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Abstract

This paper is concerned with the spreading or vanishing of an epidemic disease which is characterized by a nonlocal diffusion SIR

model with nonlocal incidence rate and double free boundaries. We prove that the disease will vanish if the basic reproduction

number R 0 < 1 , or the initial area h 0 , the initial datum S 0 , and the expanding ability μ are sufficiently small even that

R 0 > 1 , and the disease will spread to the whole area if R 0 > 1 , when h 0 is suitably large or h 0 is small but μ is large

enough. Moreover, we also show that the long-time asymptotic limit of the solution when vanishing happens.
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1 Introduction

Epidemic models are interesting and significant topics in mathematical biology. Kermack and

McKendrick gave the classical theoretical papers on epidemic models in 1927 ([5]) and 1932 ([6]),

which have a substantial influence in the development of mathematical models and are still relevant

in a surprising number of epidemic situations.

In the classical SIR model, the population is divided into three distinct classes: the susceptible

but uninfected class S, who can catch the infectious disease, the infective class I, who have the

infectious disease and can transmit it, and the removed class R, namely, those who have had the

infectious disease, either are recovered, immune or isolated until recovered. Since the population

can migrate, the diffusion terms should be taken into consideration and thus the diffusion SIR

system appeared, and one of them is as follows

St − d1∆S = −βSI − µ1S + b, t > 0, x ∈ Ω,

It − d2∆I = βSI − µ2I − αI, t > 0, x ∈ Ω,

Rt − d3∆R = αI − µ3R, t > 0, x ∈ Ω,

∂ηS = ∂ηI = ∂ηR, t > 0, x ∈ ∂Ω,
S(0, x) = S0(x), I(0, x) = I0(x), R(0, x) = R(x), x ∈ Ω,

(1.1)

with homogeneous Neumann boundary condition. We know the solution of system (1.1) is always

positive for any time t > 0 no matter what the nonnegative nontrivial initial date is. It means that

the disease spreads to the whole area immediately even when the infectious is confined to a small

part of the area in the beginning. It doesn’t match the observed fact that disease always spreads

gradually. So Kim et al.([10]) considered a SIR epidemic model in a radially symmetric domain

1Corresponding author. E-mail: nttccyj@ntu.edu.cn
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with a free boundary, which describes the spreading frontier of the disease

St − d1∆S = −βSI − µ1S + b, t > 0, r > 0,

It − d2∆I = βSI − µ2I − αI, t > 0, 0 < r < h(t),

Rt − d3∆R = αI − µ3R, t > 0, 0 < r < h(t),

Sr(t, 0) = Rr(t, 0) = Ir(t, 0) = 0, t > 0,

I(t, r) = R(t, r) = 0, t > 0, r ≥ h(t),

h′(t) = −µIr(t, h(t)), h(0) = h0 > 0, t > 0,

S(r, 0) = S0(r), I(r, 0) = I0(r), R(r, 0) = R0(r), r ≥ 0.

(1.2)

The existence and uniqueness of the global solution were given by the contraction mapping theorem.

They showed that the disease will not spread to the whole area if the basic reproduction number

R0 := bβ
µ1(µ2+α) < 1 or the initial infected radius h0 and µ are sufficiently small even that R0 > 1.

Moreover, the disease will spread to the whole area if R0 > 1 and the initial infected radius h0 is

suitably large.

In fact, because of the propagation of viruses in the air, the susceptible at the point x and time

t should be influenced (infected) by the infectives around them. Hence the mechanism of infection

is governed by a nonlocal law

(K ∗ I)(t, x) =

∫
R
K(x, y)I(t, y)dy,

where the kernel function K(x, y) ≥ 0 denotes the probability density that weights the contributions

of infectious at location y to the infection of susceptible individuals at location x.

In [7], Cao et al. concerned with a diffusion SIS model with nonlocal incidence rate and double

free boundaries which somehow can be viewed a nonlocal version of (1.2). They define RF0 (t) as a

critical function and got the full information about the sufficient conditions that ensure the disease

spreading or vanishing, which exhibits a detailed description of the communicable mechanism of the

disease. Their results imply that the nonlocal interaction may enhance the spread of the disease.

In [9], Huang and Wang changed the equation of S in (1.2) and studied the following SIR

epidemic model 

St − Sxx = a(I +R)− bSI, t > 0, x > 0,

It − Ixx = bSI − (a+ c)I, t > 0, 0 < x < h(t),

Rt −Rxx = cI − aR, t > 0, 0 < x < h(t),

Sx = Ix = Rx = 0, t ≥ 0, x = 0,

I = R = 0, t ≥ 0, x ≥ h(t),

h′(t) = −µIx(t, h(t)), t ≥ 0,

h(t) = h0, S(t, x) = S0(x), t = 0, x ≥ 0,

R(t, x) = R0(x), I(t, x) = I0(x), t = 0, 0 ≤ x ≤ h0.

The existence, uniqueness and some estimates of the global solution were also discussed first.

Then, with the help of studying the long-time behavior of the solution to a Cauchy problem for a

nonhomogeneous heat equation, the long-time behavior of the solution was obtained for the disease

vanishing case. At last, some sufficient conditions for the disease vanishing were established. Then



3

in [8], Huang and Wang considered the following nonlocal case with double free boundaries

St − Sxx = γI − S(K ∗ I), t > 0, x ∈ R,
It − Ixx = bI − S(K ∗ I), t > 0, x ∈ (g(t), h(t)),

I(t, x) = 0, t ≥ 0, x ∈ R\(g(t), h(t)),

g′(t) = −µIx(t, g(t)), h′(t) = −µIx(t, h(t)), t > 0,

S(0, x) = S0(x), I(0, x) = I0(x), x ∈ R,
−g(0) = h0 = h(0).

