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Abstract

In this work, we modify the iterative Kurchatov’s method to solve nonlinear equations with multiple roots, that is,for approxi-

mating the solutions of multiplicity grater than one. Its main feature is that you do not need to know a priori the multiplicity

of the root, which does not appear in the iterative expression. We perform a dynamical analysis to see the behaviour of the

proposed method. We also carry out some numerical experiments to confirm the theoretical results and compare the proposed

method with other known schemes for multiple roots.
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In this work, we modify the iterative Kurchatov’s method
to solve nonlinear equations with multiple roots, that is,for
approximating the solutions of multiplicity grater than one.
Its main feature is that you do not need to know a priori the
multiplicity of the root, which does not appear in the iter-
ative expression. We perform a dynamical analysis to see
the behaviour of the proposed method. We also carry out
some numerical experiments to confirm the theoretical re-
sults and compare the proposed method with other known
schemes for multiple roots.
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Introduction

The need to solve nonlinear equations, f (x ) = 0, arises in many engineering or applied mathematical problems. They
cannot always be solved exactly, therefore approximations to the solution are sometimes obtained. Iterative meth-
ods are often used to obtain these approximations. A well-known one is Newton’s method which has the following
expression:

xk+1 = xk − f (xk )
f ′ (xk )

, for k = 0, 1, . . .

To ensure that this method converges to a root of f (x ) = 0, it is required that the derivative of the function
evaluated in the solution is not zero.

1

https://orcid.org/0000-0002-7462-9173
https://orcid.org/0000-0002-7903-8591
https://orcid.org/0000-0002-9893-0761
https://orcid.org/0000-0002-7319-9992


2

Therefore, iterativemethods appear that allow to obtain solutionswith amultiplicity greater than 1. Inmanuscripts
[1, 8, 7, 6, 9, 13] numerous iterative schemes, without memory, involving or not derivatives, are designed for approx-
imating the multiple roots of a nonlinear equation f (x ) = 0. In the most of them, the authors assume that the
multiplicity is known and it appears in the iterative expression of the method.

It is known that Schröder scheme [12]
xk+1 = xk − f (xk )f ′ (xk )

f ′ (xk )2 − f (xk )f ′′ (xk )
, for k = 0, 1, . . .

has second-order of convergence formultiple roots of the f (x ) = 0. This methodwas designed fromNewton’s scheme
applied to g (x ) = f (x )

f ′ (x ) . Its main feature is that you do not need to know a priori the multiplicity of the root, which
does not appear in the iterative expression.

In a similar way, in paper [4], the authors construct an iterative method with memory for approximating the
multiple roots, that avoids the need to know a priori the multiplicity. In this manuscript, we apply several techniques
to Kurchatov’s scheme in order to obtain an iterativemethodwithmemory andwithout derivatives for findingmultiple
roots . We see that the modification of this method maintains the order and has good dynamical behaviour.

Kurchatov’s method is an iterative scheme of second-order convergence obtained from Newton’s method by
replacing the derivative by the divide difference of Kurchatov f [2xk − xk−1, xk−1 ]

xk+1 = xk − f (xk )
f [2xk − xk−1, xk−1 ]

= xk − 2(xk − xk−1)f (xk )
f (2xk − xk−1) − f (xk−1)

, k = 1, 2, . . .

In this paper, Section 2 is devoted to the design and convergence analysis of the proposed iterative method, with
memory, to find multiple roots without the knowledge of its multiplicity. A dynamical analysis of the rational function
obtained by applying the proposed scheme on low-degree polynomials is presented in Section 3. A method with
similar characteristics to the one designed in Section 2, but derivative-free, is shown in Section 4. Finally, in Section
5 we perform several numerical experiments with the Kurchatov method for multiple roots and compare the results
obtained by this scheme with other known ones designed for multiple roots.

1 | CONVERGENCE ANALYSIS

Let f : Ò → Ò be a sufficiently differentiable function in an open set D ⊂ Ò that contains a root α of f (x ) = 0. Let us
consider the expression of the divided difference operator

f [x + h, x ] (x + h − x ) = f (x + h) − f (x ), (1)
which we use to prove the order of convergence of methods.

