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1. INTRODUCTION AND MAIN RESULTS

Consider the three-dimensional (3D) magneto-micropolar equations which is coupled
with the incompressible Navier-Stokes equations, micro-rotational effects and magnetic
effects.

Ou+ (u-V)u—(v+r)Au+ Vp = (b-V)b+2kV X w,

Ow+ (u-Vw—ocAw — pVV - w + dkw = 2kV X u,

Ob+ (u-V)b—nAb= (b-V)u,

V-u=V-b=0,
where u = (uy, us, u3), w = (wy, wq, w3),b = (by, by, b3) denote the velocity, the microro-
tation angular velocity and the magnetic field respectively. p(x,t) the scalar pressure. v,
K, 0, i, n are viscous coefficients. When w =0 or b =0 or w = b = 0, the system (1.1)
respectively reduces to the classic magnetohydrodynamics(MHD) equations, micropolar
equations or the classic Navier-Stokes equations ([7, 11, 18, 21]).

Since the magneto-micropolar equations are coupled with the Navier-Stokes equa-
tions, the question of global regularity of the 3D system with large initial data is still a
big open problem. Therefore more and more studies are focused on the global smooth
solution of the 2D or 3D magneto-micropolar equations with partial dissipation. For
the above three classic equations, there are many important studies on this direction.

(1.1)
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Here we only refer to parts of them, such as [3, 20] on the Navier-Stokes equations,
2, 12, 15, 24, 25] on the magnetohydrodynamics (MHD) equations and [4, 5, 6, 22| on
the micropolar equations. As for the magneto-micropolar equations, Rojas-Medar [16]
first investigated the existence of local smooth solution of the 3D system with full Lapla-
cian dissipation. Yamazaki [26] studied the global regularity of 2D magneto-micropolar
equations without angular viscosity. Regmi and Wu [14], Shang and Wu [17] studied
the global regularity of 2D magneto-micropolar equations under the different isentropic
dissipation cases and fractional dissipation cases. Jia, Xie and Dong [9] recently investi-
gated the global smooth solution of 3D system with low amount of fractional dissipation.
One may also refer to some recent global regularity results of 2D magneto-micropolar
equations under different partial dissipation (see [8, 13, 19, 23, 27]).

The main purpose of this paper is to further consider the global smooth solution of
the 3D isentropic dissipative magneto-micropolar equations. That is, we consider the
following system coupled the logarithmically hyperdissipative velocity dissipation and
the fractional magnetic diffusion

([ Qu+ (u-Vu+ Mu+Vp=(b-Vb+V xw, v€R3 t>0,

Ow ~+ (u-V)w+2w =V X u,

O+ (u-V)b+ (=AYb = (b-V)u, (1.2)
Vou=V-b=0,

u(z,0) = ug(x), w(x,0) =wy(x), b(x,0) = by(x),

\

where the Fourier multiplier M satisfies

v "
~

Mul6) = Jep i) @

and the radially symmetric, non-decreasing function g(7) satisfies

vV
nO| O

(07
4’ 7

Y

o dr 7

—:O()7 O[:—7 13
/e 7VInTg%(7) 4 (1.3)
< dr 7 5

B - — 1.4
/6792(7) oAttty A

We will show the following global existence results.

Theorem 1.1. Let (ug, wo, by) € H*(R3) with s > % and V - ug =V - bg = 0. then the
system (1.2) admits a unique global smooth solution (u, w, b) such that for any given
T>0,

(u, w, b) € C([0,T]; H*(R?)), Mu € L*([0,T]; H*(R?)), b e L*([0,T]; H**7(R?)).

It should be mentioned that the motivation of our study in logarithmical hyperdis-
sipation case is partially borrowed the idea of Tao [20]. In this important work, Tao
established the global regularity of a generalized Navier-Stokes equations

{ du+ (u-V)u+D*u+ Vp =0,

1.5
V.-u=0, (15)



where the Fourier multiplier D satisfies
Bue) > K5, tor tae Ie
a(lgh)

and g : Rt — R™ is a non-decreasing function satisfying

/OO ds = +00
1 594(5)

Recently, Wu [24] also made an important progress on the global smooth solution of the
generalized MHD equations with the logarithmical hyperdissipation of velocity fields
and magnetic fields. Wang, Wu and Ye [22] recently examined the global regularity of
the three-dimensional micropolar equations with the logarithmical hyperdissipation in
velocity fields.

