
P
os
te
d
on

21
O
ct

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
66
63
30
41
.1
84
72
64
9/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Average path length of a special class of hierarchical networks

Jia-bao Liu1, Ya-Qian Zheng2, and Kang Wang3

1Anhui Xinhua University
2Anhui Jianzhu University
3Anhui Jianzhu University South Campus

October 21, 2022

Abstract

Many of the behaviors observed in actual systems are comparable to scale-free and small world structures in network research.

In contrast to conventional hierarchical networks, the unusual fractal hierarchical network we created in this research has a

pyramidal structure. The findings we get from this network are expanded to be applicable to arbitrary hierarchical networks.

The average path length of unweighted and weighted hierarchical networks are the main topics of this paper. We demonstrate

that, in the unweighted case, when the number of iterations z tends to infinity, the average path length is only related to the

number of blocks of the hierarchical network. Additionally, in the weighted network, the average path length is related to the

number of blocks r and the weighting factor w of the hierarchical network.
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1. Introduction

Complex networks presently play a significant role in scientific and social study because to the growth

of fractal investigation, and many natural and social phenomena may be described by complex networks.

Networks with random and dynamic properties have gained popularity during the last several years as

a subject of study [1, 2]. The research has put a great deal of work into establishing their structure

and studying the newly complicated features. It is well recognized that most real networks possess two

distinctive characteristics of being workers, namely small world and scale-free [3], which also enhance the

theory of complex networks. This is true despite the diversity of networks. Additionally, the majority of

network systems have three distinguishing structural characteristics: clustering, degree distribution [4],

and average path length [5]. The reader can referred to [6, 7], for more studies on structural properties

in complex networks.

Additionally, complex networks show self-similarity, and their sharing dimension exhibits power-law

properties. Recently, self-similarity fractals have been utilized to simulate how network iterations change

over time [8]. Meanwhile, Zhang et al. [9,10] employed Sierpinski gaskets to build evolutionary networks

in a series of articles. Complex networks also have self-similar fractal models. For instance, Liu and

Kong [11], Chen et al [12] examine Koch networks and Vicsek fractal-built networks, respectively. The

average path length (APL) is an important indicator of small-world properties and represents the size of

the network. The average path length is also the average of the shortest path length (SPL) between all two

nodes in the network. Therefore, many formulas for calculating the average path length have been derived

theoretically, which improves the efficiency when computing, but leads to a decrease in the efficiency of

the computation as the size of the network grows. Accurate calculation of APL requires access to all

SPLs, but this is impractical in social networks because information about all nodes is not available due

to security and privacy protection constraints. In order to solve the problem of increasing computation

due to the large-scale iteration of social networks, many scholars have introduced an alternative method

of parameter estimation to simplify the computational process [13–15].

The preceding research concentrate on unweighted networks, but realistic application frequently shows

that node-to-node connections may also be significant. As a consequence, many researchers have also

made significant efforts to combine weighted networks with real-world issues. In order to assess its various

E-mail address: liujiabaoad@163.com, zhengyaqian168@163.com, wangkang199804@163.com.
* Corresponding author.

1



properties and correlate them with their topological relatives, the authors of [16] examined Indian airports

as a weighted hierarchical network. To better comprehend the topology and characteristics of global trade

and financial networks, the authors of [17] investigate the model of international commerce and financial

integration by integrating network analysis and weighting methods. Excellent research on weighted

networks has also been done by several other writers [18–21].

Inspired by previous studies, in this paper, a class of three-dimensional triangular conical networks

with scale-free and fractal structure is established. In Section 2, the network construction process is

introduced. In Section 3, the definition and formula of the average path length in complex networks

are first introduced, the average path length of hierarchical networks in the unweighted condition is

calculated, and the relationship between the average path length and the iteration number in complex

networks is explored. In Section 4, the weighed factor w is taken into consideration, and the average path

length of weighted network is calculated at this stage. In section 5 provides the basic conclusions.