To demonstrate the order of an iterative methods with memory we use the Ortega-Rheinboldt theorem, which
can be found in [10]:
Theorem 1 Let φ be an iterative method with memory that generates a sequence {xk } of approximations to the root α ,
and let this sequence converges to α . If there exist a nonzero constant η and positive numbers t i , i = 0, . . . ,m such that the
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inequality

|ek+1 | ≤ η
m∏
i=0

|ek−i |t i ,

holds, then the R-order of convergence of the iterative method φ is at least p , where p is the unique positive root of the
equation

pm+1 −
m∑
i=0

t i p
m−i = 0.

To estimate the roots of f (x ) = 0, we define the following method, denoted by KM,
xk+1 = xk − g (xk )

g [2xk − xk−1, xk−1 ]
, k = 0, 1, 2, . . .

where g (x ) = f (x )
f ′ (x ) .

Theorem 2 Let f : Ò −→ Ò be a sufficiently differentiable function in an neighbourhood of α which we denote by D ⊂ Ò

such that α is a multiple root of f (x ) = 0with unknown multiplicitym ∈ Î− {1}. Then, taking an initial estimation x0 close
enough to α , the sequence of iterates {xk } generated by method KM converges to α with order 2, and the error equation is:

ek+1 =

(
−1
m

C1e
2
k +

(m + 1)C 2
1 − 2mC2

m2

(
−5e3k + 2e2k ek−1 − ek e

2
k−1

))
+O4 (ek , ek−1),

being Cj =
m!

(m + j )!
f (m+j ) (α)
f (m) (α)

for j = 2, 3, . . . and where O4 denotes all terms for which the sum of the exponents of ek
and ek−1 is at least 4.

Proof We first obtain the Taylor expansion of f (xk ) around α where ek = xk − α :

f (xk ) =
f (m) (α)

m!
(
emk + C1e

m+1
k + C2e

m+2
k + C3e

m+3
k

)
+O (em+4

k ) .

Calculating the derivative of the above expression we obtain

f ′ (xk ) =
f (m) (α)

m!
(
mem−1

k + (m + 1)C1e
m
k + (m + 2)C2e

m+1
k + (m + 3)C3e

m+2
k

)
+O (em+3

k ) .

Then, from the above expressions, we calculate g (xk )

g (xk ) =
f (xk )
f ′ (xk )

=
1

m

(
ek − 1

m
C1e

2
k +

(m + 1)C 2
1 − 2mC2

m2
e3k

)
+O (e4k ) .
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In an equivalent way we obtain the following expressions for g (xk−1) and g (2xk − xk−1)

g (xk1 ) =
f (xk−1)
f ′ (xk−1)

=
1

m

(
ek−1 −

1

m
C1e

2
k−1 +

(m + 1)C 2
1 − 2mC2

m2
e3k−1

)
+O (e4k−1),

g (2xk − xk−1) =
f (2xk − xk−1)
f ′ (2xk − xk−1)

=
1

m

(
2ek − ek−1 −

1

m
C1 (2ek − ek−1)2 +

(m + 1)C 2
1 − 2mC2

m2
(2ek − ek−1)3

)
+O4 (ek , ek−1),

with ek−1 = xk−1 − α .
From the above relations, we obtain

g [2xk − xk−1, xk−1 ] =
g (2xk − xk−1) − g (xk−1)

2(xk − xk−1)

=

(
2ek − 2ek−1 −

1

m
C1

(
(2ek − ek−1)2 − e2

k−1

)
+

(m + 1)C 2
1 − 2mC2

m2

(
(2ek − ek−1)3 − e3

k−1

))
+O (e4

k
)

2m (ek − ek−1)

=
1

m

(
1 − 2

m
C1ek +

(m + 1)C 2
1 − 2mC2

m2

(
4e2k − 2ek ek−1 + e2k−1

))
+O3 (ek , ek−1) .