However, it has been increasingly recognized that the dispersal of many species is better de-

scribed by ”nonlocal diffusion” such as

J ∗ u− u =

∫
R
J(x− y)u(t, y)dy − u

rather than ”local diffusion” ∆u, where J : R \ {0} → R is nonnegative even function and satisfies

2

∫ ∞
0

J(x)dx = 1.

In [2], Cao et al. considered the dynamics of a Fisher-KPP nonlocal diffusion model with

free boundaries, which can be viewed the nonlocal version of the well known local diffusion model

ut−duxx = f(u) in [3]. Their results showed that their spreading-vanishing criteria are significantly

different. The result in [3] indicated that no matter how small is the diffusion coefficient d relative

to the initial growth rate f ′(0), vanishing can always happen if h0 and µ are both sufficiently small.

However, in [2], as long as d ≤ f ′(0), spreading always happens.

A nonlocal version of the free boundary problem studied by Zhao et al. ([11]) is as follows:

St = d

∫
R
J(x− y)S(t, y)dy − dS − βSI − µ1S + b, t > 0, x ∈ R,

It = d

∫ h(t)

g(t)
J(x− y)I(t, y)dy − dI + βSI − µ2I − αI, t > 0, x ∈ (g(t), h(t)),

Rt = d

∫ h(t)

g(t)
J(x− y)R(t, y)dy − dR+ αI − µ3R, t > 0, x ∈ (g(t), h(t)),

I(t, x) = R(t, x) = 0, t ≥ 0, x ∈ R \ (g(t), h(t)),

g′(t) = −µ
∫ h(t)

g(t)

∫ g(t)

−∞
J(x− y)I(t, x)dydx, t > 0,

h′(t) = µ

∫ h(t)

g(t)

∫ ∞
h(t)

J(x− y)I(t, x)dydx, t > 0,

−g(0) = h(0) = h0 > 0, S(0, x) = S0(x), x ∈ R,
I(0, x) = I0(x), R(0, x) = R0(x), x ∈ (−h0, h0).

(1.3)

In [11], it was showed that the disease will not spread to the whole area if the basic reproduction

number R0 := bβ
µ1(µ2+α) < 1 or the initial infected radius h0, expanding ability µ, and the initial

datum S0 are all sufficiently small when 1 < R0 < 1 + d
µ2+α . Moreover, the disease will spread to

the whole area if R0 > 1 and the initial infected radius h0 is suitably large or h0 is small but µ is

large.

Motivated by above, in this paper, we consider the following SIR epidemic problem with double
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free boundaries,

St = d

∫
R
J(x− y)S(t, y)dy − dS − βS

∫ h(t)

g(t)
K(x, y)I(t, y)dy − µ1S + b,

t > 0, x ∈ R,

It = d

∫ h(t)

g(t)
J(x− y)I(t, y)dy − dI + βS

∫ h(t)

g(t)
K(x, y)I(t, y)dy − µ2I − αI,

t > 0, x ∈ (g(t), h(t)),

Rt = d

∫ h(t)

g(t)
J(x− y)R(t, y)dy − dR+ αI − µ3R, t > 0, x ∈ (g(t), h(t)),

I(t, x) = R(t, x) = 0, t ≥ 0, x ∈ R \ (g(t), h(t)),

g′(t) = −µ
∫ h(t)

g(t)

∫ g(t)

−∞
J(x− y)I(t, x)dydx, t > 0,

h′(t) = µ

∫ h(t)

g(t)

∫ ∞
h(t)

J(x− y)I(t, x)dydx, t > 0,

−g(0) = h(0) = h0,

S(0, x) = S0(x), x ∈ R,
I(0, x) = I0(x), R(0, x) = R0(x), x ∈ (−h0, h0),

(1.4)

where nonlocal diffusion and nonlocal incidence rate appear together. Here the parameters d, b,

µ and h0 are positive constants, µ1, µ2 and µ3 are the death rate of susceptible, infectious and

recovered individuals respectively, α is the recovery rate of the infectives.

We are interested in, compared with [10] and [11], whether the critical value of the spreading

and vanishing of the epidemic disease has changed, and what difference it will make under the

interaction of nonlocal diffusion and nonlocal incidence rate.

Throughout this paper, we always assume that the initial functions I0, S0 and R0 satisfy

(H) S0 ∈ C(R) ∩ L∞(R), S0 > 0 in R; I0, R0 ∈ C([−h0, h0]), I0, R0 > 0 in (−h0, h0) and

I0 = R0 = 0 in R \ (−h0, h0).

The kernel function K satisfies

(K) K is bounded and locally Lipschitz continuous in R2, K(x, y) = K(y, x) ≥ 0 and

∫
R
K(x, y)dx =

1 for any y ∈ R.

The another kernel funciton J : R→ R satisfies

(J) J is continuous and symmetric, J(0) > 0, J(x) ≥ 0,

∫
R
J(x)dx = 1, supR J <∞.

With the same argument as in [4, 11], we can get the existence and uniqueness of the solution

to (1.4).

Theorem 1.1. The problem (1.4) has a unique positive solution (S, I,R, g, h) defined for all t > 0,

and there exists a constant C such that

0 < S ≤ C in R+ × R, 0 < I,R ≤ C in D∞, 0 < −g′, h′ ≤ C ∈ R+,

where R+ = (0,∞) and D∞ = {(t, x) ∈ R2 : t ∈ (0,∞), x ∈ (g(t), h(t))}.
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It is easily seen that h(t) is monotonically increasing and that g(t) is monotonically decreasing.