2. Construction of hierarchical network

This section focuses on the process of investigating the generation of fractal networks. First, we

identified the networks after z iterations as Gr
z, (r ≥ 1, r, z ∈ N), where r denotes the number of blocks

in the network. The construction procedures of the fractal network when z = 1 , 2 , 3 are given then

to help the reader comprehend the iterative process. It is important to keep in mind that, regardless of

how many iterations the network goes through, there is only one root node at the z-th generation, as

indicated by the red, and the root node copied after the iterations are called vertexs as marked in green

in Fig.1. In the graph, the blue marked points represent the bottom nodes in the network.

The following are the main construction steps:

Step 1. For z = 0, the network Gr
0 is composed of a root node and three bottom nodes interconnected

by lines in a triangular cone structure.

Step 2. For z = 1, the network Gr
0 is duplicated with r times. With the network Gr

0 at the root node

as the center, (r − 1) networks Gr
0 with similar structure are evenly scattered around, while the bottom

nodes of the last layer are connected to the root node, thus the 1-th generation hierarchical network

is obtained. Fig.1 illustrates the specific steps taken during the generation of the hierarchical network

structure.

Step 3. Similarly, for z ≥ 2, the network Gr
z−1 is duplicated with r times. With the network Gr

z−1

at the root node as the center, (r − 1) networks Gr
z−1 with similar structure are evenly around, while

the bottom nodes of the last layer are connected to the root node, thus the z-th generation network is

generated, as Fig.2.

For the network model after z iterations, the total number of nodes is Nz = 4rz, at this time there is

only 1 largest root node and (r − 1) hub nodes, 3rz−1 vertices, the number of bottom nodes generated

in the z generation that is the last layer of the bottom nodes is 3(r − 1)z, where the hub nodes have

connections with other bottom nodes, while the vertices have no links with other bottom nodes.

Given the rising complexity of Gr
z+1, this self-repeating pattern network can be viewed as a self-similar

hierarchical fractal network. We simplify the network structure (as in Fig. 3) for the purpose of simplicity

of calculating the average path length of the unweighted and weighted networks in the following section,

and first we consider Gr
z+1 as a network with r blocks. First, we consider Gr

z+1 to be a network with r

blocks, which are named G1
z, G

2
z, . . . , G

r
z.

2



Figure 1: The network iteration process for z = 0, 1 with block number r = 4.

3. The average path length of unweighted networks

One of the most essential components of the network is the average path length, commonly referred

to as the shortest average distance. The shortest distance dij between nodes i and j among all potential

pairings of nodes can be used to compute it. Let Dz be the sum distance of the shortest path lengths

between all two nodes in the fractal network given in Eq. (3.1) when iterating to the z-th time.

Dz =
1

2

∑
i ̸=j∈Gr

z

dij(z). (3.1)

The average path length indicated by Dz could then be determined.

Dz =
Dz

Nz(Nz − 1)/2
, (3.2)

where Nz represents the total number of nodes in the network.

Based on the fractal properties mentioned previous section, we can define the following network

factors. Let Mz be the sum of the path lengths from the complex network’s nodes other than the root

node to the root node in the z-th generation, and Lz be the sum of the path lengths between the nodes

in the z-th generation other than the bottom node. The network model shown in Fig.1 clearly shows

that M0 = 3 and L0 = 3. Calculating the average path length of the network Gr
z+1 generates the total

path length between all node pairs in the network. The division is made with the root node and the

underlying nodes for computational simplicity. Mz+1 stands for the total of the root node distances at

each node up to (z + 1) generations, with the root node as the center. Because the (z + 1)-th generation

network is composed of the z-th generation network replicated (r− 1) times, the analysis of Mz+1 can be

3



Figure 2: The network iteration process for z = 2 with block number r = 4.
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Figure 3: Structure of network model Gr
z+1 for (z + 1)-th generation.

split into two segments for the z-th and (z +1)-th generations, where the first segment could be referred

to the total of distances from all nodes in the z-th generation network to the root node, and the second

segment can be referred to the total of distances from the nodes generated in the (z + 1)-th.