Thus, applying the above relationship, the following error equation is obtained:
xk+1 − α = xk − α − g (xk )

g [2xk − xk−1, xk−1 ]

= ek −

(
ek − 1

m
C1e

2
k
+

(m + 1)C 2
1 − 2mC2

m2
e3
k

)
+O (e4

k
)(

1 − 2

m
C1ek +

(m + 1)C 2
1 − 2mC2

m2

(
4e2

k
− 2ek ek−1 + e2

k−1

))
+O3 (ek , ek−1)

=
−1
m

C1e
2
k +

(m + 1)C 2
1 − 2mC2

m2

(
−e3k − ek

(
4e2k − 2ek ek−1 + e2k−1

))
+O4 (ek , ek−1)

=
−1
m

C1e
2
k +

(m + 1)C 2
1 − 2mC2

m2

(
−5e3k + 2e2k ek−1 − ek e

2
k−1

)
+O4 (ek , ek−1) .

We have some different possibilities for the behaviour of ek+1 respect to ek and ek−1.
By the previous expression, we only are going to take into account if the behaviour is like e2

k
or ek e2k−1, because

e3
k
and e2

k
ek−1 converge faster to 0 than e2

k
.

Then,

ek+1 ∼ −1
m

C1e
2
k −

(m + 1)C 2
1 − 2mC2

m2
ek e

2
k−1 .

• If ek+1 ∼ e2
k
, then the order of convergence is 2.

• If we assume that ek+1 ∼ ek e
2
k−1. Then, we assume that the method has R -order p , that means,

ek+1 ∼ e
p
k
.
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In the same way ek ∼ e
p
k−1. From the above relations, we get that

ek+1 ∼ e
p2

k−1 .

Then, the error equation is
ek+1 ∼ ek e

2
k−1 ∼ e

p+2
k−1 .

By equating the exponents of ek−1 of the above relations, we obtain the following polynomial p2 − p − 2 = 0,
whose only positive root is p = 2, then, by Theorem 1, the order of convergence of the method is 2.

□

2 | DYNAMICAL ANALYSIS

In this section, we review some of the theoretical concepts to perform the dynamical analysis of an iterative method
with memory, since we later perform a dynamical analysis of the proposed method for some family of functions.

The standard form of an iterative method with memory that uses only two previous iterations to calculate the
next one is:

xk+1 = φ (xk−1, xk ), k ≥ 1,

being x0 and x1 the initial estimations. A function defined from Ò2 to Ò cannot have fixed points. Therefore, an
auxiliary vectorial function O is defined by means of O (xk−1, xk ) = (xk , xk+1) = (xk ,φ (xk−1, xk )), k = 1, 2, . . .

Thus, the discrete dynamical system O : Ò2 → Ò2 is defined as
O (x̄ ) = O (z , x ) = (x ,φ (z , x )),

where φ is the operator of the iterative scheme with memory.
Then, a point (z , x ) is a fixed point of O if z = x and x = φ (z , x ) . If a fixed point (z , x ) of operator O does not verify
that f (x ) = 0, it is called strange fixed point.

In [11], the stability of a fixed point is defined in the following result:
Theorem 3 Let O from Ò2 to Ò2 be a sufficiently differentiable function. Assume that x̄ is a fixed point. Let λ1 and λ2 be
the eigenvalues of the Jacobian matrix of O evaluated at x̄ . Then,
• If all the eigenvalues satisfy |λj | < 1, then x̄ is attracting.
• If one eigenvalue λi satisfy |λi | > 1, then x̄ is unstable, that is, repelling or saddle.
• If all the eigenvalues satisfy |λj | > 1, then x̄ is repelling.
Moreover, if all the eigenvalues are equal to zero the fixed point is superattracting.

A critical point ȳ of operator O satisfies that all the eigenvalues of the Jacobian matrix evaluated at ȳ are 0. All
superattractor fixed points are critical points.
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The basin of attraction of a fixed point x ∗, is defined as the set of pre-images of any order such that
A(x ∗) = {y ∈ Òn : O r (y ) → x ∗, r → ∞}.