Therefore there exists g∞ ∈ [−∞, 0) and h∞ ∈ (0,∞] such that g∞ = limt→∞ g(t) and h∞ =

limt→∞ h(t).

We define the basic reproduction number R0 as

R0 :=
bβ

µ1(µ2 + α)
,

the main result is as follows.

Theorem 1.2. Let (S, I,R, g, h) be the solution of (1.4). Assume further that J(x) > 0 in R.

Then we have

(i) If R0 < 1, then h∞ − g∞ <∞.

(ii) If R0 > 1, then there exists `∗ > 0 (`∗ is determined by (3.6)) such that

(a) if 2h0 ≥ `∗, then h∞ − g∞ =∞.

(b) if 2h0 < `∗, then there exists 0 < µ∗ ≤ µ∗ such that h∞ − g∞ = ∞ for µ > µ∗, and

h∞ − g∞ <∞ for 0 < µ ≤ µ∗ and S0(x) ≤ b
µ1

.

(iii) If h∞ − g∞ <∞, then

lim
t→∞

max
[g(t),h(t)]

I(t, ·) = 0, lim
t→∞

max
[g(t),h(t)]

R(t, ·) = 0,

lim
t→∞

S(t, ·) =
a− r
b

locally uniformly in R.

Remark 1.1. Theorem 1.2 (i) indicates that vanishing always happens when R0 < 1, there is

no requirement for the initial value and the initial area. However, in [7], for SIS model, when

RF0 (0) < 1, vanishing can always happen provided that ‖I0‖L∞ and h0 and N0 are sufficiently

small.

Theorem 1.2 (ii) shows that if R0 > 1, the disease will not spread to the whole area if h0, S0 and

µ are sufficiently small. The result is the same as in [10] for local diffusion case, but is different

with that in [11] where apart from R0 > 1, the condition R0 < 1 + d
µ2+α is required. This is one of

the differences between the local and nonlocal incidence rate.

The organization of this paper is as follows. In Section 2, we firstly analyze an eigenvalue

problem and give the properties of its principal eigenvalue λp. Then we propose two maximum

principles and a comparison principle for our free boundary problem which will be frequently

used in this paper. Section 3 is concerned with some sufficient conditions that ensure the disease

vanishing and spreading, and give the long-time asymptotic limit of the solution when vanishing

happens.

2 Eigenvalue problem and comparison principle

Define the linear operator LΩ + c : C(Ω̄)→ C(Ω̄) as follows

(LΩ + c)[φ](x) = −d
(∫

Ω
J(x− y)φ(y)dy − φ(x)

)
− c

∫
Ω
K(x, y)φ(y)dy + (µ2 + α)φ(x),
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where Ω is an open interval in R, possibly unbounded, d, c, µ2, α > 0, and the kernel J and K

satisfy (J) and (K) respectively. Define

λp(LΩ + c) := sup{λ ∈ R : (LΩ + c)φ ≥ λφ in Ω for some φ ∈ C(Ω̄), φ > 0}.

As usual, if λp(LΩ + c) is an eigenvalue of the operator LΩ + c with a continuous and positive

eigenfunction, we call it a principal eigenvalue. In fact, when Ω = (`1, `2) with −∞ ≤ `1 < `2 ≤ ∞,

we can get that λp(L(`1,`2) + c) is a principle eigenvalue([1, 2]).

By the variational characterization of λp(LΩ + c) (see, e.g., [1]), we have

λp(LΩ+c) = inf
φ∈H1

0 (Ω)
‖φ‖2=1

{
−d
∫

Ω

∫
Ω
J(x− y)φ(y)φ(x)dydx+ d− c

∫
Ω

∫
Ω
K(x, y)φ(y)φ(x)dydx+ α+ µ2

}
.

Now we give its properties.

Proposition 2.1. Assume that (J) and (K) hold, c is a positive constant and Ω = (`1, `2) with

−∞ ≤ `1 < `2 ≤ ∞. Then the following hold true:

(i) λp(L(`1,`2) + c) is strictly decreasing and continuous in ` = `2 − `1,

(ii) lim`2−`1→+∞ λp(L(`1,`2) + c) = −c+ α+ µ2,

(iii) lim`2−`1→0 λp(L(`1,`2) + c) = d+ α+ µ2.

Proof. We can refer to [2, Proposition 3.4] and [8, Proposition B.1] to prove it. We omit the details

here.

To give the maximum principles and comparison principle, we first introduce some notations.

For given h0, T > 0 we define

Hh0,T :=

{
h ∈ C([0, T ]) : h(0) = h0, inf

0≤t1<t2≤T

h(t2)− h(t1)

t2 − t1
> 0

}
,

Gh0,T := {g ∈ C([0, T ]) : −g ∈ Hh0,T } .

For g ∈ Gh0,T , h ∈ Hh0,T , we define

Ωg,h
T :=

{
(t, x) ∈ R2 : 0 < t ≤ T, g(t) < x < h(t)

}
,

Ω∞T :=
{

(t, x) ∈ R2 : 0 < t ≤ T, x ∈ R
}
.

The following is the maximum principle for nonlocal diffusion and nonlocal incidence rate, which

is critical in this paper and can be proved by the similar argument as in [2, Lemma 2.2] and [13,

Lemma 2.1].

