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Abstract

Nowadays, with the development of the times, network structure analysis has become a hot issue in some fields. The eigenvalues
of normalized Laplacian are very important for some network structure properties. Let Qn be octagonal-quadrilateral networks
composed of n octagons and n squares and let Q2n be the strong prism of Qn. The strong product of a complete graph of
order 2 and a complete graph of order G forms a strong prism of the graph G. In this paper, the decomposition theorem of the
associated matrix is used to completely investigate the normalized Laplacian spectrum of Qn2. In addition, we establish exact

formulas for the degree-Kirchhoff index and the number of spanning trees of Qn2.
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1. Introduction

We exclusively consider finite, simple, and connected graphs in this study. Assume that the graph
G = (Vg, Eg) has the vertex set Vg = {vg1, Vg2, -+, Vgn } and the edge set Eq = {eg1, €42, -, €gm}. More
fundamental graph notations, one can be referred to [1]. We write the adjacent matrix of G, whose entry
is designated by a;;, as A(G), if the vertices v; and v; are adjacent, the (4, j)-entry equals 1; otherwise,
it equals zero. Let Lg = Dg — Ag represent the graph G’scombinatorial Laplacian matrix, where D¢
is the vertex degrees diagonal matrix of order n. A few years ago, the concept of the normalized Lapla-
cian matrix was introduced by Chung [2] and defined as £(G) = I — D(G)? (D(G) " A(G))D(G) "z =
D(G)~2L(G)D(G) "z, whose (p, q)th-entry of £(G) can be clearly represented as

1, m=n;
(L(G)mn =% — dl —, M #n, vy is adjacent to vp; (1.1)
0, otherwise.

The standard separation between any two vertices, like v; and v; is what is meant by the conventional
distance d;; = dg(v;,v;), which is defined as the graph G’s vertex v; and vertex v;’s smallest length.
Wiener [3,4] studied the boiling points of paraffin wax and put forward the concept of wiener index for
the first time in 1947, which was expressed as W (&), which is the sum of distances among all pairs of
vertices in G, that is

W(G) =Y d.
i<j
Wiener index is the earliest topological exponent of chemical formula configuration. Due to the success
of Wiener’s index, other topological indexes have been proposed successively, and new developments have
been made on the basis of Wiener’s index see [5-9]. Then, in anticipation of a further study of topology,
researchers looked upon vertex v;’s degree d;, thereby introducing the Gutman index [10] of the simple
graph G and it expressed as

1<J

E-mail address: liujiabaoad@163.com, wangkang199804@163.com, zhengyaqian168@163.com.
* Corresponding author.



An index of topology based on distance is called the Kirchhoff index. Assume that any two vertices
v; and v; in any connected graph G have a resistance distance is represented by the symbol r;;. The
Kirchhoff index of the graph G is similar to the Wiener index in that its definition is that it is the sum
of all vertices’ resistance distances, namely

Kf(G)=> rij.

1<j

Chen and Zhang [14] introduced the multiplicative degree-Kirchhoff index in 2007., that is

Kf(G) = didjr;.

1<J

Kirchhoff index and multiplication-Kirchhoff index have attracted wide attention in the world be-
cause of their outstanding contributions in the academic field and their practical applications in physics,
chemistry and other fields.

The spanning tree, also known as complexity and typically represented by the symbol 7(G), is the
quantity of subgraphs that each include all of the vertices in the graph G. Also, all subgraphs in a graph G
must be trees. This is a significant network stability indicator. You can check and the references [15-18]
there for further information on some other topics relating to the number of spanning trees.

Figure 1: Graph @Q,, with labeled vertices.

With the rapid development of science and the effective application of topology in practice, topological
theory has gradually emerged in the eyes of the world. Many adjacent octagonal and quadrilateral rings
make up octagonal-quadrilateral networks, and each quadrangle only has a maximum of two non-adjacent
octagons. The issue of calculating the phenylene Wiener index has been resolved by Gutman [19]. Chen
and Zhang [20] came up with an explicit expression for the expected value of the Wiener index of a
random phenylene chain. Additionally, Liu and Zheng [21] discovered the degree-Kirchhoff index and the
number of spanning trees of the dicyclobutadieno derivative of [n]phenylenes denoted by L.

We denote the strong product of the two automorphic graphs S and K with V(S) x V(K) by using
the notation S X K. Readers can refer to [22] for more relevant or in-depth definitions and concepts. In
recent times, The resistance distance of the strong prism of the graphs P,, and C,, was utilized Pan et
al. [23] to calculate the kirchhoff index. Li et al. [24] performed a similar calculation using the strong
prism of the star S,,’s created graphs’ resistance distance-based properties. After much consideration, we
achieve the strong prism of @,, in this study, driven by [22-25]. As plain as the nose on your face, Q2 is
the strong prism of Q,,, as seen in Figure 2. It is possible to firmly believe that |V (Q?)| = 16n + 4 and
|E(Q?)| = 48n + 6.

