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Abstract

Error-in-variables model (EVM) methods are used for parameter estimation when independent variables are uncertain. During

EVM parameter estimation, output measurement variances are required as weighting factors in the objective function. These

variances can be estimated based on data from replicate experiments. However, conducting replicates is complicated when

independent variables are uncertain. Instead, pseudo-replicate runs may be performed where the target values of inputs for

repeated runs are the same, but the true input values may be different. Here, we propose a method to estimate output-

measurement variances for use in multivariate EVM estimation problems, based on pseudo-replicate data. We also propose a

bootstrap technique for quantifying uncertainties in resulting parameter estimates and model predictions. The methods are

illustrated using a case study involving n-hexane hydroisomerization in a well-mixed reactor. Case-study results reveal that

assumptions about input uncertainties can have important influences on parameter estimates, model predictions and their

confidence intervals.
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Abstract 

Error-in-variables model (EVM) methods are used for parameter estimation when independent variables 

are uncertain. During EVM parameter estimation, output measurement variances are required as weighting 

factors in the objective function. These variances can be estimated based on data from replicate 

experiments. However, conducting replicates is complicated when independent variables are uncertain. 

Instead, pseudo-replicate runs may be performed where the target values of inputs for repeated runs are the 

same, but the true input values may be different. Here, we propose a method to estimate output-

measurement variances for use in multivariate EVM estimation problems, based on pseudo-replicate data. 

We also propose a bootstrap technique for quantifying uncertainties in resulting parameter estimates and 

model predictions. The methods are illustrated using a case study involving n-hexane hydroisomerization 

in a well-mixed reactor. Case-study results reveal that assumptions about input uncertainties can have 

important influences on parameter estimates, model predictions and their confidence intervals. 
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1- Introduction 

Fundamental kinetic models are important for chemical process development and improvement. These 

models usually contain kinetic parameters and activation energies, which are estimated using conventional 

parameter estimation techniques such as weighted least squares (WLS). In WLS parameter estimation, the 

independent variables (model inputs) are assumed to be perfectly known and measurement errors are 

considered for the dependent variables (model outputs). However, in some experimental situations, input 

errors are relatively large compared to output measurement errors, which can result in inaccurate parameter 

estimates.1,2 Error-in-variables model (EVM) parameter estimation methods have been developed to 

address this issue by accounting for input uncertainties during parameter estimation. EVM objective 

functions for multi-response models are typically of the form:3 

𝐽𝐸𝑉𝑀 = ∑ ∑
(𝑦𝑚 𝑖𝑘−𝑔𝑘(𝒙𝒊,𝒖𝒊,𝜽))

2

𝜎𝑌𝑘
2

𝑁𝑌
𝑘=1 + ∑ ∑

(𝑢𝑚 𝑖𝑙−𝑢𝑖𝑙)
2

𝜎𝑈
2

𝑙

𝑁𝑈
𝑙=1

𝑁
𝑖=1  𝑁

𝑖=1         (1) 

where 𝑦𝑚 𝑖𝑘  is the 𝑘𝑡ℎ (𝑘 = 1,… ,𝑁𝑌) measured output response obtained using the 𝑖𝑡ℎ target condition, 

𝑔𝑘(𝒙𝒊, 𝒖𝒊, 𝜽) is the corresponding model solution obtained from the perfectly known model inputs 𝒙𝒊 ∈

𝑅𝑵𝒙, the imperfectly-known inputs 𝒖𝒊 ∈ 𝑅𝑵𝑼 and the model parameters 𝜽 ∈ 𝑅𝑵𝜽 .  In equation (1), 𝜎𝑌𝑘

2  is 

the measurement variance for the 𝑘𝑡ℎ model output and 𝜎𝑈𝑙

2  is the measurement variance for the 𝑙𝑡ℎ (𝑙 =

1,… ,𝑁𝑈) uncertain input. In the second term, 𝑢𝑚 𝑖𝑙 is the measured value of the 𝑙𝑡ℎ uncertain input at the 

𝑖𝑡ℎ experimental setting and 𝑢𝑖𝑙 is the 𝑙𝑡ℎ element in the corresponding vector 𝒖𝒊 of true values for the 

uncertain inputs.   

During EVM parameter estimation, parameters 𝜽 and uncertain inputs 𝒖𝒊 for each experimental run are 

estimated by minimizing 𝐽𝐸𝑉𝑀. EVM parameter estimation is more complicated than WLS because EVM 

requires additional information about the uncertainties in inputs (i.e., values 𝜎𝑈𝑙

2 ) and EVM involves 

additional decision variables in the optimization problem. Variances 𝜎𝑈𝑙

2  in process inputs are usually 

assumed known, based on the information that experimentalists have regarding the reproducibility of inputs 
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(e.g., based on variations involved in analytical devices). In the chemical engineering literature, output 

measurement variances are also usually assumed to be known a priori in most EVM parameter estimation 

studies.4 However, modelers can also use replicate data to estimate the output measurement variances 

𝜎𝑌𝑘

2 .2,4-6  The resulting variance estimates should account for the measurement variability for the output 

responses as well as all other sources of experimental variations (e.g., ambient condition and sample 

collection ) except variability associated with 𝒖𝒊.  

Conducting replicate experiments in EVM situations is not straight-forward because uncertain inputs should 

be kept constant during different replicate runs. In some situations, it is possible to perform true replicate 

(TR) experiments (e.g., when the same uncertain stock feed solution is used to perform multiple 

experiments). In other situations involving pseudo replicate (PR) experiments, the true values of uncertain 

inputs cannot be enforced to be the same during attempted replicate runs.  In TR situations, quantifying 

output measurement variances 𝜎𝑌𝑘

2  is relatively straightforward (e.g., using pooled variance estimates from 

several different experimental conditions).4 Estimation of output measurement variances from pseudo-

replicate data is more difficult because the contribution of uncertain inputs to the overall variability in the 

outputs should be taken into account. In a previous study, we devised a method to estimate 𝜎𝑌𝑘

2  based on 

pseudo-replicates, but we only considered a simple single-response copolymerization model.4 One of the 

objectives in the current paper is to extend this method for use in multi-response models. We use a n-hexane 

hydroisomerization model as a case study to illustrate the proposed methodology.7 Further, we extend a 

bootstrap technique developed for  parameter uncertainty quantification in  single-response models so that 

it can be used for multi-response models and we demonstrate the technique using the case study. We also 

show how to obtain model prediction uncertainties based on the bootstrap parameter uncertainties, input 

uncertainties and estimated output uncertainties.  
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2- Background 

2.1- Using Pseudo-Replicate Experiments to Estimate Parameters and Obtain Output 

Measurement Variances  

Consider a situation where an experimenter attempts to perform 𝑛𝑖 replicate experiments at the 𝑖𝑡ℎ target 

run condition where the desired flow rate of one species is  5.0
𝑚𝑚𝑜𝑙

𝑠
 and the desired flow rate of a second 

species is 0.10 
𝑚𝑚𝑜𝑙

𝑠
. Assume that both of the flow rates contain significant uncertainty and that the 

experimenter makes adjustments to valves until the corresponding measured flow rates are 𝒖𝒎 𝒊 =

[5.0
𝑚𝑚𝑜𝑙

𝑠
, 0.10

𝑚𝑚𝑜𝑙

𝑠
]
𝑇
.    If attempted replicate experiments are conducted on different days, where the 

measured values are the same on each day, but the underlying true flow rates are different, then the 

experimenter performs pseudo replicates.  

In general, for a multi-response system with several uncertain inputs, an error-in-variables model of the 

process can be expressed as:4 

𝒀𝒊𝒋 = 𝒈(𝒙𝑖 , 𝒖𝑖𝑗 , 𝜽) + 𝜺𝒀 𝒊𝒋             (2) 

𝒖𝒎 𝒊 = 𝒖𝒊𝒋 +  𝜺𝑼 𝒊𝒋                            (3) 

where 𝒀𝒊𝒋 ∈ 𝑅𝑁𝑌  is a vector of uncertain measurements for  𝑁𝑌 dependent variables obtained from the 𝑗𝑡ℎ 

(𝑗 = 1,… , 𝑛𝑖) pseudo-replicate experiment conducted using the 𝑖𝑡ℎ target condition.  A capital 𝒀 is used to 

indicate that 𝒀𝑖𝑗 is a random variable due to the measurement noise  𝜺𝒀,𝒊𝒋 on the right-hand side of equation 

(2). Model predictions in vector 𝒈(𝒙𝑖, 𝒖𝑖𝑗 , 𝜽) depend on the model parameters 𝜽, the true values of the 

uncertain inputs 𝒖𝑖𝑗 and any perfectly-known inputs 𝒙𝑖. In equations (2) and (3), 𝜺𝒀 𝒊𝒋 and 𝜺𝑼 𝒊𝒋 are vectors 

of normally-distributed random noise for the output and input measurements, respectively. Note that 𝜺𝒀 𝒊𝒋 

accounts mainly for measurement error in the 𝑗𝑡ℎ dependent variable, as well as additional variability in the 
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experiments which is not attributed to 𝜺𝑼 𝒊𝒋. For simplicity, throughout the remainder of this article we will 

refer to 𝜺𝒀 𝒊𝒋 as output measurement uncertainty.  