Lemma 2.1. (Maximum principle) Assume that (J) and (K) hold, g ∈ Gh0,T , h ∈ Hh0,T for some

h0, T > 0. Suppose that u(t, x) as well as ut(t, x) is continuous in Ω̄g,h
T and satisfies, for some c1,

c2 ∈ L∞(Ωg,h
T ), c1 ≥ 0,

ut ≥ d
∫ h(t)

g(t)
J(x− y)u(t, y)dy − du(t, x) + c1

∫ h(t)

g(t)
K(x, y)u(t, y)dy + c2u(t, x),

t > 0, g(t) < x < h(t),

u(t, g(t)) ≥ 0, u(t, h(t)) ≥ 0, t > 0,

u(0, x) ≥ 0, |x| ≤ h0.

(2.1)

Then u(t, x) ≥ 0 for all 0 ≤ t ≤ T and x ∈ [g(t), h(t)]. Moreover, if u(0, x) 6≡ 0 in [−h0, h0], then

u(t, x) > 0 in Ωg,h
T .
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By Lemma 2.2 of [12] and Lemma 2.1, we can get the following maximum principle.

Lemma 2.2. (Maximum principle) Assume that (J) and (K) hold, g ∈ Gh0,T , h ∈ Hh0,T for

h0, T > 0. Suppose that S(t, x) and St(t, x) are continuous in Ω̄∞T , I(t, x), R(t, x), It(t, x) and

Rt(t, x) are continuous in Ω̄g,h
T and satisfy, for a1 ∈ L∞(Ω∞T ), a21, a22, a31, a32 ∈ L∞(Ωg,h

T ), and

a21, a31 ≥ 0,



St ≥ d
∫
R
J(x− y)S(t, y)dy − dS + b+ a1S, 0 < t ≤ T, x ∈ R,

It ≥ d
∫ h(t)

g(t)
J(x− y)I(t, y)dy − dI + a21

∫ h(t)

g(t)
K(x, y)I(t, y)dy + a22I,

0 < t ≤ T, x ∈ (g(t), h(t)),

Rt ≥ d
∫ h(t)

g(t)
J(x− y)R(t, y)dy − dR+ a31I + a32R, 0 < t ≤ T, x ∈ (g(t), h(t)),

I(t, x) ≥ 0, R(t, x) ≥ 0, 0 < t ≤ T, x ∈ R\(g(t), h(t)),

S(0, x) ≥ 0, x ∈ R,
I(0, x) ≥ 0, R(0, x) ≥ 0, x ∈ [−h0, h0].

Then S(t, x) ≥ 0 for all 0 ≤ t ≤ T and x ∈ R, I(t, x) ≥ 0, R(t, x) ≥ 0 for all 0 ≤ t ≤ T and

x ∈ [g(t), h(t)]. Moreover, if S(0, x) 6≡ 0 in R, and I(0, x) 6≡ 0, R(0, x) 6≡ 0 in [−h0, h0], then

S(t, x) > 0 in Ω∞T , and I(t, x) > 0, R(t, x) > 0 in Ωg,h
T .

To research the long-time behavior of the solution to the SIR epidemic problem, we propose

the following Comparison principle.

Lemma 2.3. (Comparison principle) Assume that (J), (K) and (H) hold, ḡ ∈ Gh̄0,T , h̄ ∈ Hh̄0,T
,

for h0, T > 0, suppose that S̄, S̄t ∈ C(Ω̄∞T ), Ī, Īt, R̄, R̄t ∈ C(Ω̄ḡ,h̄
T ) and satisfy,

S̄t ≥ d
∫
R
J(x− y)S̄(t, y)dy − dS̄ − µ1S̄ + b, 0 < t ≤ T, x ∈ R,

Īt ≥ d
∫ h̄(t)

ḡ(t)
J(x− y)Ī(t, y)dy − dĪ + βS̄

∫ h̄(t)

ḡ(t)
K(x, y)Ī(t, y)dy − µ2Ī − αĪ,

0 < t ≤ T, x ∈ (ḡ(t), h̄(t)),

R̄t ≥ d
∫ h̄(t)

ḡ(t)
J(x− y)R̄(t, y)dy − dR̄+ αĪ − µ3R̄, 0 < t ≤ T, x ∈ (ḡ(t), h̄(t)),

Ī(t, x) ≥ 0, R̄(t, x) ≥ 0, 0 < t ≤ T, x ∈ R \ (ḡ(t), h̄(t)),

ḡ′(t) ≤ −µ
∫ h̄(t)

ḡ(t)

∫ ḡ(t)

−∞
J(x− y)Ī(t, x)dydx, 0 < t ≤ T,

h̄′(t) ≥ µ
∫ h̄(t)

ḡ(t)

∫ +∞

h̄(t)
J(x− y)Ī(t, x)dydx, 0 < t ≤ T,

ḡ(0) ≤ −h0, h̄0 ≥ h0, S̄(0, x) ≥ S0(x), x ∈ R,
Ī(0, x) ≥ I0(x), R̄(0, x) ≥ R0(x), x ∈ (−h0, h0),

then the unique solution (S, I,R, g, h) of (1.4) satisfies

S(t, x) ≤ S̄(t, x) for 0 < t ≤ T, x ∈ R,

I(t, x) ≤ Ī(t, x), R(t, x) ≤ R̄(t, x), g(t) ≥ ḡ(t), h(t) ≤ h̄(t) for 0 < t ≤ T, x ∈ [g(t), h(t)].
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Proof. We can prove it by references to [2, Theorem 3.1] and [13, Lemma 2.3]. First of all, thanks

to (H) we know that Ī(0, x) ≥ I0(x) > 0 in (−h0, h0), thus Ī(0, x) 6≡ 0 in [−h̄0, h̄0], by Lemma 2.1,

we have Ī(t, x) > 0 for 0 < t ≤ T, ḡ(t) < x < h̄(t), and thus both h̄ and −ḡ are strictly increasing.