In the paper, we focus on the strong prism of the octagonal-quadrilateral networks. Based on the
graph Q2 with n > 1, we may construct the following. The remainder of the essay is structured as follows:



Figure 2: Graph Q? with labeled vertices.

In Section 2, we summarize the most recent research material pertinent to this work and suggest certain
examples, ideas, and lemmas that should be presented in it. In Section 3, the normalized Laplacian
spectrum is obtained first, and then the explicit closed formula for the multiplicative degree-Kirchhoff
index and the complexity of Q2 is determined. In Section 4, we conclude the thesis.

2. Preliminaries

In this section, let @, be the octagonal-quadrilateral networks and the strong prism of the graph @,
is the graph @2, where Figures 1 and 2 illustrate, respectively, @, and Q2. And ®4(z) = det(x1, — A)
denotes the matrix A’s characteristic polynomial.

It is worth noticing that m = (1,1')(2,2')--- ((4n + 1), (4n 4+ 1)’) is an automorphism. Let Vi =
{ula U2, Udn41, V1, ’U4n+1}7 Vo= {ullvué) T ’uiln-i-lvvi? to 7U§ln+1}’ |V(L$L)| = 16n+4 and |E(L%)|
=48n+6. Therefore, we can express the normalized Laplacian matrix in block matrix formthat is

o _ [ Lvivi Lwviv,
ﬁ(Ln) N ( LV2V1 £V2V2 ’

in which
£V1V1 = £V2V2) ‘CV1V2 = ’CV2V1 .
Let
%1871-&-2 %18714-2
\/5 8n+2 \/5 8n+2
then

2 ! ﬁA 0

where L4(L2) = Ly,v, + Lvyv, and Ls(L2) = Lv,v, — Lv,v,- Keep in mind that W’ is W transposed.
Lemma 2.1. [26] Suppose L4 and Lg are established as previously stated. Then
L, (@) = Pra(@) Prs(@).

Chen and Zhang [14] determined that the normalized Laplacian spectrum can be used to obtain its
corresponding multiplicative degree-Kirchhoff index.

Lemma 2.2, Let o1 < 09 < -+ < 0, represent the L(G)’s eigenvalues. Following that, the multiplicative
degree-Kirchhoff index could be represented as



Lemma 2.3. [2] The complexity of G is also known as the quantity of spanning trees in G. Consequently,
G'’s complezity is

3. Main Results

In this section, we're devoted to talking about how can we use the normalized Laplacian matrix
to get an explicit analytical expression for the multiplicative Kirchhoff index. After that, we have the

complexity of L2. Afterward, we derive matrices of order 8n + 2 using Eq. (1.1), that are

Ly, v,
1 -1 0 0 0o -+ 0 0 0 0
- 1 -i 0 0 0 0 0 0 0
0o -i 1 0 0 0 0 0 0 0
: . : : 21 : : 21 :
0 0 0 11 2 00 0 -1 o1
|00 0 v 0 0 0 0 -1
-+ 0 0 0 0 1 -1 0 0 0
0 0 0 0 o -+ 1 =1 0 0
0 0 0 0 0 0o -1 1 0 0
: . . 21 : : . . . 21
0 0 0 -1 o1 0o 0 0 11 N
0 0 0 0 -+ 0 0 0 v
and
£V1V2
—% —% 0 0 0 -1 0 0 0 0
5 % —% 0 0 0 0 0 0 0
0 -z -z 0 0 0o 0 0 0 0
: . . :1 :1 : . . :1 :
0 0 0 T TUm 0O 0 0 -1 01
_ 0 0 0 -4 -+ 0 0 0 0 -3
-1 0 0 0 o - -1 0 0 0
> ? 1 1
0 0 0 0 o -i i -1 0 0
0 0 0 o o o -I -1 0 0
: : . 21 : : : . 31 31
0 0 0 -1 01 0 0 0 7 e
0 0 0 0 -1 0 0 o0 —= 3

Owing to L4 = Lv,v,(L2) + Ly, (L2) and Ls = Lyv,v, (L2) — Ly,v,(L2), we have 8n + 2 order




matrices. It’s possible to be informed that

2 -1 0 0 o -+ o o - 0 0

-1 2 -1 0 0 o 0 0 - 0 0

0o -i 2 0 0 0o 0 0 - 0

. . : 3 21 . : .