Correspondingly, the total amount of the distances from every node in the network to any bottom

node in the (z + 1) generation, denoted by Lz+1, can be separated into two segments: the initial is the

total of the distances from nodes produced in the (z+1) generation with (r− 1) to their random bottom

nodes, and the latter is the total of the distances from nodes produced in the z generation to the bottom

nodes. The final portion is the total of the distances from the central node to the bottom node.

Therefore, according to the self-similar structure of the network, the total distance between different

branches can be obtained using Eq. (3.3).

Dz+1 = rDz +∆z+1, (3.3)

where ∆z+1 is the sum of the lengths of all shortest paths between nodes in different branches Gr
z, r ∈ N+.

Lemma 3.1. In z-th generation, the network Gr
z has

Mz = rz−2(8z · r − 8z − 8r + 11r2), Lz = rz−2

(
8z(r − 1) + 3r2

)
.

Proof. First, in Gr
z, we can have any arbitrary node i. Let mi(z) be the smallest distance between i and

the root node, the shortest path length between i and the last layer of bottom nodes is given by li(z).

In addition, Mz is represented as the total sum of all nodes in Gr
z, and Lz to be the sum of li(z). As

previously stated, we can deduce that the expression of Mz+1 is

5



Mz+1 =
∑
i∈G1

z

mi(z + 1) +
∑
i∈G2

z

mi(z + 1) + · · ·+
∑

i∈Gr−1
z

mi(z + 1) +
∑
i∈Gr

z

mi(z + 1)

=(r − 1)
∑
i∈Gr

z

(li(z) + 1) +
∑
i∈Gr

z

mi(z)

=(r − 1)(Lz +Nz) +Mz.

(3.4)

Lz+1 =
∑
i∈G1

z

li(z + 1) +
∑
i∈G2

z

li(z + 1) + · · ·+
∑

i∈Gr−1
z

li(z + 1) +
∑
i∈Gr

z

li(z + 1)

=(r − 1)
∑
i∈Gr

z

li(z) +
∑
i∈Gr

z

(mi(z) + 1)

=Mz +Nz + (r − 1)Lz.

(3.5)

On the other side, Eq. (3.4) can be rewritten as

Mz = Lz+1 − (r − 1)Lz −Nz. (3.6)

The result from Eq. (3.6) is carried over to Eq. (3.5), one has

Lz+2 − rLz+1 = 8rz+1 − 8rz.

Then

r−(z+1)Lz+1 − r−zLz = 8r−1 − 8r−2,

...

r−2L2 − r−1L1 = 8r−1 − 8r−2,

r−1L1 − r0L0 = 8r−1 − 8r−2.

Combining L0 = 3, the expression for Lz can be obtained as

Lz = (z + 1)(8r−1 − 8r−2)rz+1 + 3rz+1

= rz−2

(
8z(r − 1) + 3r2

)
.

(3.7)

Put the result of Eq. (3.7) into Eq. (3.6), we can derive

Mz = rz−2(8z · r − 8z − 8r + 11r2). (3.8)

Once the expressions for Mz and Lz have been solved, the next step is to compute ∆z+1.

Lemma 3.2. The network Gr
z with r blocks, then the total distance ∆z+1 can be defined as

∆z+1 = 4(r − 1)r2z−1

(
7r2 + 4(2z · r − 2z − r − 2)

)
.

6



Proof. Considering the self-similar structure of Gr
z, ∆z+1 could be written in the following way,

∆z+1 = ∆i∈G1
z,j∈G2

z
+∆i∈G1

z,j∈G3
z
+ · · ·+∆i∈G1

z−1,j∈G2
z

+∆i∈G2
z,j∈G3

z
+∆i∈G2

z,j∈G4
z
+ · · ·+∆i∈Gr−1

z ,j∈Gr
z

= (r − 1)∆i∈G1
z,j∈G2

z
+C2

r−1∆i∈G2
z,j∈G3

z
.