Assuming that input and output measurement noise vectors in equations (2) and (3) are independent, an 

EVM objective function can be obtained from maximum-likelihood arguments for situations involving 

pseudo-replicate experiments:4 

𝐽𝐸𝑉𝑀 = ∑ ∑ [(𝒚𝒎 𝒊𝒋 − 𝒈(𝒙𝒊, 𝒖𝒊𝒋, 𝜽))
𝐓
 𝚺𝒀

−1(𝒚𝒎 𝒊𝒋 − 𝒈(𝒙𝒊, 𝒖𝒊𝒋, 𝜽)) + (𝒖𝒎 𝒊 − 𝒖𝒊𝒋)
𝑇
𝚺𝑼

−1(𝒖𝒎 𝒊 −
𝑛𝑖
𝑗=1

𝑁
𝑖=1

𝒖𝒊𝒋) ]       (4) 

where  𝒚𝒎 𝒊𝒋 is the vector of measured values for the dependent variables from the 𝑗𝑡ℎ run conducted at the 

𝑖𝑡ℎ experimental target condition. In the current study, we assume that  𝚺𝒀 and 𝚺𝑼 the covariance matrices 

for random errors in the dependent and independent variables, respectively, are diagonal. Diagonal elements 

in 𝚺𝑼 (i.e., 𝜎𝑈𝑙

2  where 𝑙 = 1,… ,𝑁𝑈) are variances associated with the measurement or implementation of 

the uncertain inputs, which are assumed to be known based on the experimenter’s experience with the 

experimental setup. The diagonal elements in  𝚺𝐘 (i.e., 𝜎𝑌𝑘

2  where 𝑘 = 1,… ,𝑁𝑌) are unknown and need to 

be estimated from the pseudo-replicate data.4 In a previous study, we developed a linearization-based 

approach to obtain estimates of output measurement variances for each of the 𝑁𝑌 dependent variables based 

on the pseudo-replicate data obtained at the 𝑖𝑡ℎ target condition. For the 𝑘𝑡ℎ dependent variable: 

�̂�𝑌𝑖𝑘

2 =
∑ (𝑦𝑚 𝑖𝑗𝑘−�̅�𝑚 𝑖𝑘)

2𝒏𝒊
𝒋=𝟏

𝑛𝑖−1
− (

𝜕𝑔𝑘(𝒙𝒊,𝒖,𝜽)

𝜕𝒖
|
𝒖𝒎 𝒊,𝒙𝒊,�̂� 

)𝚺𝑼 (
𝜕𝑔𝑘(𝒙𝒊,𝒖,𝜽)

𝜕𝒖
|
𝒖𝒎 𝒊,𝒙𝒊,�̂� 

)
𝑇

     (5) 

where 𝑦𝑚 𝑖𝑗𝑘 is the measured value of the 𝑘𝑡ℎ dependent variable obtained from the 𝑗𝑡ℎ pseudo-replicate 

run at the 𝑖𝑡ℎ experimental condition and �̅�𝑚 𝑖𝑘 is the average of the 𝑛𝑖 measured values for these runs. The 

second term on the right-hand side of equation (5) accounts for the contribution of uncertain inputs on the 

overall variability of the dependent variables.  Sometimes, �̂�𝑌𝑖𝑘

2  obtained from equation (5) can be negative, 

so a cut-off value 𝛿𝑘 is used to obtain reliable variance estimates, based on the modeler’s prior knowledge: 
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 �̂�𝑌𝑖𝑘

2 = max (
∑ (𝑦𝑚 𝑖𝑗𝑘−�̅�𝑚 𝑖𝑘)

2𝒏𝒊
𝒋=𝟏

𝑛𝑖−1
− (

𝜕𝑔𝑘(𝒙𝒊,𝒖,𝜽)

𝜕𝒖
|
𝒖𝒎 𝒊,𝒙𝒊,�̂� 

)𝚺𝑼 (
𝜕𝑔𝑘(𝒙𝒊,𝒖,𝜽)

𝜕𝒖
|
𝒖𝒎 𝒊,𝒙𝒊,�̂� 

)
𝑇

, 𝛿𝑘)   (6) 

The estimated variances obtained from equation (6) can be pooled together to obtain: 

�̂�𝑌𝑘

2 =
∑ (𝑛𝑖−1)�̂�𝑌𝑖𝑘

2𝑁
𝑖=1

∑ (𝑛𝑖
𝑁
𝑖=1 −1)

      (𝑘 = 1,…, 𝑁𝑌)       (7) 

Note that, the parameter estimates �̂� are required in equation (6) to calculate the Jacobian matrix 

𝜕𝑔𝑘(𝒙𝒊,𝒖,𝜽)

𝜕𝒖
|
𝒖𝒎 𝒊,𝒙𝒊,�̂� 

. So,  an iterative approach was developed to update the elements of 
𝜕𝑔𝑘(𝒙𝒊,𝒖,𝜽)

𝜕𝒖
|
𝒖𝒎 𝒊,𝒙𝒊,�̂� 

 as 

improved parameter estimates become available (see algorithm in Table 1).4 This method is used to obtain 

an estimate of 𝚺𝒀 in the hexane hydroisomerization case study in section 4.  

Table 1- Procedure for EVM Parameter Estimation Using Pseudo-Replicate Data4 

1- Assign appropriate cut-off values 𝛿𝑘 (𝑘 = 1,… ,𝑁𝑌) for each of the measured outputs variances. 

Set the step counter to s=0. 

2- Obtain an initial guess for the output measurement variances by treating the attempted replicates 

as true replicates (i.e., using  �̂�𝑌𝑖𝑘

2 =
∑ (𝑦𝑚 𝑖𝑗𝑘−�̅�𝑚 𝑖𝑘)

2𝒏𝒊
𝒋=𝟏

𝑛𝑖−1
 to calculate variance in each experimental 

setting) and using equation (7) to pool variance estimates. 

3- Obtain initial parameter estimates �̂�(0) using weighted-least squares parameter estimation. 

4- For each PR target condition and measured output, calculate �̂�𝑌𝑖𝑘

2 from Equation (6) using the 

most-recent parameter estimates  �̂�(𝑠). 

5- Use equation (7) to pool the variance estimates obtained in step 4. 

6- Use 𝐽𝐸𝑉𝑀 in equation (4) to perform an EVM parameter estimation, using the �̂�𝑌𝑘

2   as diagonal 

elements of  �̂�𝒀, resulting in updated parameter estimates �̂�(𝑠+1). 

7- Calculate the relative change in the parameter values 𝑒 = √∑ (
�̂�𝑝

(𝑠+1)
−�̂�𝑝

(𝑠)

�̂�𝒑
(𝒔) )

𝟐
𝑵𝜽
𝒑=𝟏  where subscript 

𝑝 denotes the 𝑝𝑡ℎ element in �̂�. If 𝑒 is smaller than a tolerance set by the user, stop and report 

the parameter values.  Otherwise, increase the value of s by one and return to step 4. 

 

2.2- Parameter Uncertainty Quantification Using Bootstrapping for a Single-response Model 

with a Single Uncertain Input 

In a previous study, we extended a parametric bootstrap technique for models with perfectly-known 

independent variables8 so that it can be used for parameter uncertainty quantification in EVM.4 Synthetic 
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data sets are generated multiple times, using typical input and output uncertainties, and parameters are 

estimated for each synthetic data set. The resulting cloud of bootstrap parameter estimates is then used for 

quantifying uncertainties in parameter estimates. Previously, we used this bootstrap method to quantify 

uncertainties in estimated reactivity-ratio parameters in a single-response Mayo-Lewis model with a single 

uncertain input.4 In section 3.1, this bootstrapping methodology is extended for use in multi-response 

models with multiple uncertain inputs.  

An alternative approach to bootstrapping would be to sample from a posterior distribution for parameter 

estimates obtained using an Bayesian EVM approach based on Markov-Chain Monte Carlo simulations.1 

In the current article, we decided to extend the bootstrapping approach instead, because our hexane 

hydroisomerization case study does not involve prior information about parameter values that should be 

imposed during estimation. Also, we believe that the proposed bootstrapping approach will be simpler for 

model developers to use than Bayesian methods.  

