 6.1 of paper [31] to derive10

the emergence of Hopf bifurcation.11

Denote

H = {χHj : A1A2(χHj )−A3(χHj ) = 0},

where H is the Hopf bifurcation curve.12

Theorem 3.1. Assume that (4) and a ≤ η hold. There exists j ≥ 1 such that

min{χ1, χ2} < χH
j ≤ min{χ2, χ3}

holds, where χ1, χ2 and χ3 have been mentioned in Theorem 2.1. Suppose that

(H1) for some j ∈ N , µj is a simple eigenvalue of −∆ in Ω with Neumann

boundary condition and the corresponding eigenfunction is yj(x);

(H2) for any k 6= j, χHj 6= χHk .

Then

1. (3) has a unique one-parameter family {β(s) : 0 < s < ε} of nontrivial

periodic orbits near (χ, u, v, w) = (χHj , u
?, v?, w?). More precisely, let X = {u ∈

H2(Ω) | ∂u∂n
∣∣
∂Ω

= 0}, there exist ε > 0 and C∞ function s 7→ (Uj(s), Tj(s), χj(s))

from s ∈ (−ε, ε) to C1(R, X3)× (0,∞)× R satisfying

(Uj(0), Tj(0), χj(0)) =

(
(u?, v?, w?),

2π

ν0
, χHj

)
,

and

Uj(s, x, t) = (u?, v?, w?) + syj(x)[V +
j exp(iν0t) + V−j exp(iν0t)] + o(s),

where ν0 =
√
A2, A2 has been mentioned in (7), and V ±j is an eigenvector

satisfying NjV
±
j = iν0V

±
j ;

2. for 0 < |s| < ε, β(s) = β(Uj(s)) = {Uj(s, ·, t) : t ∈ R} is a nontrivial periodic

orbit of (3) of period Tj(s);

3. if 0 < s1 < s2 < ε, then β(s1) 6= β(s2);

4. there exists τ > 0 such that if (3) has a nontrivial periodic solution Ũ(x, t)

of period T for some χ ∈ R with

|χ− χHj | < τ, |T − 2π

ν0
| < τ, max|Ũ(x, t)− (u?, v?,w?)| < τ,

then χ = χj(s) and Ũ(x, t) = Uj(s, x, t+ θ) for some s ∈ (0, ε) and some θ ∈ R.13

7



Proof We illustrate all the conditions listed in Theorem 6.1 of paper [31]1

one by one.2

Step 1: we first show that, at χ = χHj , there is ω0 > 0 such that ±iω0

are simple eigenvalues of (7). By χHj ≤ χ2 and a ≤ η, it is easy to see that

A3(χHj ) > 0. And due to χHj < χ3 and a ≤ η, we have A2(χHj ) > 0. The roots

of the characteristic equation (7) with χ = χHj are

λj = −A1 < 0, λ±j = ±
√
A2(χHj ).

Therefore, the matrix Nj(χ
H
j ) defined in (6) admits a pair of purely imaginary3

eigenvalues ±i
√
A2(χHj ).4

Step 2: we next show that, at χ = χHj , (7) has not eigenvalues of the form5

±iq
√
A2(χHj ) for q ∈ N \ {±1}. Due to µj is a simple eigenvalue of −∆ and6

χHj 6= χHk for j 6= k, the characteristic equation (7) has no root of the form7

iq
√
A2(χHj ) with q ∈ N+ \ {±1}.8

Step 3: finally, we prove that, for χ near χHj , Nj has a unique eigenvalue9

σ(χ) + iν(χ) such that σ(χHj ) = 0, ν(χHj ) > 0 and σ′(χHj ) 6= 0.10

Let α(χ) and σ(χ) ± iν(χ) be the three roots of (7) in a neighbourhood of11

χHj . Clearly, α(χ), σ(χ) and ν(χ) are real analytic function of χ, and α(χHj ) =12

−A1 < 0, σ(χHj ) = 0, ν(χHj ) =
√
A2(χHj ) > 0.13

Next, we show the transversality condition σ′(χHj ) 6= 0.14

Plugging α(χ), σ(χ)± iν(χ) into (7), we obtain15

A1 = −α− 2σ, A2(χ) = σ2 + ν2 + 2ασ, A3(χ) = −α(σ2 + ν2). (10)

By differentiating the three equations in (10) with respect to χ and using the16

definitions of A1, A2 and A3, we have17

α′ + 2σ′ = 0, 2σσ′ + 2νν′ + 2α′σ + 2ασ′ = −u?µj , (11)
18

α′ν2 + α′σ2 + 2ανν′ + 2ασσ′ = d3u
?µ2

j . (12)

Note that σ(χHj ) = 0. It follows from (11) and (12) that, at χ = χHj ,

2νν′ + 2ασ′ = −u?µj , 2ανν′ + α′ν2 = d3u
?µ2

j .