(3.9)

From Eq. (3.9), the following assignment focuses on calculating the expressions for ∆i∈G1
z,j∈G2

z
and

∆i∈G2
z,j∈G3

z
.

∆i∈G1
z,j∈G2

z
=

∑
i∈G1

z,j∈G2
z

dij(z + 1)

=
∑

i∈G1
z,j∈G2

z

(mi + 1 + li)

=
∑
i∈G1

z

∑
j∈G2

z

mi(z) +
∑
i∈G1

z

∑
j∈G2

z

(1 + li(z))

= Nz · Pz +N2
z +Nz · Lz

= 8r2z−2

(
9r2 − 8z + r(8z − 4)

)
.

(3.10)

Then we have

∆i∈G2
z,j∈G3

z
=

∑
i∈G1

z,j∈G2
z

dij(t+ 1)

=
∑

i∈G1
z,j∈G2

z

(li + 1 + 1 + lj)

= 2
∑
i∈G1

z

∑
j∈G2

z

(li(z) + 1)

= 2(N2
z +Nz · Lz)

= 8r2z−2(8z · r − 8z + 7r2).

(3.11)

Combining the results of Eqs. (3.9), (3.10), and (3.11), ∆z+1 can be given as

∆z+1 = (r − 1)∆i∈G1
z,j∈G2

z
+C2

r−1∆i∈G2
z,j∈G3

z

= 4(r − 1)r2z−3

(
7r2 + 4(2z · r − 2r − 2z − r)

)
.

(3.12)

Theorem 3.3. Let Gr
z be a network with r blocks iterated to the z-th time, then there exists

Dz = 6rz + 4rz−2(8 + 12r − 7r2 − 8rz − 12rz+1 + 7rz+2 − 8z · r2 + 8z · rz+1). (3.13)

Proof. Based on the previously obtained Eq. (3.3), we can obtain another expression for Dz differently

as follows

Dz+1 = r ·Dz + 4(r − 1)r2z−3

(
7r2 + 4(2z · r − 2r − 2z − r)

)
.

7



Taking into account Dz = 6 in the initial condition, Dz can be converted into the iterative equation

of Eq. (3.13)

Dz = rDz−1 +∆z

= r2Dz−2 + r∆z−1 +∆z

= rzD0 + rz−1∆1 + rz−2∆2 + · · ·+∆z

= rzD0 +

z∑
i=1

rz−i∆i.

(3.14)

The crucial to solving Eq. (3.14) depends on the expression of
∑z

i=1 r
z−i∆i

z∑
i=1

rz−i∆i = 4z · r2z−3(r2 − 1)(7r2 − 8z + 8z · r − 12r). (3.15)

Therefore, Eq. (3.15) is put into Eq. (3.14), then the theorem holds and the proof is complete.

Theorem 3.4. Let Gr
z be a network with r blocks iterated to the z-th time, then there exists

lim
z→∞

Dz

z
=

4(r − 1)

r2
.

Proof. In the network Gr
z, Nz = 3 and according to Eqs. (3.1) (3.2) (3.13), we have

Dz =
Dz

Nz(Nz − 1)/2

=
16 + 24r − 11r2 − 16rz − 24rz+1 + 14rz+2 − 16z · rz + 16z · rz+1

r2(4rz − 1)
.

(3.16)

According to the result of solving Dz and the method of solving the limit, then Theorem 3.4 can be

proved.

As a result, when r is a specific value, there is a linear growth relationship between Dz and the

number of iterations z, which is taken into account when Dz ∝ lnNz. Because of this, for large networks,

the average distance increases logarithmically with network order. Furthermore, it can be seen that as

r increases, As the iteration number z and the number of network blocks r increase, we notice that the

growth trend of the average path lengthis almost purely influenced by the r, see Fig. 4.

Corollary 3.5. For r = 4, the unweighted network Gr
z has the following propertie

Dz =
lnNz

ln 4
+

3

4
+O(4−z) ∝ lnNz.