0 0 0 Ty 0 0 0 -3 0

0 0 0 -7 % 0 0 0 0 —%

ﬁA = 2 1 V35 . 2 1 ’

-+ 0 0 0 0 2 -1 0 0 0

0 0 0 0 0o -+ £ -1 0 0

0 0 0 0 0o 0 —i 2 0 0

0 0 0 -3 0 0 0 0 g —ﬁ
1 1

0 0 0 0 -+ 0 0 0 v

and
Lo = diag2,8 088 68666688 6856
STy T Ty s T 5T

Therefore, by understanding the Lemma 2.1, we discover that the £4 and Lg eigenvalues make up the
L2 normalized Laplacian spectrum. Determining that g and %, the Lg’s eigenvalues, have multiplicities
of (4n +4) and (4n — 2), respectively. Then, in order to determine the graph invariants of Q2%, we must
obtain the eigenvalues of L4. Let

2z 1 0 0 0 0 0 0
PR L 0 0 0 0 0
-5 g1 _2g 1
0 -1 STy o1 0 0 0
0 0 —u= 7T 0 0 0
A - 0 0 0 -1 3 0 0 0 ,

0 0 0 0 0 : - 0
0 0 0 0 0 -1 { ——L

35 71 gﬁ
00 0 0 0 0 V35 5 (An+1)x (4n+1)

and
1 1 1 1

1
C= diag(_g70707 _?7 _?, c '707 _?, —3)7

which are 4n + 1 order matrices.
The following block matrix would thus serve as a representation of %L A

1 A C
2£A:<C A)'

P ( \%Mnﬂ %I4n+1 >

Suppose that

1 1

\/§I4n+1 - \/§I4n+1
is the block matrix. Hence, one has

1 A+C 0
K(CA)K’:<—5 A—C)'



Let P=A4+C and Q = A— C. Then

-1 0 0 0 0 0 0
-+ 2 i 0 0 0 0 0
_1 2 S 0 0 0
0 5 5 gﬁ
0 0 —-——4 2 -1 0 0 0
V35 71 27
P _ 0 0 0 -1 2 0 0 0 ’
0o 0 0 0 0 2 -2 0
0 0 0 0 0 _ L [ S
Vs T {3
0 0 0 0 0 0 V3 5 (An+1)x (4n+1)
and
3 -+ 0 0 0 0 0 0
-+ 2 -1 0 0 0 0 0
1 2 S
0 - 3 e (1) 0 0 0
0 0 -= 7 3 0 0 0
Q = : : : : : : ’
0 0 0 0 0 : & 0
0 0 0 0 0 _ 1 4 1
Vs T ¥es
0 0 0 0 0 0 T V35 5 (4n+1)x (4n+1)

Lemma 2.1 makes it simple to prove that the eigenvalues of %E A are equal to the eigenvalues of S
and K. Assuming that o; and ; (4,5 = 1,2,--- ,2n + 1) are, respectively, S and K’s eigenvalues, with
01 <09 < 03< - < 0upt1, 61 <62 <3< < gupy1 - We verify o3 > 0 and ¢ > 0 and it is clear
that the normalized Laplacian spectrum of L2 is {201, 202, -+, 204n+1, 261, 262, **+, 264n+1}. Keep
in mind that the following, |E(L2)| = 48n + 6, is a direct consequence of Lemma 2.2.

Lemma 3.1. Consider Q2 to be the strong prism of the octagonal-quadrilateral networks. Then

5 7 q4ntl 14n+1 1
Kf*(L2) =2(48n+6) | (4n +4)= + (4n — 2)< + = = 2
FR(L3) = 2(48n + )((n+ )5+ (4n—2)3 2; j_l%')’ (3:2)
as desired.
The computations of Z4n+1 L will be our focus in the sentences that follow.

T4

Lemma 3.2. Suppose o;(i = 1,2,--- ,4n + 1) is defined as stated above. one has

S 1 406n® 4 743n* 4 299n 4105
o 16n + 2 '

Proof. Suppose that ®(S) = 24" 4a1 24"+ +ag,2? +agn 17 = 2(@ T a1 24+ Fagnr+agni).
Then 09,03, ,04n+1 satisfy the equation below:

4 1 4
e a4 4 aun + agngr =0,

and we discover that the following equation’s roots are -+, = ... 1
o2’ 03 T4n+1

gt + agn_ 12" T+t ax+1=0.



Thus according Vieta’s Theorem, one has

4n+1i _ (—1)4’”710447171 (3 3)
i—2 ag; (—1)4”a4n ' '

We consider S; and set s; := det S; for 1 < i < 4n. We should discover the s; equation, which may

be used to calculate (—1)*"ay, and (—1)*"~'ay, ;. Then, one has
1 1 1 1 1 1 1 1
YT T oy T s M T Ry P T e125” 0 T 30625° 7 1531257 0 1071875
and
Wa; = FWai—1 — 3511)41 2, 1 <@ <m;

|| xmo

Wiyl 7w4i - w1, 0<i<n—1;
1 - )
Wiita = FWaip1 — 35Wai, 0 < i <m—1;

2 1 : .
Wyit3 = FWait2 — 35 Wait1, 0 <@ <n—1;