We study the stability of the fixed points of the rational operator obtained when the methods is applied on the
polynomial pm (x ) = (x + 1) (x − 1)m , when m is a positive integer greater than 1. Now, we calculate the auxiliar
vectorial operator where z = xk−1 and x = xk

Op (z , x ) =
©­­«x , x −

(
x2 − 1

)
(mz +m + z − 1) (2mx −mz +m + 2x − z − 1)

(mx +m + x − 1) (m (z + 1) (2x − z + 1) + (z − 1) (2x − z − 1))
ª®®¬ .

Theorem 4 The fixed points of the operator Op (z , x ) are the roots of the polynomial pm (x ) , that is, (1, 1) and (−1,−1) ,

both fixed points have superattractor character, and an unestable strange fixed point
(
1 −m

1 +m
,
1 −m

1 +m

)
.

Proof To calculate the fixed points we simultaneously do z = x and Op (z , x ) = (x , x ) . First, we compute Op (x , x )

Op (x , x ) =
(
x ,

m (x + 1)2 − (x − 1)2

m (x + 1)2 + (x − 1)2

)
.

By equating Op (x , x ) = (x , x ) , we obtain that the fixed points satisfy:
m (x + 1)2 − (x − 1)2

m (x + 1)2 + (x − 1)2
= x ,

m (x + 1)2 − (x − 1)2 = xm (x + 1)2 + x (x − 1)2,

m (1 − x ) (x + 1)2 = (x + 1) (x − 1)2 .

If x = 1 or x = −1, then it is obvious that the above equation is satisfied.
Suppose that x , 1 and x , −1. Then, the above equation can be rewritten as:

−m (x − 1) (x + 1)2 = (x + 1) (x − 1)2,

−m (x + 1) = x − 1,

(−m − 1)x = −1 +m,

x =
−1 +m

−m − 1
=

1 −m

1 +m
.

So, we obtain two fixed point from the roots of the equation, that is, z = x = 1 and z = x = −1, and one strange fixed
point when z = x =

1 −m

1 +m
.

We are going to see below that the fixed points coming from the roots are superattractors. First, we have to
calculate the Jacobian matrix Op′ (z , x ) .

Op′ (z , x ) =
(

0 1

dOpz (z , x ) dOpx (z , x )

)
,
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where

dOpz (z , x ) = −
8m (m + 1)

(
x2 − 1

)
(x − z )

(mx +m + x − 1) (m (z + 1) (2x − z + 1) + (z − 1) (2x − z − 1))2
,

dOpx (z , x ) = −
4m3 (z + 1)

(
x2 (5z + 1) + x

(
−4z 2 + 2z − 2

)
+ z 3 − z 2 − 2

)
+ 8m2

(
x2

(
5z 2 − 3

)
− 4xz 3 + z 4 − z 2 + 2

)
(mx +m + x − 1)2 (m (z + 1) (2x − z + 1) + (z − 1) (2x − z − 1))2

−
4m (z − 1)

(
x2 (5z − 1) − 2x

(
2z 2 + z + 1

)
+ z 3 + z 2 + 2

)
(mx +m + x − 1)2 (m (z + 1) (2x − z + 1) + (z − 1) (2x − z − 1))2

.

The eigenvalues of Op′ (x , x ) are 0 and −
8m

(
x2 − 1

)
(
m (x + 1)2 + (x − 1)2

)2 .
Then, both eigenvalues are 0 when x2 − 1 = 0, that is, x = 1 or x = −1, so we find that the fixed points coming from
the roots are superattractor fixed points.

In the case x =
1 −m

1 +m
, we obtain that the second eigenvalue is 2, so is a point with an unstable character (repulsor

or saddle).
□

Theorem 5 The operator Op (z , x ) does not have free critical points, that is, the operator has only two critical points that
are the superattractor fixed points.

Proof First, we calculate the determinant of Op′ (z , x ) , because when the determinant is 0, it means that at least one
of the eigenvalues is 0.

det(Op′ (z , x )) =
8m (m + 1)

(
x2 − 1

)
(x − z )

(mx +m + x − 1) (m (z + 1) (2x − z + 1) + (z − 1) (2x − z − 1))2
.