On comparison with the previous study, our results here are not completely parallel
to those. The main new difficulty is how to improve the regularity of the angular velocity
field w since we only look at the equations of w as transport equations. Fortunately,
we have some new observations on the special structure of the generalized system (1.2).
This observation allows us to derive a crucial higher order derivatives estimates of w
step by step through dealing with some new a priori estimations of u and b ,

t
IVu(t)|7: + V(1|7 + ||/\(’w(75)||2ﬁ>+/0 (IMVu(r)[[72 + IAVb(7)172) dr
SC(t, Up, Wo, bO)

with o € (0, 2).
Our study here also shows that the mechanism of the coupled logarithmical hyperdis-
sipation and fractional dissipation to the regularity of solutions has independent interest.

2. A priori ESTIMATES

It suffices to consider oo + v = g with % < a < g Let us start with the basic
L?-estimates and H' estimates.

Lemma 2.1. Assume (ug, wo, by) satisfies the assumptions stated in Theorem 1.1. If
a+7y =2 with T <a <32, then the corresponding solution (u, w, b) of (1.2) admits the
following bound for any t > 0.

t
()22 + [l @Iz + 1) 22 +/0 (1A= ()22 + [|Mu(r) |72 + [A7B(7) [112) dr

§O<t7 Ugp, Wo, bO)

(2.1)

for any o1 € (0, v — 1).
Proof of Lemma 2.1. Taking the inner product of (1.2) by (u, w, b) as well as adding
the resulting equations together, we have

1d

5 77 [ Ol72 + eIz + [6(0)72) + [Mullzz + [A7]72 + 2wz



:/R3 <(V><w)-u+(V><u)-w>dx.

Thanks to the assumptions on g (more precisely, g grows logarithmically), one may
conclude that for any given ¥ > 0, there exists N = N (1) satisfying

g(r) < 57‘19, for any r > N

with the constant C' = 5(19) Therefore, straightforward computations give for any
o1 € (0, a — 1) that

SN [
M 22: 2d 2d
Ml /KKN(mgzusr)’““)’ £+/ﬂzw;a/2<|£|>‘“(5)' ¢

1% e
> —5 d
- /élzN(cn) [Cle]” e (2.2)

€7 g2 €7 g2
/]R3 [C|§|o_1}2|u< )| /|;|<N(0'1) [C|§|01]2|U( )l

> CLl|A |72 — Collullze,

where 51 and CN'Q depend only on oy. Choosing o7 € (0, %), we have that by combining
all the above estimates

1d 1 1 —~
“—(lu@®)72 + [lw®)||72 + [[6@)]172) + = [Mul72 + = [|A7D||72 + Cil|A* T ul|72
2dt 2 2
< Gollullz +/ (V% w) - ut (¥ x u) - w)da
]R?’
< Oollulliz + 2| Vul 2 ||lw]| 22
— a—oy—1 1
< Gollullz. +2 (Huan-“ ||Aa-01u||z;”1) ool 2
a a—o1 2 2 2
< 7HA ull72 + C (Jlull72 + |wl|72) -

Consequently, it implies

d —
77 (le@IIZz + [lw®)lZ + 1BO)Z2) + [MullZzz + AP + 1A ull:

< C (Ilullzz + llwlZz + 1blZ2) -

Making use of the Gronwall inequality, it directly yields (2.1). This completes the proof
of Lemma 2.1. O

Lemma 2.2. Assume (ug, wg, by) satisfies the assumptions stated in Theorem 1.1. If
a+y= % with 71 <a< g, then the corresponding solution (u, w, b) of (1.2) admits the
following bound for any t > 0,

“QZA_) u?) i + /0

A2a—1 2

$(A)

u(r)

12 dr S C(t, Up, Wo, bo) (23)



In particular, if o = %, then it holds true

t Ag 2
< ) 2.4
/0 g2(A)U(7’) 12 dr ~ O(t, Up, Wo, bo) ( )
[f;z <a< g, then it holds true
t
/ (IAZu(m)[[72 + IVu(r)||2e) dr < C(t, uo, wo, bo). (2.5)
0

A2a—2

Proof of Lemma 2.2. Multiplying (1.2), by oz v and integrating it over the whole
space, we obtain
2