These generic formulas can be obtained by doing the direct computation shown below. One follows that

w4i:% (1215),1§i§n;
w41-+1:% (1225), OgZSTL*l, (34)
Wyi42 = % (1225) 9 <’LS'I’L— 17

1 ; .
Wai+3 = 135 ° (1225)29 O0<i<n-—1

On the other hand, take into account the i-th order primary submatrix U; of P, which is made up of

the last ¢ rows and columns, ¢ = 1,2,--- ;4n. Let u; = det U;. Then
1 1 1 1 1 1 1
U1 = —, U9 = —, U3 = —/, Uy = —, U = —, Ug = —., U7 = —/—m8, Ug = —M
YT P T35 T ars YT 8Ty P 61257 0 42875 C 2143757 ° 1071875
and
Uy = §u41 - 25U41-727 1<i<n;
Ugip1 = 2Ug; — gztiai—1, 0 <i<n—1;

2 1 , i
Ugit2 = FUsi+1 — z5U4i, 0 <7 <n—1;

2 1 -
Ugits = FU4i+2 — 35U4i41, 0 <P <n—1

These generic formulas could well be calculated explicitly and appear as follows. Then we have

ug =3 () 1<i<m

Win = 3 () 07 <0 1 65

Ugitr = 35 - (1955) 0<i<n—1;

Ugivs = 1o (1355) 0<i<n—1.
We will move on to two assertions in terms of (—1)*"ay, and (—1)*""lay, 1 expressions O
Fact 3.3

112n+14, 1 \n
(10 aan = = (5555)"



Proof. Since S is a left-right symmetric matrix and the number (—1)*"ay,, has (4n)-row and (4n)-column
and reflects the total number of S’s primary minors, we may obtain

4dn+1 4dn+1

An+1
(-D)"ay, = Z det L 4[i] Z det( 0 S4'n,+1 1 ) Z Si—1° Sdnt1—is (3.6)

where
liv1i41 -+~ 0 0
Sint1-i = 0 ; Y
e 4n,;1n _E
0 e - \/ﬁ l4n+1,4n+1
By Eqgs.(3.4) and (3.5), we have
n—1
()" a4n = 2wan + ZUM k—1)+3 * Us(n—k)+1 + Z Wak - Ua(n—k)+1
k=1 k=1
n—1 n—1
+ Z Wak+1 " U3(n—k-1)+3 T Z Wak+2 * Ug(n—k—1)+2
k=0 k=0

7 0 1\" n 1 \!=n  49(n—1) ; 1 \n»
- 25 () () (2)
5 \1225 625 \1225 25 1225

n 1 \1-m n 1 \1-n
tim (om) e ()
112n+14, 1 \»
B 25 (T%) '
as desired. 0

Fact 3.4

1 40613 + 74302 +299n + 105 1 1 \»
(~1)*" a1 = (4555)

4375 1225

Proof. Observing that (—1)1""!ay, ; is the product of all main minors of P with 4n — 1 rows and
columns, we have

4n—1 Wi—l 0 0
(D" g, = Z 0 Z 0/],1<i<j<4n+1,
1<i<j 0 0 U
where
lit1,i41 0
7z = : :
0 T PR
and
litij41 -+ 0 0
U — : 3
0 e l4n,4n _ﬁ
0 e —\/% lan+1,4n+1



Note that

4n—+1 4n+1
(—1)4”71a4n,1 = Z det Si,1 -det Z - det S4n+1fj = Z det Z - Si—1 " S4n4+1—j- (37)
1<i<y 1<i<yj

By Eq. (3.6), we are aware that the values of ¢ and j affect how det Z turns out. The following cases
can then be categorized.
Case 1. i =4sand j =4t for 1 <s <t <n,and

det Z7 =

2 1
7 T35 0
RS TE S |
NG 5
1 2
0 —5 5,
0 0~
0 0 0
0 0 0

4 1 \t-s—1
1775(“5)(1225) :

\m\ﬁ‘ o o
w —-
ot

o0 -

Case 2. i=4sand j=4t+1for1 <s<t<n-—1,and

det Z7 =

2 1
7 RVES 0
a0y _1
Vs 5 5
1 2
0 ~5 5,
0 0 -7
0 0 0
0 0 0

[4(t — ) +1] (Tl%)H,

\”Mﬁ‘ o o
w —-
ot

Case 3. i=4sand j=4t+2for 1 <s<t<n-—1, and

det Z7 =

2 _ 1 0

L

V35 5 5

1 2

0 ~5 5,
0 0 -7

0 0 0

0 0 0

o O O O

ST I
=

o O O O ﬁ‘oﬂwn-oooo
OJP—‘
ot

NIICERE
~|—=

o O O O

SIS
[SE

o O O O
=~ o O O O

o ..
=

w
28

(4t—4s—1)

(4t—4s)

(4t—4s+1)