By equating that expresion to 0, we obtain 3 types of possible critical points:
• The points (z , x ) where x = −1. The eigenvalues of Op′ (z ,−1) are 0 and − m (1 +m) (1 + z )2

−3 + 2z + z 2 +m (1 + z )2
.

Then, the second eigenvalue is 0 if z = −1. Then, there is only one critical point with this structure which is the
fixed point (−1,−1) .

• The points (z , x ) where x = 1. The eigenvalues of Op′ (z , 1) are 0 and − (1 +m) (−1 + z )2

m ( (z − 1)2 +m (z 2 − 2z − 3))
.

Then, the second eigenvalue is 0 if z = 1. Then, there is only one critical point with this structure which is the
fixed point (1, 1) .

• The points (z , x ) where z = x . The eigenvalues of Op′ (z , z ) are 0 and − 8m (−1 + z 2)
( (−1 + z )2 +m (1 + z )2)2

.
The second eigenvalue is 0 if z = ±1. So, the critical points that verify this structure are the non strange fixed
points, that is, (1, 1) and (−1,−1) .

Then, the operator does not have free critical points.
□

Below we show some real dynamical planes to see the behaviour of the method and the basins of attraction for the
function pm by varying the value of m.
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These planes have been generated by making a mesh of 400 points by 400 points, where each point of the mesh
is considered as the initial iterations of the iterative method, on the abscissa axis we have the iteration x1 and on the
ordinate axis the iteration x0.

If the distance between iterations of the method to one of the roots of the function is less than 10−3, then we say
that the initial point converges to that root. Moreover, this convergence must happen before 100 iterations.

We paint the initial point in different colours according to its convergence. We paint in orange the initial points
that converge to the fixed point 1 and in green the initial points that converge to the fixed point −1. We would also
paint in black those initial points that do not converge to any of the roots, but in this case, that does not happen for
this mesh.

(a) Dynamical plane for m = 1 (b) Dynamical plane for m = 2

(c) Dynamical plane for m = 3 (d) Dynamical plane for m = 4

F IGURE 1 Real dynamical planes

Aswe can see in Figures 1a,1b,1c,1d, if we increase the value ofm , the zone of convergence to the root 1 increases,
which is the root of multiplicity m. As can be seen in all the dynamical planes, all the initial points coming from the
mesh converge to one of the roots. With this study we show what happens with a family of polynomials with one
simple root and one multiple root. Now we perform a dynamical analysis to see what happens when we have two
multiple roots.

The polynomials are fm,n (x ) = (x + 1)n (x − 1)m where m > 1 and n > 1.
Now, we calculate the auxiliar vectorial operator

Of (z , x ) =
©­­«x ,

m2 (x + 1) (z + 1) (2x − z + 1) + 2mn
(
2xz − z 2 − 1

)
− n2 (x − 1) (z − 1) (2x − z − 1)

(m (x + 1) + n (x − 1)) (m (z + 1) (2x − z + 1) + n (z − 1) (2x − z − 1))
ª®®¬ .
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Theorem 6 The fixed points of the operator Of (z , x ) are the roots of the polynomial fm,n (x ) , that is, (1, 1) and (−1,−1) ,
both fixed points have superattractor character, and an unestable strange fixed point that is

( n −m

n +m
,
n −m

n +m

)
.

Proof To calculate the fixed points we simultaneously do z = x and Of (z , x ) = (x , x ) . First, we compute Of (x , x )

Of (x , x ) =
(
x ,

m (x + 1)2 − n (x − 1)2

m (x + 1)2 + n (x − 1)2

)
.

By equating Of (x , x ) = (x , x ) , we obtain that the fixed points are those that are satisfied:
m (x + 1)2 − n (x − 1)2

m (x + 1)2 + n (x − 1)2
= x ,

m (x + 1)2 − n (x − 1)2 = xm (x + 1)2 + xn (x − 1)2,

m (1 − x ) (x + 1)2 = n (x + 1) (x − 1)2 .