For small ε > 0, let (Sε, Iε, Rε, gε, hε) denote the unique solution of (1.4) with h0 replaced by

hε0 := h0(1 − ε), µ replaced by µε := µ(1 − ε), and S0, I0, R0 replaced by Sε0, Iε0 , Rε0 respectively

which satisfy

0 ≤ Sε0 < S0(x) in R,

0 ≤ Iε0 < I0(x), 0 ≤ Rε0 < R0(x) in [−hε0, hε0], Iε0(±hε0) = Rε0(±hε0) = 0,

and Iε0(h0hε0
)→ I0(x), Rε0(h0hε0

)→ R0(x) as ε→ 0 in the C([−h0, h0]) norm. We claim that hε(t) < h̄(t)

and gε(t) > ḡ(t) for all t ∈ (0, T ]. Clearly, these hold true for small t > 0. Suppose that there exists

t1 ≤ T such that

hε(t) < h̄(t), gε(t) > ḡ(t) for t ∈ (0, t1) and [hε(t1)− h̄(t1)][gε(t1)− ḡ(t1)] = 0.

Without loss of generality, we may assume that hε(t1) = h̄(t1), gε(t1) ≥ ḡ(t1).

Firstly, let u(t, x) = S̄ − Sε, then u satisfies ut ≥ d
∫
R
J(x− y)u(t, y)dy − du− µ1u, 0 < t ≤ T, x ∈ R,

u(0, x) > 0, x ∈ R.

It follows from [12, Lemma 2.2] that u(t, x) > 0, thus S̄(t, x) > Sε(t, x) for all 0 ≤ t ≤ T, x ∈ R.

Next, we compare Iε and Ī, Rε and R̄ over the region

Ωε
t1 :=

{
(t, x) ∈ R2 : 0 < t ≤ t1, gε(t) < x < hε(t)

}
.

Let w(t, x) = Ī − Iε, then for all (t, x) ∈ Ωε
t1 , there is

wt ≥ d
∫ hε(t)

gε(t)
J(x− y)w(t, y)dy − (d+ α+ µ2)w(t, x)

+βS̄

∫ h̄(t)

ḡ(t)
K(x, y)Ī(t, y)dy − βSε

∫ hε(t)

gε(t)
K(x, y)Iε(t, y)dy,

where

βS̄

∫ h̄(t)

ḡ(t)
K(x, y)Ī(t, y)dy − βSε

∫ hε(t)

gε(t)
K(x, y)Iε(t, y)dy

≥ βS̄
∫ hε(t)

gε(t)
K(x, y)Ī(t, y)dy − βSε

∫ hε(t)

gε(t)
K(x, y)Iε(t, y)dy

= β(S̄ − Sε)
∫ hε(t)

gε(t)
K(x, y)Ī(t, y)dy + βSε

∫ hε(t)

gε(t)
K(x, y)[Ī(t, y)− Iε(t, y)]dy

= βu(t, x)

∫ hε(t)

gε(t)
K(x, y)Ī(t, y)dy + βSε

∫ hε(t)

gε(t)
K(x, y)w(t, y)dy.

Since u(t, x) > 0, then so w satisfies

wt ≥ d
∫ hε(t)

gε(t)
J(x− y)w(t, y)dy − (d+ α+ µ2)w(t, x) + βSε(t, x)

∫ hε(t)

gε(t)
K(x, y)w(t, y)dy.
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By Theorem 1.1 we have 0 < Sε(t, x) ≤ C for all 0 ≤ t ≤ T and x ∈ R, thus it follows from Lemma

2.1 that Ī > Iε in Ωε
t1 . Similarly, we have R̄ > Rε in Ωε

t1 . Furthermore, according to the definition

of t1, we have h
′
ε(t1) ≥ h̄′(t1). Thus

0 ≥ h̄′(t1)− h′ε(t1)

≥ µ
∫ h̄(t1)

ḡ(t1)

∫ +∞

h̄(t1)
J(x− y)Ī(t1, x)dydx−µε

∫ hε(t1)

gε(t1)

∫ +∞

hε(t1)
J(x− y)Iε(t1, x)dydx

> µε

∫ hε(t1)

gε(t1)

∫ +∞

hε(t1)
J(x− y)[Ī(t1, x)− Iε(t1, x)]dydx > 0,

which is a contradiction. Similarly, we can prove gε(t) > ḡ(t) for all t ∈ (0, T ]. The claim is thus

proved. Then the above arguments yield that S̄(t, x) > Sε(t, x) for all 0 ≤ t ≤ T, x ∈ R, and

Ī(t, x) > Iε(t, x), R̄(t, x) > Rε(t, x) for all 0 ≤ t ≤ T, gε(t) < x < hε(t).

Since the unique solution of (1.4) depends continuously on the parameters in (1.4), the desired

result then follows by letting ε→ 0.

3 Spreading and vanishing

Lemma 3.1. If R0 < 1, then

h∞ − g∞ <∞.

Proof. From the first equation of (1.4), we can see that S(t, x) satisfies St ≤ d
∫
R
J(x− y)S(t, y)dy − dS + b− µ1S, t > 0, x ∈ R,

S(0, x) = S0(x), x ∈ R.