Case 4. i=4sand j=4t+3for 1 <s<t<n-—1, and

det Z =

Case 5. 1 = 4s and

det Z7 =

2 1
2 - 0 0
_L ﬁ _1 0
V35 5 5
A S S
0 - ¥
V35 7
0 0 0 0
0 0 0 0
1 1 t—s
= —(4t—-4 (7) )
35 s T3\ 1a25
j=4n+1for 1 <s<n,and
2 1
2 _ L 0 0
_L \,{ﬁ _1 0
735 5 5
T S R
0 0 __1 é/%
V35 7
0 0 0 0
0 0 0 0

= (dn—4s+1) (L)nis,

Case 6. i =4s+1

det Z

det Zg

1225

and j =4t for 0 < s <t <mn, and

2
i3 0 0
_1 2 —L
05 ,l ﬁ _1
V35 B N
=10 0 - 7
0 0 0 0
0 0 0 0

1

Liat—as -1 e
— (4t —4s—1)(— .
25 y )(1225)

Case 7. i=4s+land j=4t+1for0<s<t<n-—1, and

A
ST N T

[ ﬁ _1

v T T

=0 0 -7 7
0 0 0 0

0 0 0 0

10

o o oo
[
N O O O O
ﬁ‘ g e O O O O ool
W)l wt
(o3

o O ©oO o

o O OO

wwﬁ‘
[X) Ll
&

o O O O

~I

cnh\ﬁ‘ e
w -
&

o O O O

o O oo

(4t—45+2)

w
28

(4t—4s)

(4t—4s—2)

(4t—4s—1)



Case 8. i=4ds+land j=4t+2for0<s<t<n-—1, and

det Zg

det Z

Case 10. 1 =4s+1

det Z

Case 11. 1 = 4s+ 2

det Zg

2 1
2 — 0 0 0 0
_1 2 1 0 0 0
> 51 5/% 1
_ |0 0 -1 2 0 0
0 0 0 0 -2 }/%
0 0 0 0 —% 2
35 5
4 4 1 t—s
= (- 8+1)(1225) '
Case 9. i=4s+1land j=4t+3for0<s<t<n-—1, and
2 1
2 - 0 0 0 0
_1 2 1 0 0 0
5 5 \{g
0 %% F -1 0 0
35 7 7
_ | o 0 -3 2 0 0
0 0 0 o0 2 L
7 é/ﬁ
1
0 0 0 0 — = £
1 1 t—s
- g(415—45+2)(—1225) .
and j=4n+1for 0 <s<n-—1, and
2 1
2 -1 0 0 0 0
1 2 __1L 0 0
5 5 >/g
0 —% 2 -1 0 0
35 7 7
_ | o 0 -3 2 0 0
0 0 0 0 2 _b/%
0 0 0 0 —% 2
35 7
4 1 n—s—1
- %(”_8)<1225) :
and j =4t for 0 < s <t <n, and
2 1
2 G 0 0 0 0
__1 2 _1 0 0 0
\/% 71 27 1
0 —3 2 — = 0 0
= 0 0 -——= 2 0 0
0 0 0 0 2z -1
0 0 0 0 -1 2
1 1 t—s—1
- 7(4t—4s+2)<ﬁ>

11

(4t—4s)

(4t—4s+1)

(4t—4s—1)

(4s—4t—3)



Case 12. i=4s+2and j=4t+1for0<s<t<n-—1, and

det Z

det Z

det Z

det Z

2 1
im0 0 0 0
_ 1 2 _1 0 0 0
V35 7 7
R e TN
gﬁ
0 0 —% = 0 0
35 5
0 0 0 0 2 %=
0 0 0 0 T
V35 7 (4t—4s—2)
1 1 \t—s—1
354t — s - 1)(1225> '
Case 13. i=4s+2and j=4t+2for0<s<t<n-—1, and
2 1
oy 0 0 0 0
v A -1 0 0 0
35 71 27 1
0 0 —% 2 0 0
35 5
: : : : 2 Y
0 0 0 0 77
0 0 0 0 77 lat—4s—1)
4 1 t—s—1
275@_5)(1225) ‘
Case 14. i =4s+2and j=4t+3for0<s<t<n-—1, and
2 1
iy 0 0 0 0
_ 1 2 _1 0 0 0
V35 71 27 1
O A A 0 0
0 0 —7= oz 0 0
0 0 0 0 P %=
0 0 0 0 BPT
V35 5 (4t—4s)
1 t—s
At —ds+1 (7) .
( s+ D 1235
Case 15. i =4s+2and j=4n+1for 0 <s<n-—1, and
2 1
2 = 0 0 0 0
1 2 _1 0 0 0
V35 7 7
0 _1 2 _ 1 0 0
7 7 35
0 0 —o= 2 0 0
35 5
0 0 0 0 2 =
0 0 0 0 -+ {
V35 7 (4t—45—2)

1

(dn—4s—-1) (121—25>n7571.