If x = 1 or x = −1, then it is obvious that the above equation is satisfied. Suppose that x , 1 and x , −1. Then, the
above equation can be rewritten as:

−m (x − 1) (x + 1)2 = n (x − 1)2,

−m (x + 1) = n (x − 1),

(−m − n)x = −n +m,

x =
−n +m

−m − n
=

n −m

n +m
.

So, we obtain two fixed point from the roots of the equation, that is, z = x = 1 and z = x = −1, and one strange fixed
point when z = x =

n −m

n +m
.

We see below that the fixed points coming from the roots are superattractors. First, we calculate the eigenvalues
of the Jacobian matrix Of ′ (x , x ) , that are 0 and −

8mn
(
z 2 − 1

)
(
m (z + 1)2 + n (z − 1)2

)2 .
Then, both eigenvalues are 0 when x2 − 1 = 0, that is, x = 1 or x = −1, so we find that the fixed points coming from
the roots are superattractor fixed points.

In the case that x =
n −m

n +m
, we obtain that the second eigenvalue is 2, so is a point with an unstable character

(repulsor or saddle).
□

Theorem 7 The operator Of (z , x ) does not have free critical points, that is, the operator has only two critical points that
are the superattractor fixed points.

Proof First, we analyze the determinant of Of ′ (z , x ) , because when the determinant is 0, it means that at least one
of the eigenvalues is 0,

det (Of ′ (z , x )
) 8mn

(
x2 − 1

)
(m + n) (x − z )

(m (x + 1) + n (x − 1)) (m (z + 1) (2x − z + 1) + n (z − 1) (2x − z − 1))2
.

By equating that expresion to 0, we obtain 3 types of possible critical points:
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• The points (z , x ) where x = −1. The eigenvalues of Of ′ (z ,−1) are 0 and − m (z + 1)2 (m + n)
n

(
m (z + 1)2 + n

(
z 2 + 2z − 3

) ) .
Then, the second eigenvalue is 0 if z = −1. Then, there is only one critical point with this structure which is the
fixed point (−1,−1) .

• The points (z , x ) where x = 1. The eigenvalues of Of ′ (z , 1) are 0 and − n (z − 1)2 (m + n)
m

(
m

(
z 2 − 2z − 3

)
+ n (z − 1)2

) .
Then, the second eigenvalue is 0 if z = 1. Then, there is only one critical point with this structure which is the
fixed point (1, 1) .

• The points (z , x ) where z = x . The eigenvalues of Of ′ (z , z ) are 0 and −
8mn

(
z 2 − 1

)
(
m (z + 1)2 + n (z − 1)2

)2 .
The second eigenvalue is 0 if z = ±1. So, the critical points that verify this structure are the non strange fixed
points, that is, (1, 1) and (−1,−1) .
Then, the operator does not have free critical points.

□

Below we show some real dynamical planes to see the behaviour of the method and the basins of attraction for
the function fm,n varying the value of m and the value of n .

These planes have been generated in the same way as the previous dynamical planes, making a mesh of 400
points by 400 points, where each point of the mesh is considered as the initial iteration of the iterative method, in the
abscissa axis we have the iteration x1 and in the ordinate axis the iteration x0. The convergence criteria are the same
as in the previous dynamical planes. Remember that we paint in orange the initial points that converge to the fixed
point 1 and in green the initial points that converge to the fixed point −1.

(a) Dynamical plane for m = 1 and n = 2 (b) Dynamical plane for m = 2 and n = 3

(c) Dynamical plane for m = 2 and n = 4 (d) Dynamical plane for m = 3 and n = 4

F IGURE 2 Real dynamical planes
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(a) Dynamical plane for m = 1 and n = 1 (b) Dynamical plane for m = 2 and n = 2

(c) Dynamical plane for m = 3 and n = 3 (d) Dynamical plane for m = 4 and n = 4

F IGURE 3 Real dynamical planes

As we can see in Figures 2 and 3, if we the value of n is greater than the value of m , the zone of convergence
to the root −1 is greater than the zone of convergence to the root 1. If both values are equal, then the convergence
zones do not change if we increase the multiplicity value.

As can be seen in all the dynamical planes, all the initial points coming from the mesh converge to one of the
roots. With this study we show that the method is stable for that family of polynomials that have two multiple roots.