Observe that α(χHj ) = −A1 and α′(χHj ) = −2σ′(χHj ). Thus, at χ = χHj ,

2ανν′ + 2α2σ′ = 2ανν′ − α′α2 = −αu?µj ,

2ανν′ + α′ν2 = d3u
?µ2

j ,

which implies19

α′(χHj ) =
(d3µj+α)u?µj

α2+ν2 |χ=χHj

=
(d3µj−A1)u?µj

A2
1+A2

|χ=χHj
.

8



Due to the definition of A1 such that d3µj−A1 < 0, so we obtain that α′(χHj ) <1

0, and hence σ′(χHj ) = − 1
2α
′(χHj ) > 0. This gives the transversality condition2

mentioned above.3

Noticing that (3) is normally parabolic and steps 1−3 ensure the conditions4

(H1)− (H3) given in Theorem 6.1 of [31], respectively. Our desired conclusions5

are deduced by Theorem 6.1 of [31].6

Remark7

In paper [12], the authors derived the emergence of Hopf bifurcation at8

γ = γ? by choosing γ as bifurcation parameter, where γ? =
ζ0−b− δru

?g′(u?)(a−b)
(2− δru?g′(u?))u?

.9

Compared with [12], we introduced the prey-taxis rates χ and ρ. By choosing10

χ as a bifurcation parameter, Hopf bifurcation can also be generated at χHj .11

When ρ = 0, it can be accurately shown that periodic solutions will arise near12

χ2.13

4 Steady state bifurcation of problem (3)14

Note that the steady state solutions of (3) satisfy15 

−d1∆u+ χ∇(u∇v) = av − bu− γu2 − g(u)w, x ∈ Ω,

−d2∆v = u− v, x ∈ Ω,

−d3∆w + ρ∇(w∇u) = w(−r + δg(u)), x ∈ Ω,

∂u

∂n
=
∂v

∂n
=
∂w

∂n
= 0, x ∈ ∂Ω.

(13)

In this section, we prove the existence of nonconstant solutions of (13). In16

order to achieve this goal, we shall use χ as bifurcation parameter and apply17

the bifurcation theory in Theorem 4.3 of [37].18

Denote

S = {χSj : A3(χSj ) = 0},

where S is the steady state bifurcation curve.19

Theorem 4.1. Assume that the parameters that condition (H1) in Theorem

3.1 is satisfied, and also

(S1) for any k 6= j, χSj 6= χSk .

Then (13) has a unique one-parameter family Γj = {(Ûj(s), χ̂j(s)) : −ε < s <

ε} of nontrivial solutions near (u, v, w, χ) = (u?, v?, w?, χSj ). More precisely,

there exist ε > 0 and C∞ function s 7→ (Ûj(s), χ̂j(s)) from s ∈ (−ε, ε) to

X3 × R satisfying

(Ûj(0), χ̂j(0)) = ((u?, v?, w?), χSj ),

and20

Ûj(s, x) = (u?, v?, w?) + syj(x)
(
d2µj + 1, 1,

(ρw?µj+δw
?g′(u?))(d2µj+1)
d3µj

)
+s(h1,j(s), h2,j(s), h3,j(s)),
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such that h1,j(0) = h2,j(0) = h3,j(0) = 0.1

Proof Let X = H2(Ω) = {u ∈ H2(Ω) | ∂u∂n
∣∣
∂Ω

= 0}, Y = L2(Ω), Y0 = {u ∈
L2(Ω) |

∫
Ω
u(x)dx = 0}. Define a mapping F : X3 × R→ Y0 × Y 2 × R by

F (u, v, w, χ) =

 d1∆u− χ∇(u∇v) + av − bu− γu2 − g(u)w

d2∆v + u− v
d3∆w − ρ∇(w∇u) + w(−r + δg(u))

 .