1 d Aafl 2 2c—1
—— ||—F—ult + =
2dtHg(A) () 12 '92(/\) L2
200—2 200—2 A20172
= V X w- udx—/ u-Vu-—udx—i—/ b-Vb) - wdx.
. 20 Vit LV
It follows from the Young inequality that
200—2 A2a72
VXxw- - ——udzx| < |lw|lp||V——u
R gQ(A) “ ||L g2<A) L2
1 || A20-1 2
< —||——u + CO|lwl?..
<5 |5y, + et

Following the proof of (2.2), it is not difficult to check that for any o5 € (0, & — 1) and
for any o3 € (0, 2a¢ — 1), such that

2

Aafl
‘—“ > CL[AT |z — CollullZe, (2.6)
g(A) |
Aol 201 2 2
U > Cs||A“ |52 — Cyl|ul|72. 2.7
IS, = e I3 - Cullal 27
Thanks to V - u = 0 and the Gagliardo-Nirenberg inequality, we have
A2a—2 2a0—2
— u-Vu) ——udz| < Cllu @ ul|lz2 ||V——=u
- [ e ulie [V 5]
A2a71
< C|lul|?s || =——u
= || ||L4 gQ(A) L2
1 2a—1
< C||Au Azu —u
< Ol Aul[z[|Azu] 2 20
1 ‘ A2a-1 |2 i
< S|+ CllAullZe | Az ull7:
8[| g2(A) L2 - -
1 A2cx—1 2 o ) A ) o A ) a—1 2
S —||l—=—<Uu + UllT2 U|| 72+ Ul 2 —U‘ )
I EnE R e A ot
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where in the last line we have applied (2.1) with oy = a — 1 and (2.6) with oy = a — 2.

2
Similarly, we have
AQa—Z A2a—2
b-Vb)  ——udx V——u
Lo d

< Cllb® b2
@ bl |V

L2
AQa—l
g*(A)

2

< Clbllzs

u

L2
A2a—1
g%(A)

u

+ C[b|| 74
2

1
< =
<3

L
Combining the above estimates yields

d (vt A2a-1
@‘ g(A) ult) 2(A)

2
< C|Au|)32

2 2

u

i

L2

a—1

9(A)

In order to close the above inequality, it sufficient to bound |[|b]|7,. To this end, we
multiply (1.2); by |66 to show

d
E|]b(t)Hi4+/ AQ'Yb(]b\Qb)dx:/ b- Vu(|b*b) dx.
R3 R3

We first notice that, for 0 < v < %

L2 (2.8)

ull  + Cllwlzz + Cllullzz | AullZ. + Cllb L.

L2

/ AB([b*) dae = ClIAY(1B]*) 172 = CIDII 5.
R3 [ 3—2vy
The simple embedding inequality and the Holder inequality ensure that

/ b- Vu(|b]*b) dz
R3

5 101 24

< O Vull,

< Cll A%l 2 Bl 1B .
< ClA%ull 2Bl D] 15
One may check that for some o > 0

IA%ullze < IShA%ull2 + ) AN |2

=N

< Ix@NEIEPTE) 2 + C Y 27 AN |2

=N

< o v aate) Sa©| +e Yzl
g(|€|) L2 I=N
C N |§|a ~ C —No Aa+cr 5

< Cg(2%) | Mul| 2 + C27 VAl |7 A% 7,



where w is given by
o+ o1

= 0, 1).
« 04—1—1—01—03€<’ )

This implies

d 4 4 N 2 2
—— 4 12 < b 4 b 12
SOOI+ 100 5. < Co@™) Ml B3 012 s )

" CQ—NUHAO‘_UluH;wHAM_l_JBUH?Q”bH%‘leHiBTHH'

For the sake of simplicity, we denote
2

X(t) = g&u(t) pRa Ll
VO = | Sege]| + ol s

then it follows from (2.8) and (2.9) that
d
— X0 +Y (1) < O+ [[Aullz2) X(6) + Cllw]zz + Cllullzz || Al
+Cg(2%) [|Mul] 2 X2 (8)Y 2 () (2.10)
+ O27 N AT F X ()Y 5 (1)
+ 27N YA ) 5T X2 (1) [ 7
Now taking N as
22N ~ e + X (1),
we get from (2.10) that
d
ZXO+Y () <C+ [Aul|72) X (t) + CllwlZ2 + Cllull7al|Aull?:
+Cg (le+X(0))% ) | Mull2 X0V H(2)