2.3- Quantifying Prediction Uncertainties based on Uncertainties in Inputs and Parameter 

Estimates 

In a previous study, we reviewed methods for quantifying prediction uncertainties when inputs are 

uncertain.9 Linearization-based and MC-based techniques are typically used for this purpose.9 MC-based 

methods are usually more accurate, but they require computationally intensive simulations when the model 

equations are complex.  Nevertheless, they are relatively straight-forward and can readily handle situations 

where a cloud of parameter estimates is available from bootstrap computations. Past researchers have 

sampled from the distribution of the parameters and inputs simultaneously to propagate the corresponding 

uncertainties into the model predictions.10-20 Table 2 provides an algorithm for quantifying uncertainties in 

model predictions using a cloud of 𝑏𝑚𝑎𝑥 parameter estimates available from bootstrapping. This algorithm 

quantifies the uncertainties in a vector of model predictions �̂�𝒄 at an experimental condition of interest 𝑐. 

The results from Table 2 provide 95 % confidence intervals for noise-free values of the dependent variables 
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at the condition of interest. If the modeler  is interested instead in a 95% confidence interval on noisy 

measured values that might be obtained from a future experiment, then additive measurement errors in the 

dependent variables must also be considered.9 Both types of prediction uncertainties are computed in the 

case study in section 4. 

Table 2. MC method for obtaining approximate 95% confidence intervals for mean model 
predictions at an experimental condition of interest 9 

1- Specify experimental settings for inputs of interest (i.e., values of 𝒙𝒄 and 𝒖𝒄 𝒎) and the elements 

of 𝚺𝑼. Sample from the distribution of plausible true values 𝒖𝒄 for the uncertain inputs to obtain 

𝑏𝑚𝑎𝑥 candidate values for the uncertain input vector (i.e., 𝒖𝒄
(𝟏)

,  𝒖𝒄
(𝟐)

…𝒖𝒄
(𝒃𝒎𝒂𝒙)

), where  𝑏𝑚𝑎𝑥 is 

a large number. 

2- Use the cloud of parameters from a previous bootstrap (Monte Carlo) uncertainty quantification 

(�̂�(𝟏), �̂�(𝟐), … , �̂�(𝒃𝒎𝒂𝒙)). 

3- For 𝑏 = 1 to 𝑏𝑚𝑎𝑥  , calculate the corresponding predicted values for the model outputs:  

�̂�𝑐 𝑘
(𝑏)

= 𝑔𝑘(�̂�(𝑏), 𝒖𝒄
(𝑏), 𝒙𝒄)     (𝑘 = 1,… , 𝑁𝑌)     (2.1)  

4- Obtain the 2.5 and 97.5 percentile values of �̂�𝑐 𝑘
(𝑏)

.  These values are approximate bounds for the 

95% confidence intervals for the mean predicted responses. 

 

3- PROPOSED METHODOLOGY 

3-1 Bootstrap Method for Quantifying Parameter Uncertainties in Multi-response EVM  

In the current study, we extend a bootstrap algorithm for quantifying parameter uncertainties in single-

response models so that it can be used for multi-response models with several uncertain inputs. Steps 

required for implementing the extended algorithm are shown in Table 3. In the first step, parameters and 

elements of the output covariance matrix 𝚺𝒀 are estimated using the algorithm in Table 1. In steps 2 and 3, 

synthetic data are generated and their corresponding bootstrap parameters are estimated. In step 4, 

uncertainty information is extracted from the cloud of bootstrap parameter estimates.  
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Table 3- Bootstrap steps to obtain parameter uncertainties for multi-response error-in-variable 

models with several uncertain inputs using pseudo-replicate experiments  

1- Estimate the model parameters �̂� and the diagonal output measurement covariance matrix �̂�𝒀 

using the algorithm in Table 1. Assign bootstrap counter b=1 and set the desired number of 

bootstrap runs 𝑏𝑚𝑎𝑥. 

 

2- Generate synthetic bootstrap data using �̂� and �̂�𝒀: 

𝒖𝒊𝒋
(𝒃)

= 𝒖𝒎 𝒊 − 𝜺𝒖 𝒊𝒋
(𝒃)

  for 𝑖 = 1,… ,𝑁;  𝑗 = 1,… , 𝑛𝑖  where 𝜺𝒖 𝒊𝒋
(𝒃)

 ~ 𝑁(0, 𝚺𝑼) 

 

𝒚𝒎 𝒊𝒋
(𝒃)

= 𝑔 (𝒙𝒊, 𝒖𝒊𝒋
(𝒃)

, �̂�) + 𝜺𝒚 𝒊𝒋
(𝒃)

  for 𝑖 = 1,… ,𝑁;  𝑗 = 1,… , 𝑛𝑖 where 𝜺𝒚 𝒊𝒋
(𝒃)

~ 𝑁(0,�̂�𝑌) 

 

3- Obtain bootstrap parameter estimates �̂�(𝑏) and covariance matrix �̂�𝑌
(𝑏)

 using the 𝑏𝑡ℎ synthetic data 

set. If 𝑏 = 𝑏𝑚𝑎𝑥 go to step 4; otherwise increase 𝑏 by one and go to step 2. 

 

4- Use the bootstrap parameter estimates �̂�(𝒃) (𝑏 = 1,2, … , 𝑏𝑚𝑎𝑥) to construct confidence intervals 

or box plots for the parameters.  

 

3-2- Bootstrap Method for Quantifying Prediction Uncertainties from Error-in-Variables Models 

 

After parameter uncertainties are obtained using the multi-variate  bootstrap technique in Table 3, a cloud 

of 𝑏𝑚𝑎𝑥 parameter estimates is available. Using this cloud of parameter estimates, it is straight-forward to 

obtain the corresponding cloud of model predictions using the algorithm in Table 2. Note that the algorithm 

in Table 2 provides an estimate of uncertainty in the mean predicted responses at the target condition of 

interest. In section 4, we will demonstrate how to also obtain the uncertainty associated with measured 

responses for a single future experiment. Uncertainty associated with a possible measured value from a 

single new experiment is larger than the corresponding uncertainty in the mean response due to the 

associated measurement error.  

4- Case Study: Catalytic n-Hexane Hydroisomerization in a Well-mixed Reactor  

4-1- Model Equations and Experimental System 

Here we present a multi-response model developed by Toch et al. to describe hydroisomerization of 

hexane (nC6) in a catalytic well-mixed continuous reactor. The reaction scheme for this process is shown 

in Table 4. Products 2-methyl pentane (2MP) and 3-methyl pentane (3MP) are produced along with  

propane (C3) as an undesirable side product.7 The corresponding algebraic equations obtained from mole 
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balances are shown in Table 5.  Derivations are provided in the supplementary information. In Table 5, 𝐹𝑞
0 

and 𝐹𝑞 are the molar inflow and outflow rates for species 𝑞 (𝑞 = 𝐻2, 𝑛𝐶6, 2MP, 3MP and C3), respectively, 

𝑊 is the weight of catalyst (i.e., H-ZSM-5) and 𝐾𝑝ℎ𝑦𝑠 is the equilibrium constant for physisorption of n-

hexane on the catalyst. The rate coefficients 𝑘𝑟 (𝑟 = 1,2,3)  and the equilibrium constant 𝐾𝑝ℎ𝑦𝑠 are 

temperature-dependant and are calculated using the equations in Table 6 where 𝑘𝑟𝑒𝑓 𝑟 is the rate coefficient 

of the 𝑟𝑡ℎ reaction at the reference temperature 𝑇𝑟𝑒𝑓 =  531.48 𝐾 and 𝐾𝑟𝑒𝑓  is the corresponding 

equilibrium coefficient. In equations (6.1) and (6.2), 𝐸𝑎 𝑟 is the activation energy of the 𝑟𝑡ℎ reaction and 

∆𝐻0 is the enthalpy of physisorption.7 

 As shown in the second column of Table 6, there are 8 unknown parameters 

𝜽 = [𝑘𝑟𝑒𝑓 1, 𝑘𝑟𝑒𝑓 2, 𝑘𝑟𝑒𝑓 3, 𝐾𝑟𝑒𝑓 , 𝐸𝑎 1, 𝐸𝑎 2, 𝐸𝑎 3, ∆𝐻0]
𝑇
 requiring estimation. When the values of the 

parameters and the experimental inputs (i.e., reactor pressure 𝑃, reactor temperature T, catalyst weight W 

and flow rates 𝐹𝑛𝐶6

0  and 𝐹𝐻2

0 ) are given, the three equations in three unknowns  in Table 5 can be solved 

numerically to predict 𝐹2𝑀𝑃, 𝐹3𝑀𝑃 and 𝐹𝐶3. After predictions for the outputs are obtained, yield can be 

calculated: 

𝑌𝑖𝑒𝑙𝑑 =
(𝐹2𝑀𝑃+𝐹3𝑀𝑃)

𝐹𝑛𝐶6
0       (8) 

 

and selectivity for different species can also be calculated: 

 

𝑆𝑞 =
𝛼𝑞

6

𝐹𝑞

𝐹𝑛𝐶6
0 −𝐹𝑛𝐶6

              (𝑞 =  2𝑀𝑃, 3𝑀𝑃 and 𝐶3) (9) 