We apply Theorem 4.3 of [37] to the equation F (u, v, w, χ) = 0 at (u?, v?, w?, χSj ).2

Clearly, F (u?, v?, w?, χSj ) = 0, and F is continuously differentiable. We verify3

the conditions in Theorem 4.3 of [37] in the following steps.4

Step 1 FU (u?, v?, w?, χSj ) is a Fredholm operator with index zero, and the kernel5

space N(FU (u?, v?, w?, χSj )) is a one-dimensional, where U = (u, v, w).6

According to the Lemma 2.3 in [36], one can show that the linear operator

FU (u?, v?, w?, χSj ) : X3 → Y0 × Y 2 ×R is a Fredholm operator with index zero.

To prove that N(FU (u?, v?, w?, χSj )) 6= {0}, we calculate that

FU (u?, v?, w?, χSj )[φ, ψ, ϕ] =

 d1∆φ− χSj∇(u?∇ψ) + aψ − bφ− 2γu?φ− g(u?)ϕ

d2∆ψ + φ− ψ
d3∆ϕ− ρ∇(w?∇φ) + ϕ(−r + δg(u?))

 .

Let (φ, ψ, ϕ)( 6= 0) ∈ NFU (u?, v?, w?, χSj ), so

FU (u?, v?, w?, χSj )[φ, ψ, ϕ] = 0.

The above equation has a non-zero solution, which is equivalent to that 0 is the7

eigenvalue of Nj . It is easy to verify that when χ = χSj , 0 is the eigenvalue of8

Nj and the corresponding eigenfunction is9

(āj , b̄j , c̄j)yj =

(
d2µj + 1, 1,

(ρw?µj + δw?g′(u?))(d2µj + 1)

d3µj

)
yj . (14)

From the condition (H1), the eigenvector is unique up to a constant multi-10

ple. Thus one has N(FU (u?, v?, w?, χSj )) = span{(āj , b̄j , c̄j)yj}, which is one-11

dimensional.12

Step 2 FχU (u?, v?, w?, χSj )[(āj , b̄j , c̄j)yj ] /∈ R(FU (u?, v?, w?, χSj )).13

We claim that the range space R(FU (u?, v?, w?, χSj )) can be characterized14

as follows:15

R(FU (u?, v?, w?, χSj ))

=

{
(h1, h2, h3, τ) ∈ Y0 × Y 2 × R :

∫
Ω

(a?jh1 + b?jh2 + c?jh3)yj dx = 0

}
,

(15)

where (a?j , b
?
j , c

?
j ) is a non-zero eigenvector for the eigenvalue λ = 0 of NT

j (the

transpose of Nj defined in (6)):

(a?j , b
?
j , c

?
j )yj =

(
d2µj + 1, χSj µju

? + a,−g(u?)(d2µj + 1)

d3µj

)
yj .

10



Indeed if (h1, h2, h3, τ) ∈ R(FU (u?, v?, w?, χSj )), then there exists (φ1, ψ1, ϕ1) ∈
X3 such that

FU (u?, v?, w?, χSj )[(φ1, ψ1, ϕ1)] = (h1, h2, h3, τ).

Define

L[φ, ψ, ϕ] =

 d1∆φ− χSj u?∆ψ + aψ − bφ− 2γu?φ− g(u?)ϕ

d2∆ψ + φ− ψ
d3∆ϕ− ρw?∆φ+ ϕ(−r + δg(u?))

 ,

and its adjoint operator

L?[φ, ψ, ϕ] =

 d1∆φ− bφ− 2γu?φ+ ψ − ρw?∆ϕ
d2∆ψ − χSj u?∆φ+ aφ− ψ

d3∆ϕ− g(u?)φ+ ϕ(−r + δg(u?))

 .