Proof. When the network is considered as 4 blocks, the total number of nodes in the z-th iteration at

this time is Nz = 4z+1, then z = log4 Nz − 1, combining Eqs. (3.14) and (3.16), we can obtain

Dz =
Dz

Nz(Nz − 1)/2

=
−4 + 7 · 4z + 4z(−4 + 4z)

4z+1 − 1

=
Nz log4 Nz − 16 log4 Nz −Nz + 16

4(Nz − 1)
.

8



We organize the above results to obtain the relationship between the average path length of network

Gr
z and the total number of nodes Nz.

Dz =
lnNz

ln 4
+

3

4
+O(4−z) ∝ lnNz.

When the unweighted hierarchical networks with 4 blocks, as a result, the average path length rises

logarithmically with increasing network order in large networks. We compare the analytical simulation

results and discover that they are nearly identical to the theoretical numerical results. Fig. 5 shows that

the average path length growth trend of Gr
z is nearly consistent with lnNz.

Figure 4: Relationship between the average path length Dz and z and r in unweighted network.

Remark 3.1. The conclusions calculated in this paper about the unweighted hierarchical networks are

basically similar to those from references [22,23], which constructed a class of hierarchical networks con-

nected by planar triangles. Therefore, it can be deduced that when the hierarchical networks are connected

by triangles, whether they are planar triangular networks or spatial triangular iterative networks, thei In

general, the conclusions are similar.

4. The average path length of weighted networks

In real-world problems, there will always be some association between nodes and nodes in the network.

In this section, the existence of a special meaning between paths is considered, and this association is

given a special weight factor w, w ∈ (0, 1), The weighting factor between nodes i and j is then denoted

as wij , (wij = wji) is discussed in this article.

The unweighted network method described in the preceding section might be used to obtain the

average path length of the weighted network. In the weighted hierarchical network, M̂z and L̂z denote,

respectively, the total distance from the node to the root node and the distance to the bottom node in

the z-th generation weighted network.

9



Figure 5: The numerical test for different network orders.

Lemma 4.1. For a weighted network Gr
z with r blocks, at the z-th generation

M̂z =

rz−2

(
4− 4wz − 4r(wz+1 − 2wz + 1)− r2(w − 1)(4wz+1 − 4wz − 3w)

)
w(w − 1)

,

L̂z =
rz−2(4− 4r − 3r2w + 3r2w2 − 4wz + 4r · wz)

w(w − 1)
.

(4.17)

Proof. Combining Eqs. (3.4) and (3.5), we can get

M̂z+1 = M̂z + (r − 1)(L̂z + 4rz · wz),

L̂z+1 = (r − 1)L̂z + M̂z + 4wz · rz.
(4.18)

then

M̂z = L̂z+1 − (r − 1)L̂z − 4wz · rz,

M̂z+1 = L̂z+1 − (r − 1)L̂z − 4wz · rz + (r − 1)L̂z + 4(r − 1)wz · rz

= L̂z+1 + 4(r − 2)wz · rz.

M̂z+1 can be rewritten as follows

M̂z+1 = L̂z+2 − (r − 1)L̂z+1 − 4wz · rz. (4.19)

Based on the results obtained above, we can conclude that

L̂z+2 − rL̂z+1 = 4(r − 1)wz · rz. (4.20)

By solving for Eq. (4.20), Lemma (4.1) can be proved.

10



Theorem 4.2. Let Gr
z be a weighted network with r blocks, at the z-th iterations

∆̂z+1 =

4(r − 1)r2z−1

(
4 + 7r2 · w(w − 1)− 4wz+1 − 4r(1− w + w2 − 2wz+1 + wz+2)

)
w(w − 1)

.