12




Case 16. i =4s+ 3 and j =4t for 0 < s <t <n, and

2 1
= —z 0 0 0 0
_71 27 __1 0 0 0
! " y35 1
det 7 = 0 0 -+ 2 0 0
0 0 0 0 2 -1
102
0 0 0 5 5 l(4at—4s—4)
4 4 1 t—s—1
= t — _ [ .
( § 3)<1225)
Case 17. i =4s+3and j=4t+1for0<s<t<n-—1, and
2 1
Aoy N 0 o
7 7 gﬁ
0 - 5 -3 0 0
35 5 )
detz = | 0 0 “5 5 0 0
: : : 2 :1
0 0 0 0 ik
0 0 0 o ... —--L 2
V35 7 (4t—4s—3)
1 1 \t—s—1
- 74t7472(——)
74— 45 = 2) 1555
Case 18. i =4s+3and j=4t+2for0<s<t<n-—1, and
2 1
IR I
7 71 RVET )
detz = | 0 0 “5 5 0 0
: : :1
0 0 0 0 i
0 0 0 0 ——k 2
V35 7 (4t—4s—2)
1 1 \t—s—1
- —fuf4A71(—f) .
29 =4 = V{3555
Case 19. i=4s+3and j=4t+1for0<s<t<n-—1, and
2 1
T o o
7 7 /35
0 -7 3 -3 0 0
35 51 25
detz = | 0 0 “5 5 0 0
0 0 0 0 : %=
0 0 0 0 I
V35 7 (4t—4s—3)

1 4 1 \t-s—1
= (4t —4s)(— .
245 S)(1225)

13



Case 20. i =4s+3and j=4n+1for0<s<n-—1, and
1

2
2 1 0 0 0 0
_1 2 I 0 0
! " ¥
det z = | 0 0 =5 3 0 0
: : : 3
0 0 0 0 i -k
0 0 0 0 RV T 7 (4n—4s-3)
1 1 n—s—1
= cUn-45-2) ()
gUn =45 =2)\ 1355
Therefore, we can obtain
(D" tagn1 = S det Z-wiiyuania—j =G+ G+ (st G (3.8)
1<i<j<dn+2
where
o= ) PlUs4t+ > PlsAt+1]+ P[4s, 4t + 2]
1<s<t<n 1<s<t<n—1 1<s<t<n-—1
+ Y PHs4t+3]+ > Plsdn+1
1<s<t<n—1 1<s<n
~ 2n(n® — 1)< 1 )"—1 n(4n? — 9n +5) ( 1 )"—1 n(2n? —3n +1) ( 1 )"—1
N 328125 \1225 3750 1225 375 1225
n(4n2—3n—1)< 1 )"—1 2n2—n< 1 )"—1
750 1225 125 1225
B 12n3+n2—8n< 1 )”—1
- 625 1225/ '
G = Y, Pls+1l4t]+ > Pls+14t+1]+ P[4s + 1,4t + 2]
0<s<t<n 0<s<t<n—1 0<s<t<n—1
+ ) PHs+1,4t+3]+ > Pls+1,4n+1]
0<s<t<n—1 1<s<n-—1
_ Tn(4n*+9n —1) ( 1 >n—1 14n(n? — 1) ( 1 >n—1 N n(4n® +3n — 1) ( 1 )n—l
B 3750 1225 1875 1225 750 1225
n(2n? 4+ 3n +1) ( 1 )"—1 ldn(n +1) ( 1 )”—1
375 1225 125 1225
_ 16n® + 88n2 + 65n( 1 )n—l
B 625 1225/ '
G = Y. PlAs+24t]+ > PAs+24t+1]+ > Pls+2,4t+2
0<s<t<n 0<s<t<n-—1 0<s<t<n—1

+ > PHs+2,4t+3]+ Y Pls+24n+1]

0<s<t<n—1 0<s<n—1

B n(2n2+9n+13)( 1 )"—1 4n3—3n2—7n+6( 1

375 1225 750 1225
4n3+3n2—n—6( 1 )”—1 2n? + 2n (L)n—l
525 1225 175 1225
_ 26n> + 20n2 + 23n + 2 ( 1 >n71
875 1225 ’
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n— 2 _ n—
) 1+ 2n(7;25 - (12125) 1



and

G o= ) PlAs+3.4f]+ > PAs+3.4t+11+ > PlAs+3.4t+2]
0<s<t<n 0<s<t<n—1 0<s<t<n—1
+ ). PAs+34t+3]+ Y Plds+3,4n+1]
0<s<t<n—1 0<s<n-—1
B n(4n2+3n—19)< 1 )"—1 2n3—3n2—5n+6< 1 )"—1 4n3+3n2—7n+6( 1 )"—1
B 750 1225 375 1225 1050 1225
Jr2n3—2n( 1 >”—1+%( 1 )"—1
375 1225 175 \1225
1603 +4n? —43n+19( 1 )"—1
B 875 1225 ’
Hence, substituting (1, {2, (3 and {4 into Eq. (3.7), we can obtain
40613 + 743n2% +299n + 105/ 1 \n—1
-1 4dn—1 I — ( )
(-1) g1 =C + G+ G+ 1375 1295
Fact 3.4 has been proved. O