Thus, we have1

< (h1, h2, h3), (a?j , b
?
j , c

?
j )yj > = < L[(φ1, ψ1, ϕ1)], (a?j , b

?
j , c

?
j )yj >

= < (φ1, ψ1, ϕ1), L?[(a?j , b
?
j , c

?
j )yj ] >

= < (φ1, ψ1, ϕ1), N?
j (a?j , b

?
j , c

?
j )yj >

= 0,

where < ·, · > is the inner product in [L2(Ω)]3. This illustrates that if

(h1, h2, h3, τ) ∈ R(FU (u?, v?, w?, χSj )),

then2 ∫
Ω

(a?jh1 + b?jh2 + c?jh3)yj dx = 0. (16)

Due to (16) defines a codimension-1 set in Y0 × Y 2 × R, and we obtain that

codim R(FU (u?, v?, w?, χSj )) = dim N(FU (u?, v?, w?, χSj )) = 1,

therefore, R(FU (u?, v?, w?, χSj )) must be in form of (15).3

Now it’s worth noting that

FχU (u?, v?, w?, χSj )[(āj , b̄j , c̄j)yj ] = (−u?b̄j∆yj , 0, 0) = (u?µjyj , 0, 0),

then according to (15), we get4 ∫
Ω

(a?jh1 + b?jh2 + c?jh3)yj dx =
∫

Ω
u?µjyja

?
jyj dx

=
∫

Ω
u?µj(d2µj + 1)y2

j dx > 0.

Hence, FχU (u?, v?, w?, χSj )[(āj , b̄j , c̄j)yj ] /∈ R(FU (u?, v?, w?, χSj )). This conclu-5

sion has been proved.6

11



5 Numerical Simulation1

In this section, by using mathematical software Matlab, for the case of ρ = 0,2

we show some numerical simulations to depict our theoretical analysis of the3

existence of homogeneous periodic solutions. We choose g(u) = u
u+1 , 0 < g(u) <4

1.5

For problem (3), we choose that d1 = 1, d2 = 0.8, d3 = 1, δ = 0.5, r =6

0.2, a = 1, b = 0.3, which satisfy δ > r, a ≤ η. Since the value of χ will affect7

the local stability of the problem (3) at point (u?, v?, w?), the following two8

cases are analyzed:9

(i) We choose that γ = 0.45, χ = 2 which satisfy a − b − γu? > 0 and10

χ ≤ χ2 = 2.8680. Theorem 2.1 tell us that if (4), and (5) hold, (u?, v?, w?) is11

locally asymptotically stable. The local stability of (u?, v?, w?) is depicted in12

Fig 1;13

(ii) We choose that γ = 0.2, χ = χ2 = 2.5880. Theorem 3.1 tell us that14

problem (3) has a homogeneous Hopf bifurcation near (u?, v?, w?) with the15

bifurcation value χ = χ2 = 2.5880. The period solutions bifurcating from16

(u?, v?, w?) are illustrated in Fig 2.17

Figure 1: When γ = 0.45, χ = 2, the unique positive constant solution

(u?, v?, w?) = (0.6667, 0.6667, 0.6667) with (u0, v0, w0) = (0.5, 0.5, 0.4) is lo-

cally stable. Line 1-Left: component u. Line 1-Right: component v. Line 2:

component w.
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Figure 2: When γ = 0.2, χ = χ2 = 2.5880, the homogeneous periodic solu-

tions bifurcate from (u?, v?, w?) = (0.6667, 0.6667, 0.9444) with (u0, v0, w0) =

(0.5, 0.5, 0.26). Line 1-Left: component u. Line 1-Right: component v. Line 2:

component w.

6 Conclusions1

In this paper, we study the dynamics of a three-component predator-prey model2

with prey-taxis and stage structure for the prey under the homogeneous Neu-3

mann boundary condition. The main contributions of the present paper consist4

of three parts: stability analysis of constant equilibria, Hopf bifurcation anal-5

ysis and steady state bifurcation analysis. For the first problem, we mainly6

use the eigenvalue method to analyze and obtain the stability of the constant7

equilibria. We conclude that the sufficiently strong taxis effect χ destabilizes8

the stability of the positive equilibrium regardless of the influence of another9

taxis mechanism ρ; for the second problem, choosing the prey-taxis sensitivity10

coefficient as a bifurcation parameter, we get the existence of Hopf bifurcation;11

for the third problem, the emergence of non-constant steady state is concluded12

at a chemotactic parameter by the bifurcation theorem. Our conclusions show13

that taxis rate χ plays an important role in determining the stability of the14

interior equilibrium and influencing the existence of time-periodic patterns and15

non-constant steady state. However, we shall not perform related numerical16

simulations in the present framework and we leave it for the interested readers.17
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