Proof. Combining the results of Eq. (3.9) with the initial values of Mz and Lz, we can obtain

̂∆i∈G1
z
∆j∈G2

z
= −

8r2z−2

(
4(wz − 1) + 2r(wz+1 − 3wz + 2) + r2(w − 1)(2wz+1 − 2wz − 5w)

)
w(w − 1)

,

̂∆i∈G2
z
∆j∈G3

z
=

8r2z−2

(
4 + 7r2 · w(w − 1)− 4wz + 4r(wz − 1)

)
w(w − 1)

.

(4.21)

The network’s self-similar structure is maintained by weighted networks.

∆̂z+1 = (r − 1) ̂∆i∈G1
z
∆j∈G2

z
+ C2

r−1
̂∆i∈G2

z
∆j∈G3

z

=

4(r − 1)r2z−1

(
4 + 7r2 · w(w − 1)− 4wz+1 − 4r(1− w + w2 − 2wz+1 + wz+2)

)
w(w − 1)

Then combining with the initial values of Mz and Lz, we can obtain ∆̂z+1.

Theorem 4.3. Let Gr
z be a weighted network with r blocks, at the z-th iterations

D̂z =

(
8− 8w − 11r3(w − 1)w2 + 14rz+3(w − 1)w2 − 8r(1− 3w + 2w2) + r2 · w(8w2 + 11w − 19)

+ 8rz(wz+1 − 1)− 2rz+2w(4wz+1)− 8wz + 4w2 + 3w − 3)

+ 8rz+1(wz+2 − 3wz+1 + w2 + 1)

)
/

(
wr2(4rz − 1)(w − 1)(rw − 1)

)
.

Proof. The proof procedure here can be referred to that of Dz.

Theorem 4.4. Let Gr
z be a weighted network with r blocks, at the z-th iterations

lim
z→∞

D̂z

z
=

4 + 7r2(w − 1)w + r(4 + 4w − 4w2)

2r3 · w(w − 1)
. (4.22)

Proof. The result of D̂z derived from Theorem 4.3, the proof procedure is similar to that of Theorem

3.4.

The results presented above show that as the number of network iterations increases, the average path

length of the weighted network has always been associated with the weighting factor w and the number

of network blocks r, showing that the average weighted path of the network is enclosed and the weighted

network has a small-world property.

Then, in the weighted network, we consider a more special case, which leads to the results of Lemmas

4.4 and 4.5.

Lemma 4.5. Assuming w = 1
r , in the weighted network Gr

z, the average path length is

D̂z =
8− 8rz + 22rz+1 + 16z − r(19 + 16z)

r(4rz − 1)
.

11



Proof. Adding w = 1
r to the formula of Theorem 4.3 completes the proof.

Lemma 4.6. Assuming w = 1
r , in the weighted network Gr

z, one has

lim
z→∞

D̂z

z
=

16(r − 1)

r
.

Proof. According to the result of Theorem 4.4, the above lemma can be proved by bringing w = 1
r to

the limit formula of D̂z and z.

Remark 4.1. A class of planar triangular connected hierarchical networks was investigated in reference

[24]. The network is partitioned into m blocks using the parameter calculation method, and the weighting

factor r is also introduced in order to streamline the calculation. The outcomes of lemma 4.5 and 4.6 in

this paper are comparable to the theorem 3.4 that was reached. Therefore, we conclude that the average

path length is solely dependent on the network parameters chosen, regardless of whether the hierarchical

network is partitioned into triangles or other graphs, for the unweighted or weighted hierarchical network.

5. Conclusions

In this paper, we analyzed the average path length of the unweighted and weighted hierarchical

networks. We find that the average path length in the unweighted case has a logarithmic connection

with the value of iterations z. Then, for the average path length, we find that it grows logarithmically

as the network order increases. When a weighting factor (w) is applied, D̂z of the weighed network

becomes a constant associated with the number of blocks r and the weighting factor w as the number of

iterations z approaches infinity. Simultaneously, if w takes a special constant value (w = 1
r ), the result

is 16(r−1)
r when the number of iterations z approaches infinity, ensuring that, in both unweighted and

weighted hierarchical networks, the average path length of the network stays constrained with respect to

the expansion of network iterations.
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