Lemma 3.5. Let 0 < ¢; <63 < g3 <+ < ¢pt1 be the eigenvalues of Q. Then

‘%1 1 (1) by _ 01 + 0>
Si

(=1)%mby, 128217 + 50v/14(15 + 4v/14)n—1 4 (217 — 50v/14) (15 — 4v/14)"—1]

=2

where 6; = 5488000 + 1615425v/14 + 24500n(392 + 193v/14)(15 + 41/14)"~! and 6, = 5488000 —
1615425+/14 + 245001(392 — 193+/14)(15 — 44/14)" 1

Proof. Suppose that ®(Q) = 2" +byz*" ' + - + by 12 + byy. So L+, L

Saae 5 satisfy the equation
below:

b4nl‘4n + b4n_11}4n_1 +--+bjz+1=0.

By Vieta’s Theorem, one holds that

4§',-:1l _ (—1)4nb4n (3 9)
— g det K '
j=1

Let r, = det R, and let R, be the p-th order principal minors of matrix 7" for convenience’s sake. We
will discover the r;, equation for 1 < p < 4n, which can be used to calculate (—1)4”b4n and det K. Next,
we achieve

L3y T2 0T 17 209 689
Loy 2T 5 T 195 T 8Ty’ P T 12257 % T 306257 7 1531257 ° 1071875
and
T4 = 3741 — 35Tai—2, 1 < i< mg
Tait1 = 2Ta4i — 7574i-1, 0 < i <n—1;
Taiye = 2rait1 — 35740, 0 <0 <n—1;

2 1 ‘
T4i+3 = £T4i42 — 35T4i+1, 0 <i<n—1
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These general formulas can be obtained directly by computation and are shown below. One follows that

— T+V14 (15+4\/ﬁ)i + 7,1\6ﬁ . (1574m), l<i<n

T4i = —g le% S \}25 S
g1 = 42+1100 (1532514?1 + 42—1150 4 (1512425 Y, 0<i<n—1;
T4iqo = 3°§g§ (151'242‘%747) + 3532@(151;2‘;} 0<i<n-—-1;
raies = SRR (BREH)T 4+ BERA (B, 0<i<n - L
We go on in what follows by taking into account the next Facts. O
Fact 3.6
det K 217 + 5814 (15 + 4\/14)n—1 217 — 58\/14(15 — 4\/14)71—1
(& =
30625 1225 30625 1225

Proof. By expanding det () with regards to the last row, we have

1 217+58\/ﬂ(15+4\/ﬁ no1 217 —58V/14 15 — 414 1

3
det K = Sy — —pyy g =
¢ 5ln T gglan—t 30625 525 ) 30625\ 123 )

The result as desired. On the other hand, we consider the ¢ —th order principal sub-matrix of ), denoted

by S;, generated by the last ¢ rows and columns, 1 < ¢ < 4n. Let s; = detS;. Then s; = %7 S9 = é—é, S§3 =
19 _ 27 . _ 89 _ 329 _ 569 _ 809
175+ 54 = 375055 = G125+ 56 = Tos7s» 5T = 314375 58 = Torists and
2 ; .
S4i = 284i-1 — 5554i—2, 1 <i <
4 1 ; .
S4i41 = 784i — 3584i-1, 0 < i <n—1;

1 1 ‘ .
S4i+2 = = S4i+1 — 3954i, 0 <i<n—1;

2 1 <
S4i4+3 = £S4i+2 — 3554i+1, 0 < i <n—1.

In a manner similar to that explained before, we have

S4i = 14+230\/ﬁ ) (151+242\éﬁ)i + 147230\/ﬁ ' (151242[) 1<i<n;
S4i+1 = 42+11410\/ﬁ ) (15542@)1 + 42711410\/ﬁ ) (151 4\ﬁ) 0<i:<n—1;
saipy = SR - (1) + S (M) 0<i<n- 1
Saisy = 2SCETLVIL (15H0VIyi | 266 TLVIL (15-4VIL)i () << — 1.
O
Fact 3.7
(—1)% 31360 + 9231v/14 + 140n(392 + 193v/14) (15 1 4\/ﬂ)n .
" 22400 1225
31360 9231v/14 + 140n(392 — 193v/14) ,15 — 4114, n1

22400 ( 1225 )

Proof. Since the number (—1)*"by,, which has a (4n)-row and (4n)-column, represents the total of all
the major minors of 7. For simplification, let’s assume that in the following, diagonal elements of K are
represented by g;;. K is left-right symmetric, so we may obtain

dn+1 an+1 dn+1
4n
(—1)*by, = Z det K[i] Z det( N R4n+1 1 ) Z rictTansi-i,  (3.10)
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where