Let S̄(t) be the solution of {
S̄t = b− µ1S̄, t > 0,

S̄(0) = ‖S0‖∞.

It follows from [12, Lemma 2.2] that S(t, x) ≤ S̄(t) for t > 0 and x ∈ R. Since lim
t→∞

S̄(t) = b
µ1

, we

have

lim sup
t→∞

S(t, x) ≤ b

µ1
for x ∈ R. (3.1)

Now we begin to show that h∞ − g∞ <∞. Direct calculations yield

d

dt

∫ h(t)

g(t)
I(t, x)dx =

∫ h(t)

g(t)
It(t, x)dx+ h′(t)I(t, h(t))− g′(t)I(t, g(t))

≤
∫ h(t)

g(t)

[
d

∫ h(t)

g(t)
J(x− y)I(t, y)dy − d

∫
R
J(x− y)I(t, x)dy

+βS(t, x)

∫ h(t)

g(t)
K(x, y)I(t, y)dy − αI(t, x)− µ2I(t, x)

]
dx

= − d
µ1

(h′(t)− g′(t)) +

∫ h(t)

g(t)
βS(t, x)

∫ h(t)

g(t)
K(x, y)I(t, y)dydx

−
∫ h(t)

g(t)
(α+ µ2)I(t, x)dx.
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For any ε ∈ (0, (1−R0)(α+µ2)
β ), there exists T (ε) such that S(t, x) ≤ b

µ1
+ ε for t ≥ T and x ∈ R, we

have ∫ h(t)

g(t)
βS(t, x)

∫ h(t)

g(t)
K(x, y)I(t, y)dydx =

∫ h(t)

g(t)
I(t, y)

∫ h(t)

g(t)
βS(t, x)K(x, y)dxdy

≤
∫ h(t)

g(t)
β(

b

µ1
+ ε)I(t, y)dy.

Hence

d

dt

∫ h(t)

g(t)
I(t, x)dx ≤ − d

µ1
(h′(t)− g′(t)) +

∫ h(t)

g(t)
(β(

b

µ1
+ ε)− α− µ2)I(t, x)dx. (3.2)

Integrating (3.2) from T to t(> T ) gives

0 ≤
∫ h(t)

g(t)
I(t, x)dx ≤

∫ h(T )

g(T )
I(T, x)dx+

d

µ
(h(T )− g(T ))− d

µ
(h(t)− g(t))

+

∫ t

T

[∫ h(s)

g(s)
(β(

b

µ1
+ ε)− α− µ2)I(s, x)dx

]
ds,

from R0 < 1 and the definition of ε, we know that β( b
µ1

+ ε) − α − µ2 < 0 for s ∈ [T, t] and

x ∈ [g(s), h(s)], then we have

d

µ
(h(t)− g(t)) ≤

∫ h(T )

g(T )
I(T, x)dx+

d

µ
(h(T )− g(T )).

Thus we can get h∞ − g∞ <∞ by letting t→∞.

Lemma 3.2. Assume that (J) and (K) hold, J(x) > 0 in R. Let (S, I,R, g, h) be the solution of

(1.4). If h∞ − g∞ <∞, then

lim
t→∞

max
[g(t),h(t)]

I(t, ·) = 0, lim
t→∞

max
[g(t),h(t)]

R(t, ·) = 0, (3.3)

lim
t→∞

S(t, x) =
b

µ1
locally uniformly in R.

Moreover,

λp(L(g∞,h∞) + β
b

µ1
) ≥ 0. (3.4)

Proof. We first prove lim
t→∞

max
[g(t),h(t)]

I(t, ·) = 0. By virtue of [4, Lemma 3.2], we can have that

lim
t→∞

I(t, x) = 0 for almost every x ∈ [−h0, h0].

We define M(t) := max
x∈[g(t),h(t)]

I(t, x) and X(t) := {x ∈ (g(t), h(t)) : I(t, x) = M(t)} . We want to

prove lim
t→∞

max
x∈[g(t),h(t)]

I(t, x) = 0, that is, we need to show that

lim
t→∞

M(t) = 0. (3.5)



11

Noting M(t) is continuous and X(t) is a compact set for each t > 0. Therefore, we can find

ξ(t), ξ̄(t) ∈ X(t) such that

It(t, ξ(t)) = min
x∈X(t)

It(t, x), It(t, ξ̄(t)) = max
x∈X(t)

It(t, x).

Now we are ready to prove (3.5). Arguing indirectly, we assume σ∗ := lim sup
t→∞

M(t) ∈ (0,∞). By

the argument in [4, Theorem 3.3], there exists a sequence tn > 0 increasing to ∞ as n → ∞, and

ξn ∈
{
ξ(tn), ξ̄(tn)

}
such that lim

n→∞
M(tn, ξn) = σ∗ and lim

n→∞
∂tI(tn, ξn) = 0. Thanks to (3.1), for

any ε1 > 0, there exists N > 0 such that, for n ≥ N , S(tn, ξn) ≤ b
µ1

+ ε1. By [4, Lemma 3.1], we

have lim
t→∞

h′(t) = 0. Due to J(x) > 0 in R, in view of [4, Lemma 3.2], we can get

lim
t→∞

∫ h(t)

g(t)
I(t, y)dy = 0.

Since sup
x∈R

J(x) <∞ and sup
x,y∈R

K(x, y) <∞, we have

lim
t→∞

∫ h(t)

g(t)
J(x− y)I(t, y)dy = 0 uniformly for x ∈ R

and

lim
t→∞

∫ h(t)

g(t)
K(x, y)I(t, y)dy = 0 uniformly for x ∈ R.