14w

+CA ]| 7Y R (1)
1
< SY(0) + O+ | Aullz) X (1) + Cllwllze + Cllullze | Aullza (2.11)

+ ClIMulE ¢* (fe+ X)) (e + X (1))

+C(IA " ullZ2 + 1)lullZ
1

< §Y(t) + Z(t)g? ([e + X(t)]ﬁ) (e+X(1)),

where
Z(t) = C [1+ |Aullza + [lwl[Z2 + M2 + (1A ullZ2 + [AulZe + DlullZ:] (0).
The estimate (2.1) implies that

t
/ Z(r)dr < C(t, o, wo, by).
0
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We thus have
Cx(+Y(0) < 20 (le + XOIF) (e + X(1). (2.12)

Now we deduce from (2.12) that
e+X(t) dr t
/ — S / Z(T) dr S C(t, Up, Wo, bo)
etx(0) Tg*(127) Jo

Noticing the following fact

it follows that
X(t) < C(t, uo, wo, bo).

Coming back to (2.12), we also conclude

t
/ Y () dr < C(t, ug, wo, by).
0

This leads to the bound (2.3). The desired estimate (2.5) is an easy consequence of (2.7)
and the interpolation inequality. This completes the proof of the lemma 2.2. 0
The following regular estimates are crucial for the proof of Theorem 1.1.

Lemma 2.3. Assume (ug, wg, by) satisfies the assumptions stated in Theorem 1.1. If

a+y= g with E <a< g, then the corresponding solution (u, w, b) of (1.2) admits the

following bound for any t > 0 and for any o € (0, %)

t
IVu@®)lze + IVo®)|22 + ||A°'w(lf)lliz+/0 (IMVu(r)|IZ2 + [[ATVb(7)|[12) dr

SC(t7 Up, Wo, bO)

(2.13)

In particular, it implies

t
/ (IA2u(T) 172 + I Vu(r)|lZx) dr < C(t, uo, wo, bo)- (2.14)
0

Proof of Lemma 2.3. 1t follows from (2.5) that if a + v = % with ;Z <a< g, then we
already have (2.3), namely,

t
| (183 + 19ur) ) dr < O, uo, wo, ). (215)
0

As a matter of fact, the above estimate (2.15) immediately implies the higher regularity

(see below for details). Consequently, it suffices to consider the endpoint case o+ = g

with oo = ;i. In this case, we only have (2.4), namely,

/

5

Az

m dr < C(t, Up, Wo, bo) (216)

u(r)

L2




Applying A% (for any & € (0, 2)) to (1.2), and taking the inner product with A%w

we obtain
ld s 2 5,02
5 SN W) + 247wl
= / A7 (V x u)A&wda:—/ (A% u - VwAw dx
R3 R3
= K1+K2.

For K, Gagliardo-Nirenberg inequality and (2.2) implies

K1 S O||A5+1U”L2 ||A5w||L2

5 2

—2u + O|ul?..
gg(A> L H ”L

For K5, employing the classic Kato-Ponce commutator estimates ([10]) yields

K, = —/ [A%0,,, uJwA°w dx
R3

< [IA7wli +C

IN

||[A58xi,ui]w“L2 HAEwHLz
< € (IVulli= 1A% 2 + AT ] g ) o ) 1A% 1

3—-20
< O (IVulle= 7wl + 1A 3ull A7) 22 ) | A%w] 2
5 G
< € (IVullz + [A3ullzz ) [A7w]2.
Collecting the above estimates, we have for any o € (0, %), such that
2

5

g2 (A)

d 5 g G
FIA7w@O)lz2 < CO+ [Vl + [[A2ull2) [ATw]|Z2 + C ull -+ Cllulze.