 

 

where 𝛼𝑞 is the number of carbon atoms in the species molecules (i.e., 𝛼2𝑀𝑃 = 𝛼3𝑀𝑃 = 6 and 𝛼𝐶3
= 3). 
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Table 4- Reaction Scheme Proposed for nC6 Hydroisomerization7 

nC6 
𝑘1
→  2MP 

nC6 
𝑘2
→  3MP 

2MP + H2 
𝑘3
→  2 C3 

 

Table 5- Algebraic Equations based on the Mole Balance Equations for Different Species 

Species Corresponding Mole Balance Equation 

 
 
 

2MP 

𝐹2𝑀𝑃 −

(

 
 

𝑘1 (𝐹𝑛𝐶6
0 − 𝐹2𝑀𝑃−𝐹3𝑀𝑃−

𝐹𝐶3
2

)−𝑘3𝐹2𝑀𝑃

𝐹𝐻2
0 −

𝐹𝐶3
2

1+𝐾𝑝ℎ𝑦𝑠𝑃(
𝐹𝑛𝐶6
0 −

𝐹𝐶3
2

𝐹𝐻2
0 +𝐹𝐶6

0 )

)

 
 

𝑊 = 0   (5.1) 

 
 
 

3MP 

𝐹3𝑀𝑃 −

(

 
 

𝑘2 (𝐹𝑛𝐶6
0 −𝐹2𝑀𝑃−𝐹3𝑀𝑃−

𝐹𝐶3
2

)

𝐹𝐻2
0 −

𝐹𝐶3
2

1+𝐾𝑝ℎ𝑦𝑠𝑃(
𝐹𝑛𝐶6
0 −

𝐹𝐶3
2

𝐹𝐻2
0 +𝐹𝐶6

0 )

)

 
 

𝑊 = 0   (5.2) 

 

 
 

C3 𝐹𝐶3
−

(

 
 

2𝑘3
𝐹2𝑀𝑃

𝐹𝐻2
0 −

𝐹𝐶3
2

1+𝐾𝑝ℎ𝑦𝑠𝑃(
𝐹𝑛𝐶6
0 −

𝐹𝐶3
2

𝐹𝐻2
0 +𝐹𝐶6

0 )

)

 
 

𝑊 = 0   (5.3) 

 

 

Table 6- Kinetic rate and equilibrium constant equations for solving balance equations and the 
corresponding parameters requiring estimation 

Kinetic rate and equilibrium constant equation Parameters Requiring Estimation 

𝑘𝑟 = 𝑘𝑟𝑒𝑓 𝑟  𝑒
−

𝐸𝑎 𝑟
𝑅

(
1

𝑇
−

1

𝑇𝑟𝑒𝑓
)
          (𝑟 = 1,2,3)   (6.1) 

𝑘𝑟𝑒𝑓 1, 𝑘𝑟𝑒𝑓 2, 𝑘𝑟𝑒𝑓 3, 𝐸𝑎 1, 𝐸𝑎 2, 𝐸𝑎 3 

  𝐾𝑝ℎ𝑦𝑠 = 𝐾𝑟𝑒𝑓𝑒
−

∆𝐻0

𝑅
(
1

𝑇
−

1

𝑇𝑟𝑒𝑓
)
    (6.2) 

𝐾𝑟𝑒𝑓 and ∆𝐻0 
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Toch et al. performed 36 experimental runs at a variety of conditions to estimate the model parameters, 

assuming that all inputs were perfectly known (see Table S.1 in the supplementary information). In the 

current case study, we consider two uncertain inputs 𝒖 = [𝐹𝐻2

0  and 𝐹𝑛𝐶6

0 ]
𝑇
 and three perfectly-known inputs 

𝒙 = [𝑃, 𝑇,𝑊]𝑇. We assume that the replicate experiments reported by Toch et al. are pseudo-replicates 

because slightly different true values of inputs 𝐹𝐻2

0  and 𝐹𝑛𝐶6

0  would have been used when experiments were 

repeated. For the 36 experimental runs, there are 25 unique experimental conditions and 11 repeated runs 

conducted at a variety of different conditions. During each run, Toch et al. measured three outputs (i.e., 

measured flow rates for 2MP, 3MP and C3 ). As shown in Table 7, three different levels of input 

uncertainties are considered, which are 1% and 5 % and 10% of the corresponding average measured input 

values in Table S.1. Corresponding measurement standard deviations are shown in the second and the third 

columns. In the current case study, we use the data in Table S1 multiple times, considering different levels 

of uncertainties in independent variables 𝐹𝐻
0
2 

 and 𝐹𝑛𝐶
0

6
 that could have been encountered by Toch et al. 

during their experiments. 

Table 7- Different uncertainty level for inputs with measurement uncertainties 

Levels of input uncertainties Standard deviation for 

measurements of 𝐹𝐻
0
2
  (𝜎𝐹𝐻2

0 ) 

Standard deviation for 

measurements of 𝐹𝑛𝐶
0

6
 (𝜎𝐹𝑛𝐶6

0 ) 

1% 
1.63 × 10−5

𝑚𝑜𝑙

𝑠
 2.56 × 10−7

𝑚𝑜𝑙

𝑠
 

5% 
8.16 × 10−5

𝑚𝑜𝑙

𝑠
 1.28 × 10−6

𝑚𝑜𝑙

𝑠
 

10% 
1.63 × 10−4

𝑚𝑜𝑙

𝑠
 2.56 × 10−6

𝑚𝑜𝑙

𝑠
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4-2 EVM Parameter and Variance Estimation  

The EVM objective function and decision variables for estimating the case-study parameters are shown in 

the first row of Table 8. The vector of model predictions 𝒈(𝒙𝒊, 𝒖𝒊𝒋, 𝜽) obtained from the 𝑗𝑡ℎ pseudo-replicate 

run at the 𝑖𝑡ℎ target experimental condition has three elements: 

𝒈(𝒙𝒊, 𝒖𝒊𝒋, 𝜽) =  [𝐹2𝑀𝑃(𝒙𝒊, 𝒖𝒊𝒋, 𝜽), 𝐹3𝑀𝑃(𝒙𝒊, 𝒖𝒊𝒋, 𝜽), 𝐹𝐶3
(𝒙𝒊, 𝒖𝒊𝒋, 𝜽)]

𝑇
       (10) 

where 𝐹2𝑀𝑃 , 𝐹3𝑀𝑃 and 𝐹𝐶3 are predicted outflow rates obtained by solving the three equations in three 

unknowns in Table 5. As shown in Table 8, the vector 𝒙𝒊 contains the perfectly-known inputs (i.e., 

temperature, pressure and catalyst weight) and 𝒖𝑖𝑗 contains the uncertain inputs (i.e., inflow rates of 

hydrogen and n-hexane). In equation (8.1), the vector  𝒚𝒎 𝒊𝒋= [𝑦2𝑀𝑃 𝑖𝑗, 𝑦3𝑀𝑃 𝑖𝑗, 𝑦𝐶3 𝑖𝑗]
𝑇

 contains measured 

data for the dependent variables and the vector 𝒖𝒎 𝒊 = [𝑢𝑚𝐶6 𝑖, 𝑢𝑚𝐻2 𝑖]
𝑇

contains measured data for the 

uncertain independent variables.  

In this study, we compare the results of the EVM parameter estimation, assuming several different levels 

of input uncertainties, with results obtained from WLS parameter estimation using objective function (8.2). 

The WLS parameter estimation problem is considerably simpler than the EVM problem because it involves 

fewer decision variables (i.e., 8 compared to 44).  

Further, the estimation of the output measurement variances is simpler when using WLS.  In WLS 

situations, the attempted replicates are assumed to be true replicates, from which the modeler can readily 

obtain pooled estimates of output measurement variances. In EVM situations considered in this case study, 

output measurement variances and parameters should be estimated simultaneously using the algorithm in 

Table 1. Note the that the vector of perfectly-known inputs 𝒙𝒊 in the EVM case have three elements for 

each experimental setting, but 𝑥𝑖 in the WLS situation has 5 elements because all the inputs are assumed to 

be perfectly known. 
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The results of the parameter estimation and the output measurement variance estimation for WLS and EVM 

situations are shown in Table 9. The variance estimates are provided in the 2𝑛𝑑 to the 5𝑡ℎ rows and the 

parameter estimates in the 6𝑡ℎ to 14𝑡ℎ rows.  As shown in the Table, estimated values of the variances and 

parameters obtained using WLS are similar to corresponding values from EVM with 1 % input 

uncertainties, as expected. As such, in situations where input uncertainties are small relative to output 

uncertainties, we recommend that modelers use WLS rather than EVM because: i) WLS objective functions 

are simpler than EVM objective functions; ii) WLS estimation involves fewer decision variables than EVM; 

and iii) output measurement variances are simpler to estimate using the WLS assumption of true replicates, 

compared to the EVM assumption of pseudo replicates. Table 9 shows that, when larger input uncertainties 

are assumed (i.e., 5 % and 10 % of typical input values) the estimated parameters and output measurement 

variances are noticeably different using EVM compared to WLS. As expected, the estimated output 

measurement variances become smaller (see the 2𝑛𝑑 to the 5𝑡ℎ rows in Table 9) for increasing levels of 

input uncertainties, because a higher amount of variability in measured outputs in pseudo-replicate runs is 

attributed to the input uncertainties.  Note that, the output measurement variances reported in Table 9 were 

computed using equations (6) and (7). We used cut-off values of  𝛿𝐹2𝑀𝑃
= 1.44 × 10−17, 

𝛿𝐹3𝑀𝑃
=6.84 × 10−18  and  𝛿𝐹𝐶3

= 1.94 × 10−19 in the first step of the algorithm in Table 1. These cut-off 

values are 0.01 % of the pooled variance estimates for the dependent variables obtained from equation (7) 

when input uncertainties are neglected and all variability in the measurement values of the outputs in 

attempted replicate run is attributed to 𝜺𝑌𝑖𝑗.  