Taking

It = d

∫ h(t)

g(t)
J(x− y)I(t, y)dy − dI + βS

∫ h(t)

g(t)
K(x, y)I(t, y)dy − αI − µ2I,

with (t, x) = (tn, ξn) and n→∞ we obtain

0 = (−d− α− µ2)σ∗ < 0.

Then we get a contradiction. Hence lim
t→∞

I(t, x) = 0 for x ∈ [g(t), h(t)].

Next we prove lim
t→∞

max
x∈[g(t),h(t)]

R(t, x) = 0. For any small ε2 > 0, there exists T2(ε2) such that

I(t, x) ≤ ε2 for t ≥ T2 and x ∈ [g(t), h(t)]. Then
Rt ≤ d

∫ h(t)

g(t)
J(x− y)R(t, y)dy − dR+ αε2 − µ3R, t > T2, x ∈ (g(t), h(t)),

R(t, x) = 0, t ≥ T2, x ∈ R\(g(t), h(t)),

R(T2, x) = R(T2, x), x ∈ (g(T2), h(T2)).

Let R̄(t) be the solution of {
R̄t = αε2 − µ3R̄, t > T2,

R̄(T2) = ‖R(T2, ·)‖∞.

It follows from [2, Lemma 2.2] that R(t, x) ≤ R̄(t) for t > T2 and x ∈ [g(t), h(t)]. Since

lim
t→∞

R̄(t) = αε2
µ3

, we have lim sup
t→∞

R(t, x) ≤ αε2
µ3

for x ∈ [g(t), h(t)]. By letting ε2 → ∞, we can

obtain lim
t→∞

R(t, x) = 0 for x ∈ [g(t), h(t)].



12

Then we prove lim
t→∞

S(t, x) = b
µ1

. For any small ε3 > 0, there exists T3(ε3) such that I(t, x) ≤ ε3

for t ≥ T3 and x ∈ [g(t), h(t)]. Then St ≥ d
∫
R
J(x− y)S(t, y)dy − dS + b− βSε3 − µ1S, t > 0, x ∈ R,

S(T3, x) = S(T3, x), x ∈ R.

Let S(t) be solution of {
St = b− βSε3 − µ1S, t > T3,

S(T3, x) = inf
x∈R

S(T3, x), x ∈ R.

It follows from [12, Lemma 2.2] that S(t, x) ≥ S(t) for t ≥ T3 and x ∈ R. Since lim
t→∞

S(t) = b
βε3+µ1

,

we have lim inf
t→∞

S(t, x) ≥ b
βε3+µ1

for x ∈ R. By the arbitrariness of ε3, we have lim inf
t→∞

S(t, x) ≥ b
µ1

for x ∈ R. Then combining this with (3.1), we get lim
t→∞

S(t, x) = b
µ1

.

In what follows, we prove (3.4). On the contrary, assume that λp(L(g∞,h∞) + β b
µ1

) < 0. Then

there exists ε4 ∈ (0, b
µ1

) such that λp(L(g∞+ε4,h∞−ε4) + β( b
µ1
− ε4)) < 0. Moreover, for such ε4,

according to conditions h∞−g∞ <∞ and lim
t→∞

S(t, x) = b
µ1

for x ∈ R, there exists T4(ε4) such

that g(t) < g∞ + ε4, h(t) > h∞ − ε4 for t > T4, and S(t, x) ≥ b
µ1
− ε4 for t > T4 and x ∈ R. Then

for t > T4, x ∈ [g∞ + ε4, h∞ − ε4],

It ≥ d
∫ h∞−ε4

g∞+ε4

J(x− y)I(t, y)dy − dI + β(
b

µ1
− ε4)

∫ h∞−ε4

g∞+ε4

K(x, y)I(t, y)dy − αI − µ2I.

Let 0 < φε(x) ≤ 1 be the corresponding normalized eigenfunction of λp(L(g∞+ε4,h∞−ε4)+β( b
µ1
−ε4)),

namely

−d
∫ h∞−ε4

g∞−ε4
J(x− y)φε(y)dy − β(

b

µ1
− ε4)

∫ h∞−ε4

g∞−ε4
K(x, y)φε(y)dy + (d+ α+ µ2)φε(x) = λpφε(x).

Thus λpφε(x) < 0, for any δ > 0,

−d
∫ h∞−ε4

g∞+ε4

J(x− y)δφε(y)dy−β(
b

µ1
−ε4)

∫ h∞−ε4

g∞−ε4
K(x, y)δφε(y)dy+(d+α+µ2)δφε(x) = λpδφε(x),

obviously that λpδφε(x) < 0.

Then we can choose δ small enough such that δφε(x) < I(T4, x) for x ∈ [g∞ + ε4, h∞ − ε4]. By

using the comparison principle we can obtain

lim inf
t→∞

I(t, x) > lim inf
t→∞

I(t, x) = δφε(x) > 0 in (g∞ + ε4, h∞ − ε4).

This contradicts with the first limit of (3.3). Therefore we get (3.4).

It follows from Proposition 2.1 that when R0 > 1 there exists `∗ > 0 such that
λp(L(`1,`2) + β b

µ1
) = 0, `2 − `1 = `∗,

λp(L(`1,`2) + β b
µ1

) < 0, `2 − `1 > `∗,

λp(L(`1,`2) + β b
µ1

) > 0, `2 − `1 < `∗.