3 | WITHOUT DERIVATIVES

To estimate the roots of f (x ) = 0 with the KM method we calculate the derivative of f (x ) . In the following iterative
method, which we denote by KMD , we modify the KM method, so that we do not use derivatives in the iterative
expression:

xk+1 = xk − g (xk )
g [2xk − xk−1, xk−1 ]

,

where g (x ) = f (x )
f [x + f (x ), x ] .

Theorem 8 Let f : Ò −→ Ò be a sufficiently differentiable function in an neighbourhood of α which we denote by D ⊂ Ò

such that α is a multiple root of f (x ) = 0with unknown multiplicitym ∈ Î− {1}. Then, taking an initial estimation x0 close
enough to α , the sequence of iterates {xk } generated by the KMD method converges to α with order 2.
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Proof We first obtain the Taylor expansion of f (xk ) around α where ek = xk − α :

f (xk ) =
f (m) (α)

m!
(
emk + C1e

m+1
k

)
+O (em+2

k ) .

being Cj =
m!

(m + j )!
f (m+j ) (α)
f (m) (α)

for j = 2, 3, . . .

In the same way,

f (xk + f (xk )) =
f (m) (α)

m!
(
(ek + f (xk ))m + C1 (ek + f (xk ))m+1

)
+O (em+2

k ) .

Then,

f (xk + f (xk )) − f (xk ) =
f (m) (α)

m!
(
(ek + f (xk ))m − emk + C1

(
(ek + f (xk ))m+1 − em+1

k

))
+O (em+2

k ) .

Using Newton’s binomial and the Taylor expansion of f (xk ) around α we obtain
f (xk + f (xk )) − f (xk )

xk + f (xk ) − xk
=

f (m) (α)
m!

(
mem−1

k + (m + 1)C1e
m
k

)
+O (em+1

k ) .

We then calculate g (xk ) from the above expressions:

g (xk ) =
f (xk )

f [xk + f (xk ), xk ]
=

em
k
+ C1e

m+1
k

+O (em+2
k

)
mem−1

k
+ (m + 1)C1e

m
k
+O (em+1

k
)

=
1

m

(
ek − 1

m
C1e

2
k

)
+O (e3k ) .

In an equivalent way we obtain the following expressions for g (xk−1) and g (2xk − xk−1)

g (xk−1) =
1

m

(
ek−1 −

1

m
C1e

2
k−1

)
+O (e3k−1),

g (2xk − xk−1) =
1

m

(
2ek − ek−1 −

1

m
C1 (2ek − ek−1)2

)
+O3 (ek , ek−1),

with ek−1 = xk−1 − α .
Then, appyling the above relations, we obtain

g [2xk − xk−1, xk−1 ] =
g (2xk − xk−1) − g (xk−1)

2(xk − xk−1)

=

(
2ek − 2ek−1 −

1

m
C1 ( (2ek − ek−1)2 − e2

k−1)
)
+O3 (ek , ek−1)

2m (ek − ek−1)

=
1

m

(
1 − 2

m
C1ek

)
+O2 (ek , ek−1) .
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Thus, the following error equation is obtained
xk+1 − α = xk − α − g (xk )

g [2xk − xk−1, xk−1 ]

= ek −

(
ek − 1

m
C1e

2
k

)
+O (e3

k
)(

1 − 2

m
C1ek

)
+O2 (ek , ek−1)

= ek − 2

m
C1e

2
k + ekO2 (ek , ek−1) − ek + 1

m
C1e

2
k +O (e3k )

= − 1

m
C1e

2
k + ekO2 (ek , ek−1) +O (e3k ) .

We have some different possibilities for the behaviour of ek+1 respect to ek and ek−1.
By the expression, we only are going to take into account if the behaviour is like e2

k
or ek e2k−1, because e3

k
and

e2
k
ek−1 converge faster to 0 than e2

k
.

Then
• If ek+1 ∼ e2

k
, then the order of convergence is 2.

• If we assume that ek+1 ∼ ek e
2
k−1. Then, we assume that the method has R -order p , that means,

ek+1 ∼ Dk ,pe
p
k
.