Figure 1 shows the contribution of input uncertainties 𝜺𝑈 𝑖𝑗 and output uncertainties 𝜺𝑌 𝑖𝑗 to the overall 

uncertainty in 𝐹2𝑀𝑃. The heights of the red bars in Figure 1 were obtained from �̂�𝐹2𝑀𝑃 𝑈

2 �̂�𝐹2𝑀𝑃 𝑜
2⁄  where the 

overall variance in the 𝐹2𝑀𝑃 responses was estimated from the pseudo-replicate data: 

�̂�𝐹2𝑀𝑃 𝑜
2 =

∑ ∑ (𝑦2𝑀𝑃 𝑖𝑗−�̅�2𝑀𝑃 𝑖)
2𝑛𝑖

𝑗=1
𝑁
𝑖=1

∑ (𝑛𝑖
𝑁
𝑖=1 −1)

       (11) 
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and the input contribution to this overall variance was estimated from: 

�̂�𝐹2𝑀𝑃 𝑈

2 =

∑ (ni−1) (
𝜕𝐹2𝑀𝑃(𝒙𝒊,𝒖𝒊𝒋,𝜽)

𝜕𝒖
|
𝒖𝒎 𝒊,𝒙𝒊,�̂� 

)𝚺𝑼(
𝜕𝐹2𝑀𝑃(𝒙𝒊,𝒖𝒊𝒋,𝜽)

𝜕𝒖
|
𝒖𝒎 𝒊,𝒙𝒊,�̂� 

)

𝑇

𝑁
𝑖=1

∑ (𝑛𝑖
𝑁
𝑖=1 −1)

   (12) 

 In equation (11), �̅�2𝑀𝑃 𝑖 is the average measured value for 𝐹2𝑀𝑃 obtained from data collected at the 𝑖𝑡ℎ 

target condition.  As shown in Figure 1, assigning a typical 1% error in the uncertain inputs results in 

pseudo-replicate experiments where nearly all the variability is due to 𝜺𝒀𝒊𝒋
 rather than 𝜺𝑈𝑖𝑗

. Conversely, 

when 10 % typical input uncertainty is assumed, most of the variability in the responses arises from the 

input uncertainties. 

Table 8- The objective function and their corresponding decision variables for EVM and WLS 

objective functions  

𝐽𝐸𝑉𝑀 = ∑∑[(𝒚
𝒎 𝒊𝒋

− 𝒈(𝒙
𝒊
, 𝒖𝒊𝒋, 𝜽))

𝐓

 𝚺𝐘
−𝟏 (𝒚

𝒎 𝒊𝒋
− 𝒈(𝒙

𝒊
, 𝒖𝒊𝒋, 𝜽)) + (𝒖𝒎 𝒊 − 𝒖𝒊𝒋)

𝑇
𝚺𝑼

−1(𝒖𝒎 𝒊 − 𝒖𝒊𝒋) ]

𝑛𝑖

𝑗=1

𝑁

𝑖=1

 

= ∑ ∑

[
 
 
 
 
 
 (𝑦2𝑀𝑃 𝑖𝑗−𝐹2𝑀𝑃(𝒙𝒊,𝒖𝒊𝒋,𝜽))

2

�̂�𝐹2𝑀𝑃
2 +

(𝑦2𝑀𝑃 𝑖𝑗−𝐹3𝑀𝑃(𝒙𝒊,𝒖𝒊𝒋,𝜽))

2

�̂�𝐹3𝑀𝑃
2 +

(𝑦𝐶3 𝑖𝑗−𝐹𝐶3
(𝒙𝒊,𝒖𝒊𝒋,𝜽))

2

�̂�𝐹𝐶3

2

+
(𝑢𝑚𝐶6 𝑖−𝐹𝐶6 𝑖𝑗

0
)
2

𝜎
𝐹𝑛𝐶6
0

2 +
(𝑢𝑚𝐻2 𝑖−𝐹𝐻2 𝑖𝑗

0
)
2

𝜎
𝐹𝐻2
0

2

]
 
 
 
 
 
 

𝑛𝑖
𝑗=1

25
𝑖=1          (8.1) 

where the decision variables are:  

𝒖 𝒊𝒋 = [𝐹𝐶6 𝑖𝑗
0 , 𝐹𝐻2 𝑖𝑗

0 ]
𝑇
  and 𝜽 = [𝑘𝑟𝑒𝑓 1, 𝑘𝑟𝑒𝑓 2, 𝑘𝑟𝑒𝑓 3, 𝐾𝑟𝑒𝑓 , 𝐸𝑎 1, 𝐸𝑎 2, 𝐸𝑎 3, ∆𝐻0]

𝑇
 

and the perfectly-known inputs are 𝒙𝒊=[𝑃𝑖, 𝑇𝑖,𝑊]𝑇 .  

𝐽𝑊𝐿𝑆 = ∑ ∑ [
(𝑦2𝑀𝑃 𝑖𝑗−𝐹2𝑀𝑃(𝒙𝒊,𝜽))

2

�̂�𝐹2𝑀𝑃
2 +

(𝑦2𝑀𝑃 𝑖𝑗−𝐹3𝑀𝑃(𝒙𝒊,𝜽))
2

�̂�𝐹3𝑀𝑃
2 +

(𝑦𝐶3 𝑖𝑗−𝐹𝐶3
(𝒙𝒊,𝜽))

2

�̂�𝐹𝐶3

2 ]
𝑛𝑖
𝑗=1

25
𝑖=1        (8.2)   

where the decision variables are 𝜽 = [𝑘𝑟𝑒𝑓1, 𝑘𝑟𝑒𝑓2, 𝑘𝑟𝑒𝑓3, 𝐾𝑟𝑒𝑓 , 𝐸𝑎1, 𝐸𝑎2, 𝐸𝑎3, ∆𝐻0]
𝑇
, 

and the perfectly-known inputs are 𝒙𝒊 = [𝑃𝑖, 𝑇𝑖,𝑊, 𝐹𝐻2 𝑖
0 , 𝐹𝑛𝐶6 𝑖

0
]
𝑇
 .  
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Table 9- Values of parameter estimates obtained by minimizing objective function in Equation (34) when 

different levels of uncertainties in model inputs  

 WLS EVM with 1% 
uncertainties in 

model inputs 

EVM with 5% 
uncertainties in 

model inputs 

EVM with 10% 
uncertainties in 

model inputs 

�̂�𝐹2𝑀𝑃

2 (10−13𝑚𝑜𝑙2/𝑠2) 1.44 1.43 1.26 0.96 

�̂�𝐹3𝑀𝑃

2 (10−14𝑚𝑜𝑙2/𝑠2) 6.84 6.78 5.46 1.85 

�̂�𝐹𝐶3

2 (10−14𝑚𝑜𝑙2/𝑠2) 1.94 1.86 0.8 0.16 

𝑘𝑟𝑒𝑓1(10−6𝑚𝑜𝑙 𝑠−1 𝑔𝑐𝑎𝑡
−1 ) 202.3 200.7 195.7 183.3 

𝑘𝑟𝑒𝑓2(10−6𝑚𝑜𝑙 𝑠−1 𝑔𝑐𝑎𝑡
−1 ) 115.6 114.7 112.0 105.1 

𝑘𝑟𝑒𝑓3(10−6𝑚𝑜𝑙 𝑠−1 𝑔𝑐𝑎𝑡
−1 ) 14.8 14.6 13.8 11.8 

𝐾𝑝ℎ𝑦𝑠(10−6𝑃𝑎−1) 10.6 10.0 7.3 3.5 

𝐸𝑎1(𝑘𝐽 𝑚𝑜𝑙−1) 54.1 54.3 54.0 58.2 
𝐸𝑎2 (𝑘𝐽 𝑚𝑜𝑙−1) 62.2 62.3 62.0 66.2 
𝐸𝑎3 (𝑘𝐽 𝑚𝑜𝑙−1) 68.3 68.7 70.7 77.5 
∆𝐻0(𝑘𝐽 𝑚𝑜𝑙−1) −80.9 −83.5 −98.9 −119.8 