(3.6)

On the basis of (3.6), we get the following result.
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Lemma 3.3. Assume that (J) and (K) hold, and J(x) > 0 in R. Let (S, I,R, g, h) be the solution

of (1.4). If R0 > 1, then

(i) if h∞ − g∞ <∞, then h∞ − g∞ ≤ `∗;

(ii) if 2h0 ≥ `∗, then h∞ − g∞ =∞;

(iii) if 2h0 < `∗, then there exists 0 < µ∗ ≤ µ∗ such that h∞ − g∞ = ∞ (spreading) for µ > µ∗,

and h∞ − g∞ <∞ (vanishing) for 0 < µ ≤ µ∗ and S0(x) ≤ b
µ1

in x ∈ R.

Proof. The proof is same as [14, Lemma 2.10], now we give the details.

(i) Assume that the conclusion is incorrect, then h∞ − g∞ > `∗. From the above (3.6) we can

obtain λp(L(g∞,h∞) + β b
µ1

) < 0. Since h∞− g∞ <∞, then it follows from Lemma 3.2 that we have

(3.4) hold, this is a contradiction.

(ii) Suppose that h∞− g∞ <∞, from (i) we can have h∞− g∞ ≤ `∗, since the monotonicity of

g(t) and h(t), we obtain h∞ − g∞ > 2h0 ≥ `∗, hence this is a contradiction.

(iii) Since It ≥ d

∫ h(t)

g(t)
J(x − y)I(t, y)dy − dI − µ2I − αI, by using Lemma 3.9 of [4], we can

have that there exists µ∗ > 0 such that h∞ − g∞ = ∞ for µ > µ∗. Now we begin to prove the

conclusion of vanishing. Since 2h0 < `∗, by (3.6) we have λp(L(−h0,h0) + β b
µ1

) > 0. For some small

ε > 0, we define h∗ := h0 + ε and λ∗ := λp(L(−h∗,h∗) + β b
µ1

) > 0. Let φ∗ be the positive normalized

eigenfunction corresponding to λ∗, namely, ‖φ∗‖∞ = 1. For x ∈ (−h∗, h∗), we have

−d
∫ h∗

−h∗
J(x− y)φ∗(y)dy + dφ∗(x)− β b

µ1

∫ h∗

−h∗
K(x, y)φ∗(y)dy + (α+ µ2)φ∗(x) = λ∗φ∗(x).

Then we define

h̄(t) = h0 + ε(1− e−δt), ḡ(t) = −h̄(t), t > 0,

S̄(t, x) = b
µ1
, t > 0, x ∈ R,

Ī(t, x) = K1e
−δtφ∗(x), t > 0, ḡ(t) < x < h̄(t),

R̄(t, x) = K2e
−δt, t > 0, ḡ(t) < x < h̄(t),

where δ, K1 and K2 are positive constants to be choosen later. Noting that S̄(0, x) = b
µ1
≥ S0(x)

in R, and h0 ≤ h̄(t) < h∗. It is obvious that

S̄t − d
∫
R
J(x− y)S̄(t, y)dy + dS̄ − b+ µ1S̄ ≥ 0

for t > 0, x ∈ R. Since λ∗ > 0, we can choose δ small enough and the positive constant K1 large

enough such that δ ≤ min
{
λ∗, µ32

}
and K1φ

∗(x) ≥ I0(x) for x ∈ (−h0, h0). Then we choose K2

large enough such that K2 ≥ max
{
‖R0‖∞,

αK1
µ3−δ

}
.

Through a series of calculations yield that

Īt − d
∫ h̄(t)

ḡ(t)
J(x− y)Ī(t, y)dy + dĪ − βS̄

∫ h̄(t)

ḡ(t)
K(x, y)Ī(t, y)dy + (α+ µ2)Ī

≥ K1e
−δt(−δφ∗ − d

∫ h∗

−h∗
J(x− y)φ∗(y)dy + dφ∗ − βS̄

∫ h∗

−h∗
K(x, y)φ∗(y)dy + (α+ µ2)φ∗)

≥ K1e
−δt(−δ + λ∗)φ∗(x) ≥ 0,
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R̄t − d
∫ h̄(t)

ḡ(t)
J(x− y)R̄(t, y)dy + dR̄− αI + µ3R̄ ≥ (−δK2 − αK1φ

∗ + µ3K2)e−δt

≥ (−δK2 − αK1 + µ3K2)e−δt ≥ 0

for t > 0, x ∈ (ḡ(t), h̄(t)). By the above definition, we have Ī(0, x) = K1φ
∗(x) ≥ I0(x) , R̄(0, x) =

K2 ≥ R0(x) for x ∈ (−h0, h0). Moreover, h̄′(t) = εδe−δt, µ

∫ h̄(t)

ḡ(t)

∫ +∞

h̄(t)
J(x− y)Ī(t, x)dydx ≤

2µK1h
∗e−δt. Hence we define µ∗ := εδ

2K1h∗
, if µ ≤ µ∗, then we obtain

h̄′(t) ≥ µ
∫ h̄(t)

ḡ(t)

∫ +∞

h̄(t)
J(x− y)Ī(t, x)dydx.

Similarly, one can easily derive that

ḡ′(t) ≤ −µ
∫ h̄(t)

ḡ(t)

∫ ḡ(t)

−∞
J(x− y)Ī(t, x)dydx.

Then we can apply Lemma 2.3 to conclude that

g(t) ≥ ḡ(t), h(t) ≤ h̄(t) for t > 0.

Thus lim
t→∞

(h(t)− g(t)) ≤ lim
t→∞

(h̄(t)− ḡ(t)) ≤ 2h∗ <∞, namely, h∞ − g∞ <∞.

Therefore, Theorem 1.2 has been proved.
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