L2

Applying the gradient operator V to the equations of (1.2), and (1.2),, multiplying

them by Vu and Vb, respectively, we deduce that

1d
57 IVu®lze + IVb(0)Z2) + [MVullzz + A7V

= [ VVxw-Vuder— | V(u-Vu)-Vude— [ V(u-Vb) - Vbdx
R3 R3 R3

+/3 (V(b-Vu)-Vb+V(b-Vb)-Vu>d:v

Following the argument used in proving (2.2), we have for any o4 € (0, «, such that
IMVullfz = Col|A*7*Vul[7> — Cs||VullZ. (2.18)
In view of (2.18), we deduce that by taking o4 € (0, 7 + a — 2],
Ay < O|A w2 ||A* V)| 12

(2.17)

9

Y



10

< COlIA%w] (| Va2 + [A* 7 V| 2)
< ClA%w][ 2 (|MVull 2 + [Vl )

IN

%IIMVUII%Q + (A w72 + [ VuZ2).
Moreover, we also have

Az < C||Vul| ||Vl 2,

A3 < C|Vullz=[|Vb] 72,

Ay < OVl 1= | VB2

Collecting all the above estimates gives

g g
d o a—04
E(IIVU(OI\% +[IVB()]1Z2 + [IA7w(t)[|72) + MVul|Z2 + A7 V|7

5 5
< C(1+ [IVullzee + 82wl 22) (IVull 2 + [ VB2 + [|A7w]72)

5 2

+C’m

ul| 4 ClullZ.

L2

It should be noted that (2.5) and the Gronwall inequality imply the desired estimate
(2.13). In order to handle the endpoint case o + vy = g with a = ;1. Denoting

X(t) = [Vu(®)z2 + VOO + [A7w(®)]7:,
Y(t) = [MVu®)l[z2 + [A*7Vu(®)]L2 + [AVB][7.,

5 2
~ Az
H(t) =C u(t + Clu(t)||?..
(t) 7200 (t) . [u(®)]]7
We can deduce that
d ~ ~ 5 ~ ~
EX(lt) +Y(@)<C (1 + || Vul| g~ + ||A5u||L2> X(t)+ H(t). (2.19)

Employing the classic Littlewood-Paley decomposition (refer to [1] for details), one
shows that

N-1 [e'S)
IVl < AVl + D 1AV + Y [|AVul| =,
1=0 I=N
where A; (I = —1,0, 1, - - -) denote the nonhomogeneous dyadic blocks. Applying

Bernstein inequality obeys

JA Pl < Cllull,

S AVulle < O3 2 G ANV pp < COVETH AT Ty,

=N =N

due to o4 € (0, a — 2).



Similarly,

€|2

N-1

< Cg*(2") (Z 1) 2

=1

L2

where we have the fact that g is a non-decreasing function.

Putting the above estimates altogether implies for any o4 € (0, o —

IVl <Cllullzz + Co2VIVN || s

[AZul|2 <Cllul|: + CPYIVN || S—u

By (2.19), we obtain

d ~
dt

where

Taking N as

we thus deduce

%X(t) +Y()<C (1 +

—XH+Y@t)<C (1 + gQ(QN)\/N‘

3), such that
A/Xg N 3

+ C2NGatos) || \omoaygy | 1,
L2

g*(A)

+ C2NGeton) || N1y | 1o
L2

u

A3
g*(A)

L2

U::a—a4—§>0.

N e+ X (1),

11

+ Q_N“\IA“_"‘*VUI!L?) X(t) + H(t),
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5

+COYE(t) + H(t)

+%ﬁw+0+ﬁ®.

u

)f(k+i@ﬁ) h%f+§@»<e+iﬁw

L2

Consequently it gives

5

if@+?@§O<L%

)f(k+§@ﬁ) h%e+§@0<e+§@»

dt 20"

+C+ H(t).

Due to
¢ (le+ X)) y/n (e + X®) (e + X)) > 1,

we have

%X(t) +Y (1)
s |12 . — B (2.20)
<C <1+uiz+ VG )92 ([6+X(t)]5) In (e+X(t)> <e+X(t)).