 

 

Figure 1- Contribution of input uncertainty and output uncertainty to the overall pooled estimates of variance �̂�𝐹2𝑀𝑃 𝑜
2

 when 

different levels of input uncertainties are assumed during EVM parameter estimation. 
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4-3 Parameter and Prediction Uncertainty Quantification 

Figure 2 shows boxplots for parameter uncertainties for two parameters (i.e., 𝑘𝑟𝑒𝑓1 and Δ𝐻0) based on 

results from 200 bootstrap parameter estimations using the algorithm in Table 3. Similar boxplots for the 

other 6 parameters are provided in the supplementary information. As shown in Figure 2, when uncertainties 

in the inputs are small (i.e., 1% for both 𝐹𝐻2 𝑚
0  and 𝐹𝑛𝐶6 𝑚

0 ) the boxplots of the parameter estimates are very 

similar to those obtained using WLS parameter estimation, as expected. However, for higher input 

uncertainties (i.e., 5 % and 10 %), the confidence intervals for the parameter estimates (i.e., the distance 

between the ends of the whiskers) are noticeably larger than those obtained using WLS. It is interesting that 

the confidence interval for 𝑘𝑟𝑒𝑓1 when input uncertainties are 10 % is slightly smaller than the 

corresponding confidence interval when the input uncertainties are 5 %. This unanticipated trend is 

attributed to the decrease in output measurement variance estimates �̂�𝐹2𝑀𝑃 
2 , �̂�𝐹3𝑀𝑃 

2 and �̂�𝐹𝐶3
 

2  when input 

uncertainties are assumed to be larger (see Table 9). Notice that the median of the bootstrap parameter 

estimates changes as the assumed input uncertainties increase, revealing that input uncertainties also have 

important effects on point estimates for the parameters. Based on the results in Figure 2, we recommend 

that modelers should use WLS in situations where input uncertainties are small. However, when the 

influence of input uncertainties becomes noticeable compared to output measurement uncertainties, EVM 

parameter estimation is recommended.  
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Figure 2- Parameter uncertainty boxplots for a) 𝑘𝑟𝑒𝑓1 and b)  𝛥𝐻0 constructed using 200 bootstrap parameter estimates when 

different levels of input uncertainties are considered for both 𝐹𝐻2 𝑚
0  and 𝐹𝑛𝐶6 𝑚

0 . The ends of the whiskers correspond to approximate 

95 % confidence intervals. 

 

Figure 3 shows model-prediction uncertainty boxplots for 𝐹2𝑀𝑃 and 𝐹𝐶3
  based on 200 MC simulations of 

the 15th experimental run (i.e., conducted at 𝑇 = 513 𝐾, 𝑃 = 1 𝑀𝑃𝑎, 𝐹𝐻2 𝑚
0 = 1.3 ×

10−3 𝑚𝑜𝑙

𝑠
, and 𝐹𝑛𝐶6 𝑚

0 = 2.56 × 10−5 𝑚𝑜𝑙

𝑠
) for different assumed levels of input uncertainties. The algorithm 

in Table 2 was used to obtain these results. Similar boxplots for the third output 𝐹3𝑀𝑃 are provided in the 

supplementary information. Figure 3 shows that, as expected, uncertainties in the mean predictions (see 

Figures 3a and 3c) when input uncertainties are small are similar to the corresponding uncertainties when 

WLS is used. When larger input uncertainties are assumed, the sizes of the confidence intervals increase. 

Figures 3b and 3d show boxplots for single future measurements of 𝐹2𝑀𝑃 and 𝐹𝐶3 that might be obtained 

using the experimental condition for the 15𝑡ℎ experimental run. The cloud of 200 MC predictions for 

plausible single future measurements was obtained using the results of the 200 MC predictions for the mean 

response, with additional random measurement error added. As expected, the uncertainties in the single 

future measurements are larger than the uncertainties in the corresponding mean predictions. It is interesting 

that Figure 3d shows that the single-prediction uncertainties of 𝐹𝐶3 are larger when the assumed input 

uncertainties are smaller. This trend occurs because the output measurement variances for 𝐹𝐶3
 are larger 

when small input uncertainties are assumed than when larger input uncertainties are assumed (see Table 9). 
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It is also interesting that the trend in Figure 3b is the opposite of the trend in Figure 3d. For 𝐹2𝑀𝑃, assuming 

larger input uncertainties results in increasing uncertainty about what might happen in a single new 

experiment. It seems that large increase in uncertainty for the mean prediction of 𝐹2𝑀𝑃 (see Figure 3a) for 

this output outweighs the decrease in �̂�𝐹2𝑀𝑃

2  shown in Table 9. In summary, the results in Figures 2 and 3 

reveal that different assumptions about the size of input uncertainties can have important (and sometimes 

counter-intuitive) consequences for parameter and  prediction uncertainties. 

 

Figure 3- Prediction uncertainty boxplots for a) mean prediction of 𝐹2𝑀𝑃,b) a single-future measurement of 𝐹2𝑀𝑃, c) mean 

prediction of 𝐹𝐶3
 and d) a single future measurement of  𝐹𝐶3

 constructed based on 200 MC simulations. Predictions correspond to 

the experimental condition at the 15th run in Table S.1 (𝑇 = 513 𝐾, 𝑃 = 1 𝑀𝑃𝑎, and , 𝐹𝐻2 𝑚
0 = 1.3 × 10−3 𝑚𝑜𝑙

𝑠
, and 𝐹𝑛𝐶6 𝑚

0 = 

2.56 × 10−5 𝑚𝑜𝑙

𝑠
). The whisker ends correspond to approximate 95 % confidence intervals. 
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Figure 4 shows the boxplots for 200 MC simulations for the predictions of 𝐹2𝑀𝑃 and 𝐹𝐶3 for a new 

experimental condition (𝑇 = 580 𝐾, 𝑃 = 1.0 𝑀𝑃𝑎, 𝐹𝐻2 𝑚
0 = 1.3 × 10−3 𝑚𝑜𝑙

𝑠
 , and 𝐹𝑛𝐶6 𝑚

0 = 2.56 ×

10−5 𝑚𝑜𝑙

𝑠
). Additional results for the other output 𝐹3𝑀𝑃 are provided in the supplementary information. As 

shown, the confidence intervals for the mean predictions and single future predictions increase when higher 

input uncertainties are assumed. Also, the confidence intervals for the single future measurements of 𝐹2𝑀𝑃 

and 𝐹𝐶3
 are noticeably larger than the corresponding confidence intervals for the mean predictions when 

input uncertainties are neglected or small (i.e., when it is zero or 1 %). This can be attributed to the larger 

estimates of the output measurement variances when the input uncertainties are small. The confidence 

intervals for the mean and a single future measurement prediction are similar for situations with higher 

input uncertainties. This can be attributed to higher values of measurement variance estimates in smaller 

input uncertainties (e.g.,  

�̂�𝐹𝐶3

2 = 1.86 × 10−14 𝑚𝑜𝑙2 𝑠2⁄  when there are 1% input uncertainties and �̂�𝐹𝐶3

2 = 0.16 × 10−14 𝑚𝑜𝑙2/𝑠2 

when there are 5% input uncertainties). 
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Figure 4- Prediction uncertainty boxplots for a) mean prediction of 𝐹2𝑀𝑃,b) a single future measurement of 𝐹2𝑀𝑃, c) mean 

prediction of 𝐹𝐶3
 and d) a single future measurement of  𝐹𝐶3

 constructed based on 200 MC simulations. The model predictions are 

obtained for a new experimental condition (𝑇 = 580 𝐾, 𝑃 = 1.0 𝑀𝑃𝑎, 𝐹𝐻2 𝑚
0 = 1.3 × 10−3 𝑚𝑜𝑙

𝑠
 , and 𝐹𝑛𝐶6 𝑚

0 = 2.56 × 10−5 𝑚𝑜𝑙

𝑠
). 

The whisker ends correspond to approximate 95 % confidence intervals. 
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4-4 Uncertainties in Predicted Yield and Selectivities 

Figure 5 shows boxplots for yield predictions when different levels of input uncertainties are assumed. 