At the same time, ek ∼ e
p
k−1, then we obtain that

ek+1 ∼ e
p2

k−1 .

From the error equation and the last relation, we have
ek+1 ∼ ek e

2
k−1 ∼ e

p+2
k−1 .

By equating the exponents of ek−1 of the last two equation, we obtain the following polynomial p2 − p − 2 = 0,
whose only positive root is p = 2, then the order of convergence of the method is 2.

□

4 | NUMERICAL EXPERIMENTS

We use Matlab R2020b with arithmetic precision of 500 digits for the computational calculations. As a stopping
criterion we use that the absolute value of the function at the last iteration is less than a tolerance of 10−25. We also
use a maximum of 100 iterations as a stopping criterion. We compare the proposed methods with the method coming
from [4], which we denote by gTM.

The numerical results we are going to compare the methods in the different examples are:
• the approximation obtained,
• the norm of the equation evaluated in that approximation,
• the norm of the distance between the last two approximations,
• the number of iterations necessary to satisfy the required tolerance,
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• the computational time and the approximate computational convergence order (ACOC), defined by Cordero and
Torregrosa in [5], which has the following expression

p ≈ ACOC =
ln( |xk+1 − xk |/ |xk − xk−1 |)ln( |xk − xk−1 |/ |xk−1 − xk−2 |)

.

We are going to solve two nonlinear equations:
• The equation f1 (x ) = (x3 − 1)4 = 0, which has three roots with multiplicity four.
• In [14], they considered the isothermal CSTR problem, with the following equation for the transfer function of

the reactor: KC2.98(x + 2.25)/( (x + 1.45) (x + 2.85)2 (x + 4.35)) = −1, where KC is the gain of the proportional
controller. If we choose KC = 0, the nonlinear equation to solve is the following one:

f2 (x ) = x4 + 11.50x3 + 47.49x2 + 86.0325x + 51.23266875 = 0.

There is one multiple root with multiplicity 2.
TABLE 1 Results for equation f1 (x ) = 0.

x0 x−1 x−2 ∥xk+1 − xk ∥ ∥g (xk+1) ∥ Iter ACOC
KM 0.5 0.1 1.5776e-13 0 8 1.9994
KMD 0.5 0.1 6.1173e-14 0 6 1.8434
gTM 0.5 0.1 -0.1 1.7764e-15 0 42 1.5850

As we can see in Table 1, all the methods obtain good results for the chosen initial points. The approximate
computational convergence order coincides with the theoretical one. What is interesting from the table is that, for
the initial points chosen, we see that the KMD method performs less iterations to verify the stopping criterion than
KM , but both perform far less iterations than the gTM method.

TABLE 2 Results for equation f2 (x ) = 0.
x0 x−1 x−2 ∥xk+1 − xk ∥ ∥g (xk+1) ∥ Iter ACOC

KM -3 -3.25 1.9884e-09 1.6566e-30 4 2.2725
KMD -3 -3.25 2.4269e-08 2.0293e-29 4 2.0649
gTM -3 -3.25 -3.5 2.5116e-11 1.0354e-29 5 1.7914

As we can see in Table 2, all the methods obtain good results for the chosen initial points. The approximate com-
putational convergence order coincides with the theoretical one and the number of iterations to verify the stopping
criterion is almost the same for all methods.

5 | CONCLUSIONS

In this work, we have modified Kurchatov’s method to make it applicable to obtaining multiple roots while maintaining
the quadratic order of convergence of Kurchatov’s method.
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We have modified the method so that it does not use the multiplicity of the solution in its expression, so that it
is not necessary to know this value before applying the iterative method.

We have performed the dynamical analysis of the iterative method for two family of functions, one of the poly-
nomials with one simple root and one multiple root, and another with two multiple roots, showing that the method is
stable in both cases.

We also modify the method we propose to obtain the KMD method, which is a method with free memory
of derivatives, with the same characteristics as the KM method, that is, it can be applied to obtain solutions with
multiplicity greater than one, and does not involve the value of this multiplicity in its iterative expression.
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