Jitlit1 " 0 0
Ring1-i = 1
0 o g4n,14n _\/?
0 T Yantlantt
In line with Eq. (3.9), we have
n—1 n—1 n—1
(=1)* by, —2r4n+2det K[4k] + ) " det Q4k + 1]+ > det K[4k+ 2]+ ) _ det K[4k + 3]
k=1 k=0 k=0 k=0

n—1

=T4n + San + ZM(k 1)+3 * Sd(n—k)+1 T Z T4k * S4(n—k)

k=1 k=0
n—1 n—1

+ Z Tak+1 * S4(n—k—1)+3 T Z Tak+2 " S4(n—k—1)+2- (3.11)
k=0 k=0

The following forms can be generated by using above equations.

i 284+ 7V14 15+ 4V/14 o1 28 — 714 15 — 4/14 1
2 T St = | T (T 0 im )
k=1 (3.12)
+\/14(15+4\/14)n \/ﬂ(15—4\/ﬂ)n
200 1225 200 1225 ‘
"ir . . 28+7\/ﬂ(15+4\/ﬁ)n+28—7\/14(15—4\/14)711
4k * S4(n—k) =
p 40 1225 40 1225 (3.13)
+11\/14(15+4\/14)n_1 11\/ﬁ(15—4\/ﬁ)n_1
100 1225 100 1225 ’
n—1 — —
Z T4k+1 " Th(n—k—1)+3 =T 42 +41§ 14 ( 15 —11—225 14)n_1 + 12 _i(?\/ﬁ ( 15 I;;g/ﬁ)”_ll
k=0 (3.14)
+11\/ﬂ(15 + 4m)n B 11m(15 - 4\/ﬁ)n
280 1225 280 1225 ’
n—1
S a1 1ysa 98 +12(5)\/14 ( 15 Jlr;;;/ﬁ)n_l o8 —;;(5)\/14 ( 15 I;;5/14)n_1]
k=0 (3.15)
\F(15+4\F) V14 (15 44/14 )
128 1225 128 1225 ’
and
28 + 514,15+ 414, 28 — 514,15 — 4/14
Tan + S4p = ( ) ( )" (3.16)
20 1225 20 1225

Equations (3.12) to (3.16) can be substituted into Fact 2 to produce the desired outcome (3.11).
Lemma 3.3 holds right away in light of Facts 1 and 2 and (3.11), respectively. O
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The theorem that follows is derived from Lemmas 3.1 through 3.3.
Theorem 3.8. Assume that Q2 serves as the strong prism for the networks of octagons-quadrilateral.
One has

Kf*(Q%) = 2486n® + 5114n* + 2028n + 649
(_1)4nb4n
+(48n+6)[ |
where
(—1)* 31360 + 92311/14 + 140n(392 + 193+/14) (15 + 4\/ﬂ)n,1
an 22400 1225
| 31360 — 92311/14 + 140n(392 — 193/14) (15 - 4\/ﬁ)n,1
22400 1225 '
and
217 +58v14 15 + 414 -1 217 —58V14 ;15 — 4/14
detK:+f(+f)1+ f( \/7)1'

30625 1225 30625 1225

According to the aforementioned theorem, Q?’s multiplicative degree-Kirchhoff index.

Theorem concerning the expatiatory formula of the spanning trees of Q2 is what we will demonstrate
next.
Theorem 3.9. Consider Q2 to be the strong prism for the networks of octagonal-quadrilateral. One has

34n+4 ) 216n—2

T(Qn) = T 8575 ((217 + 58V14)(15 4+ 4V14)" 1 + (217 — 58V14)(15 — 4m)n_1>'

Proof. According to Lemma 2.2, we have

4n-+1

H o; = (—=1)*a".
i=2

By Fact 3.3, we have

4ﬁ1 '_112n—|—14( 1 )ﬂ
L S 1225/

At the same time, we are easy to get [] d(Q2) = 55"+% . 78"~ and according to the |E(Q2)| =
veVaz

48n + 4 mentioned in the previous text. Let’t combine that with Lemma 2.3, we have

An+1 An+1

1 6 8
2y _ O\an+a  Ovan—2 2, - 9%, . d(O?
(@) = iy (@ G I 2w T 200 TT )
=2 j=1 UGVQ%
216n—2 . 34n+4
= ((217 + 58v/14)(15 + 4V14)" 7 + (217 — 58V/14)(15 — 4@)”—1)
At this point, the proof of the theorem has already completed. O
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4. Conclusion

In this paper, employing the principles and characteristics of the theory of the decomposition of the
spectrum of the normalized Laplacian matrix, we have calculated the spanning tree and multiplicative
degree-Kirchhoff index of the graphs produced by the strong product of Q2.
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