These results were obtained by substitution of points from the cloud of MC-based output predictions (i.e., 

for 𝐹2𝑀𝑃, 𝐹3𝑀𝑃 and 𝐹𝐶3
) into equation (8). Figure 5a shows yield prediction uncertainty boxplots for the 

15𝑡ℎ experimental run and Figure 5b shows yield prediction uncertainty boxplots for  a new experimental 

condition that was not considered by Toch et al. during their experiments (i.e., 𝑇 = 580 𝐾, 𝑃 = 1.0 𝑀𝑃𝑎, 

𝐹𝐻2 𝑚
0 = 1.3 × 10−3 𝑚𝑜𝑙

𝑠
 , and 𝐹𝑛𝐶6 𝑚

0 = 2.56 × 10−5 𝑚𝑜𝑙

𝑠
). As shown in Figure 5, the uncertainties in the 

yield predictions increase when a higher input uncertainty is assumed, as expected. 

 Figure 6a shows boxplots for the selectivity of 3MP. Additional boxplots for selectivities of other species 

and at different experimental conditions are provided in the supplementary information. It is interesting that 

in Figure 6a, when input uncertainties increase the confidence intervals for the selectivity predictions 

become smaller. This unanticipated result is attributed to increasing correlation between the numerator 

(𝐹3𝑀𝑃) and the denominator (𝐹𝑛𝐶6

0 − 𝐹𝑛𝐶6
) for 𝑆3𝑀𝑃 in equation (9) when input uncertainties become larger. 

As shown in Figure 6b, when input uncertainties are large, the uncertainties in 𝐹3𝑀𝑃 and 𝐹𝑛𝐶6

0 −𝐹𝑛𝐶6  both 

become larger, but high correlation between them makes their ratio less uncertain than when input 

uncertainties are assumed to be small.  These results reveal that assumptions about the size of the input 

uncertainties can have noticeable influence on predictions of selectivities, yields and other quantities that 

are calculated from model predictions and parameter values. Also, the size of prediction uncertainties can 

be influenced in important ways by the input uncertainty assumptions that are made by the modeler.  
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 Figure 5- Boxplots for yield predictions constructed based on 200 MC simulations: a) for mean yield predictions at the target 

experimental condition with 𝑇 = 513 𝐾, 𝑃 = 1 𝑀𝑃𝑎, 𝐹𝐻2 𝑚
0 = 1.3 × 10−3 𝑚𝑜𝑙

𝑠
 and 𝐹𝑛𝐶6 𝑚

0 = 2.56 × 10−5 𝑚𝑜𝑙

𝑠
 ; b) for mean yield 

predictions at a new experimental condition with higher temperature where 𝑇 = 580 𝐾, 𝑃 = 1.0 𝑀𝑃𝑎, 𝐹𝐻2 𝑚
0 = 1.3 ×

10−3 𝑚𝑜𝑙

𝑠
  and 𝐹𝑛𝐶6 𝑚

0 = 2.56 × 10−5 𝑚𝑜𝑙

𝑠
. The ends of the whiskers correspond to the 2.5 and 97.5 percentiles (i.e., approximate 

boundaries of 95% confidence intervals). 
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Figure 6-  Selectivity predictions for 3MP constructed based on 200 MC simulations: a) boxplot for mean selectivity predictions at 

the experimental condition with 𝑇 = 513 𝐾, 𝑃 = 1 𝑀𝑃𝑎, 𝐹𝐻2 𝑚
0 = 1.3 × 10−3 𝑚𝑜𝑙

𝑠
 and 𝐹𝑛𝐶6 𝑚

0 = 2.56 × 10−5 𝑚𝑜𝑙

𝑠
 for two levels of 

input uncertainties; b) the corresponding scatter plot for computed values of 𝐹3𝑀𝑃 vs. 𝐹𝑛𝐶6

0 − 𝐹𝑛𝐶6
 to investigate the correlation 

between the numerator and denominator in the selectivity expression in equation 9. Ends of the whiskers correspond to the 

approximate 95 % confidence intervals. 

 

5- Conclusions 

Conducting replicate experiments is not straightforward when inputs are uncertain, because it might not be 

possible to obtain the same true input values during repeated runs. Instead, experimenters can operate their 

equipment so that measured or target values of the inputs are the same, while acknowledging that the true 

values may be different. These types of attempted replicate experiments are called pseudo replicates.21 

Modelers can use pseudo-replicate data to estimate the output measurement variances required in EVM 

objective functions for parameter estimation, if they are careful to properly account for influence of 

uncertain inputs. Otherwise, their output-measurement-variance weighting factors will be too large.  

In this study, we extend a methodology for estimating output measurement variances so that it can be used 

for multi-response models with multiple uncertain inputs. A case study involving n-hexane 

hydroisomerization, which has two uncertain inputs (i.e., n-hexane feed rate and hydrogen feed rate) is used 

to illustrate the proposed method. Kinetic and thermodynamic parameters in this hydroisomerization model 

are estimated using literature data.7 Parameter estimates and model predictions are obtained using three 
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different levels of input uncertainty so that results can be compared with weighted-least-squares estimates, 

which neglect input uncertainties.  

Further, we extend a bootstrap method for assessing parameter uncertainties so that it can be applied for 

multi-response models with several uncertain inputs. The results of the parameter estimation and parameter 

uncertainty calculations confirm that, when small input uncertainties are assumed (i.e., 1% of the typical 

flow rates), results from the EVM parameter estimation are similar to those obtained using WLS. However, 

when larger input uncertainties are assumed (i.e., 5 % or 10 % of the typical feed rates), the parameter 

estimates and their uncertainties are noticeably different compared to WLS results.   

Increasing the input uncertainties resulted in several different trends for parameter confidence intervals. For 

example, for two of the model parameters (i.e., 𝐸𝑎1and Δ𝐻0) increasing input uncertainties resulted in 

increased width of the confidence intervals. However, for two of the parameters (i.e., 𝑘𝑟𝑒𝑓1, 𝑘𝑟𝑒𝑓2, 𝑘𝑟𝑒𝑓3 

and 𝐾𝑟𝑒𝑓), increasing the input uncertainties led to an initial increase in the width of the parameter 

confidence intervals followed by a decrease when input uncertainties increased from 5 % to 10 %. We 

attribute this complicated trend to the tradeoff between the influences of the larger input uncertainties and 

the corresponding smaller estimates for the output measurement variances.  

In this study, we obtained prediction uncertainties for the mean response that would be obtained at several 

different target settings (e.g., 𝑇 = 513 𝐾, 𝑃 = 1𝑀𝑃𝑎, 𝐹𝐻2 𝑚
0 = 1.3 × 10−3 𝑚𝑜𝑙

𝑠
 and 𝐹𝑛𝐶6 𝑚

0 = 2.56 ×

10−5 𝑚𝑜𝑙

𝑠
). We also obtained larger prediction uncertainties for a single-future experiment conducted at the 

same target. As input uncertainties increased, the confidence intervals for the predicted mean product 

outflow rates became wider for all three responses (i.e., 𝐹2𝑀𝑃, 𝐹3𝑀𝑃 and 𝐹𝐶3
). However, confidence intervals 

for the corresponding single-future measured responses increased for two responses (𝑖. 𝑒, 𝐹2𝑀𝑃and 𝐹3𝑀𝑃)  

but decreased for the third. This result is complicated but not surprising due to the tradeoff between larger 

assumed input uncertainties and smaller estimated output measurement variances. 
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We also obtained uncertainties in the predicted yield and selectivities for 2MP and 3MP which are 

calculated from the predicted product outflow rates. These results showed that increasing the input 

uncertainties led to increasing width of the confidence interval for the yield. However, more complicated 

results were obtained for selectivity confidence intervals.  For example, the selectivity confidence interval 

for 3MP became narrower when increasing input uncertainty was assumed. These results reveal that 

assumptions about input uncertainties can have important and sometimes complicated implications for 

parameter estimates, model predictions and other predicted quantities of interest to modelers and model 

users. We recommend that modelers should use weighted-least-squares estimation when they believe that 

uncertainties in experimental inputs have minimal influence on the overall reproducibility of their 

experiments. However, when input uncertainties are an important issue of concern, EVM parameter 

estimation should be used. The methods proposed in the current article should be helpful for assessing the 

resulting uncertainties in model parameters and model predictions. 
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Nomenclature 

Abbreviations 

2MP 2-methyl pentane 

3MP 3-methyl pentane 

C3 Propane 

EVM Error-in-variables model 

𝐻2 Hydrogen 

𝑛𝐶6 n-Hexane 

PR Pseudo replicate 

TR True replicate 

WLS Weighted least squares 
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Symbols 

𝑏 Counter for the iterations of the bootstrapping algorithm 

𝑏𝑚𝑎𝑥 Maximum number of the bootstrap and Monte Carlo iterations 

𝑐 A condition of interest 

𝑒 The relative change of parameter estimates in two subsequent iterations of the 

algorithm used in PR situations to estimate output measurement variances 

𝐸𝑎 𝑟 Activation energy for the 𝑟𝑡ℎ reaction 

𝐹2𝑀𝑃 Molar outflow rate of 2MP 

𝐹3𝑀𝑃 Molar outflow rate of 3MP 

𝐹𝐶3
 Molar outflow rate of C3 

𝐹𝑛𝐶6

0  Feed flow rate of nC6 

𝐹𝐻2

0  Feed flow rate of H2 

𝐹𝐻2 𝑚
0  Measured value of feed flow rate of hydrogen 

𝐹𝑛𝐶6 𝑚
0  Measured value of feed flow rate of n-hexane  

𝒈(. ) The function returning a vector of solutions for the model predictions of a 

multi-output model 

𝑔𝑘(.)  The function returning solution for the prediction of the 𝑘𝑡ℎ output 

𝐽 Objective function 

𝑘𝑟 Kinetic rate for the 𝑟𝑡ℎ reaction 

𝐾𝑟𝑒𝑓 Equilibrium constant at the reference temperature 𝑇𝑟𝑒𝑓 

𝑘𝑟𝑒𝑓 𝑟 Kinetic rate of the 𝑟𝑡ℎ reaction at the reference temperature 𝑇𝑟𝑒𝑓 

𝑁 Number of target experimental condition 

𝑁𝑈 Number of uncertain model input  

𝑁𝑌 Number of output predictions at each experimental condition 

𝑁𝜃 Number of parameters 

𝑛𝑖 Number of replicate experiments at the 𝑖𝑡ℎ run condition 

𝑃 Reactor pressure 

𝑃𝑖 Reactor pressure at the 𝑖𝑡ℎ condition 

𝑝 Counter for the elements of parameter vector θ 

𝑠 Iteration counter in calculating the output measurement variance using 

pseudo-replicate data 

𝑆𝑞 Selectivity of the 𝑞𝑡ℎ species (𝑞 =  2𝑀𝑃, 3𝑀𝑃 and 𝐶3) 

𝑇 Reactor temperature 

𝑇𝑖 Reactor temperature at the 𝑖𝑡ℎ experimental condition 

𝑇𝑟𝑒𝑓 Reference temperature  

𝑢𝑖𝑗 True value of the input for 𝑗𝑡ℎ replicate run of the 𝑖𝑡ℎ target condition 

𝑢𝑖𝑙 True value for the 𝑙𝑡ℎ uncertain input at the 𝑖𝑡ℎ experimental condition when 

there are no replicate data 

𝒖𝒊𝒋 Vector of true values of uncertain inputs for the 𝑗𝑡ℎ pseudo-replicate run at the 

𝑖𝑡ℎ target condition 

𝒖𝒊𝒋
(𝒃)

 Bootstrap-generated value of the uncertain input for the 𝑗𝑡ℎ pseudo-replicate 

run at the 𝑖𝑡ℎ target condition 

𝑢𝑚𝐶6 𝑖 Measured value of 𝐹𝑛𝐶6
0  at the 𝑖𝑡ℎ experimental condition 
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𝑢𝑚𝐻2 𝑖 Measured value of 𝐹𝐻2

0  at the 𝑖𝑡ℎ experimental condition 

𝒖𝒎 𝒊 Vector of measured values for uncertain inputs obtained from the 𝑖𝑡ℎ 

experimental condition 

𝑢𝑚 𝑖𝑙 Measured value for the 𝑙𝑡ℎ uncertain input at the 𝑖𝑡ℎ experimental condition  

W Catalyst weight  

𝒙𝒊 Vector of perfectly-known model inputs at the 𝑖𝑡ℎ target condition   

𝑦2𝑀𝑃 𝑖𝑗 Measured value of 𝐹2𝑀𝑃 for the 𝑗𝑡ℎ pseudo-replicate run at the 𝑖𝑡ℎ target 

condition 

𝑦3𝑀𝑃 𝑖𝑗 Measured value of 𝐹3𝑀𝑃 for the 𝑗𝑡ℎ pseudo-replicate run at the 𝑖𝑡ℎ target 

condition 

𝑦𝐶3 𝑖𝑗 Measured value of 𝐹𝐶3
 for the 𝑗𝑡ℎ pseudo-replicate run at the 𝑖𝑡ℎ target 

condition 

𝑌𝑖𝑗 Output measurement random variable corresponding to a single-output model 

for the 𝑗𝑡ℎ replicate run at the  𝑖𝑡ℎ experimental target condition 

𝑌𝑖𝑗𝑘 Output measurement corresponding for the 𝑘𝑡ℎoutput of a multi-output model 

obtained for the 𝑗𝑡ℎreplicate run at the 𝑖𝑡ℎexperimental target condition  

𝒚𝒎 𝒊𝒋 Vector of measured values of outputs for the 𝑗𝑡ℎ pseudo-replicate run at the 

𝑖𝑡ℎ condition 

𝒚𝒎 𝒊𝒋
(𝒃)

 Vector of bootstrap-generated output measurements corresponding to 𝒚𝒎𝒊𝒋 

𝑦𝑚 𝑖𝑘 Measured value for the 𝑘𝑡ℎ model response at the 𝑖𝑡ℎ experimental condition 

when there not replicates 

𝑦𝑚 𝑖𝑗𝑘 Output measurement value for the 𝑘𝑡ℎ model output obtained from the 𝑗𝑡ℎ 

pseudo-replicate run at the 𝑖𝑡ℎ  condition 

�̅�𝑚 𝑖𝑘 The average of the 𝑘𝑡ℎ model output measurements for replicate runs 

conducted at the 𝑖𝑡ℎ target condition 

�̅�2𝑀𝑃 𝑖 The average of the measured values of 𝐹2𝑀𝑃 for replicate runs at the 𝑖𝑡ℎ target 

condition 

 

 

 

Subscripts 

𝑏 Counter for the iterations of the bootstrapping algorithm 

𝑏𝑚𝑎𝑥 Maximum number of the bootstrap and Monte Carlo iterations 

𝑐 A condition of interest 

𝑖 Counter for the unique target experimental conditions 

𝑗 Counter for the repeated replicate experiments at each condition 

𝑘 Counter for the elements of a model-output vector in a multi-output model 

𝑙 Counter for the elements of a model-input vector  

𝑟 Counter for the reactions 

𝑛 Nuisance parameters 

𝑝 Primary parameters 

𝑞 Letter for denoting different species (𝑞 =2MP, 3MP, and  C3) 

 

Greek Symbols 
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𝛼𝑞 The number of carbon atoms in the molecules of species q (q=2MP, 3MP and 

C3).  

𝛿𝑘 Cut-off value for the estimates of variance for the 𝑘𝑡ℎ model response 

𝛿𝐹2𝑀𝑃
 Cut-off value for the estimates of variance for the output measurements of 𝐹2𝑀𝑃   

𝛿𝐹3𝑀𝑃
 Cut-off value for the estimates of variance for the output measurements of 𝐹3𝑀𝑃   

𝛿𝐹𝐶3
 Cut-off value for the estimates of variance for the output measurements of 𝐹𝐶3

   

∆𝐻0 Enthalpy of the physisorption 

𝜺𝑼 𝒊𝒋 Vector of random measurement noises for the input measurements 

𝜺𝒀 𝒊𝒋 Vector of output random measurement noise for the 𝑗𝑡ℎ replicated run at the 𝑖𝑡ℎ 

experimental condition 

𝜽  Vector of parameters 

�̂� Parameter estimates 

�̂�(𝒃) Vector of estimated values of parameters from the 𝑏𝑡ℎ bootstrap-generated data 

�̂�𝐹2𝑀𝑃

2  Output measurement variance for 𝐹2𝑀𝑃 

�̂�𝐹3𝑀𝑃

2  Output measurement variance for 𝐹3𝑀𝑃 

�̂�𝐹𝐶3

2  Output measurement variance for 𝐹𝐶3
 

𝜎
𝐹𝑛𝐶6

0
2  Measurement variance for uncertain input 𝐹𝑛𝐶6

0  

𝜎
𝐹𝐻2

0
2  Measurement variance for uncertain input 𝐹𝐻2

0  

�̂�𝐹2𝑀𝑃 𝑜
2  Overall estimate of measurement variance for 𝐹2𝑀𝑃 accounting for input 

measurement noises 𝜺𝑼 𝒊𝒋 and output measurement noises 𝜺𝒀 𝒊𝒋 

𝜎𝑈
2
𝑙
 Measurement variance for the 𝑙𝑡ℎ uncertain input  

𝜎𝑌𝑘

2  Output measurement variance for the 𝑘𝑡ℎ model output 

�̂�𝑌𝑘

2  Estimate of variance for the 𝑘𝑡ℎ model output measurements 

�̂�𝑌𝑖𝑘

2  Variance estimate for the 𝑘𝑡ℎ model output obtained from measurements of 

replicate data corresponding to the 𝑖𝑡ℎ experimental data 

𝜮𝑼 Covariance matrix for the uncertain inputs 

𝜮𝒀 Covariance matrix for the model outputs 

�̂�𝑌
(𝑏)

 Estimated value of output measurements covariance matrix estimated from the 

𝑏𝑡ℎ bootstrap-generated data 
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