This along with (2.16) yields

5

J— s+ | ( )
—SC/ 14 ||u + || ——u dr < C(t, ug, wo, by).
er%(0) TVInTg2(77) 0 e g*(A) 12 oo
Notice that the condition
/°° dr & dr
1. = VUV —— =
e T\/mg(TZ) e T\/EQ(T)

It is not hard to check that X (t) will keep boundedness for any given ¢ > 0, namely,

X(t) S C(t7 Up, Wo, bO)
This together with (2.20) yields that

t ~

/ Y(T) dr S C(t, Up, Wo, bo)
0
Therefore, we have
t
HVUQﬂﬁ2+HVb@Hﬁz+HAFW@Nﬁe+lA (IMVu(r)|1Z2 + [AVD(T)[[72) dr
S O(tv Up, Wo, bO)

Thanks to (2.18) and the following fact

3
||A%u||L2 + |Vl pe < C| A7V ul||2s + Cllul|32, o4 € (0, o — 5) ,
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the desired estimate (2.3) holds directly. This ends the proof of the lemma 2.3. U

3. THE PROOF OF THEOREM 1.1

This section is devoted to proving Theorem 1.1. To do so, applying A® with s > g to
the system (1.2) and taking the L? inner product with A*u, A®h and A*w respectively,
adding them up, we can get

1d (
2dt

:/ (AS(V X u) - Nw+A(V xw) - Asu> d:z:—/ [A°,u-V]u - Nudz
R3 R3

[A%ul|72 | A%w][72 +|A%B] 72) + | MA | 72+ 2] A%w|[ 72+ AT 7
—/ [As,u-V]w-Aswdm+/ [As,b-V]b-Asud:er/ [Ab- V]u - A*bda
R3 R3 R3 (31)

— | [A%u-V]b-Abde

R3

i

ﬁ%

B
Il

1

It is easy to check that for any o5 € (0, ),
IMAu|[T2 = Cil| A7 A%ul| 2 — Col|AullZ. (3:2)
For o5 € (0, a — 1), we have by (3.2)
Ji < CllA w2 | AVl
< CllAw] 2 (MAul[ g2 + [[A%u]|12)
< IMAUl + O (1A%l + [A%ullz)
The classic Kato-Ponce commutator estimates ([10]) yields
Jo < CJ[A% w- Vw2 [ Al 22
< ClIVulloe | Al Z.

Using (3.2), it implies for & — 05 > 2 — a that

J3 = —/ [A°O,,, uilwA\*w dx
R3

< A On;, wilw]| 2| A*w]] 2

< C(IVullz|A"wllz2 + Al allwll | o )l[A%w] g2

< O(|[Vull e | A%wl| 2 + | AZ7A° o )| A%w]| 2

< O Vull = |A%w]| 2 + (MA ul| 2 + ”ASUHLQ)HAUU)HLZ)HASwHLQ
<

EHM/\SUH%Q + O+ [[Vullze + [A7w]Z2) (|4 72 + [A*w]|Z2).
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Now we take p > 2 satisfying
1 S ba — 505 —3 — (2a — 3 — 205)s

P 6(a — o5)
We remark that the above p would work by taking o5 suitable small. Consequently, it
is not hard to check that
Jo SC[[A%0- VB[l 2 [|A%u]] 25
LP+2 Lp-2

<CIVollallAbl 2| A%ull 2z,

3E-2) 3< ~2) _(s=1)p+3 _(s=Dp+3
<C (HVb||L2 2(s— 1)p||Asb||2(s 1)p> ”AstL2 (HVUHLQ (ats—1— os)pHAa 95 ASq, ||(a+s 1— 05)17)

3(p—2) 3(p—2) 1__(s=1)p+3 (s=1)p+
(HVbIILQ e ”"IIASbHQ“ ””) [A%D]| 2| V| o 7 ([ MAS | 2 4| A% ]| 2) o1 o

1 S S S
<7glMAullzz + F(IVullz, [V]2) (1Al + [[A°D]72),

where F(x, y) is also a smooth increasing function with respect to variable x and y.
Similarly, one has

Js, Jo < C (A" - VIbllzz + A%, b+ V]ullz2) [A°b] 12
< C (IVull =4l + [ Vbl slA"ul 2z, ) 1A%

< 1_6HMASUHL2 + F ([[Vul|z2, VO] 2) (HASUH%z + [|[A°B]|72)
+ C||Vul| L || A®]|3-.

Collecting all the above estimates, we see that

d
00 + IIMA 72 + AL < Co(t) (e + 6(1))

where ¢(t) and 1)(t) are given by
o(t) = A u(®)|Z> + [Aw(B)||Z> + [AB()]1Z2,
Y(t) = (1+[|Vullze + [A7w]Z2 + F([Vul 22, [[V]12)) (2)-
It follows from (2.13) and (2.3) that
t
/ (1) dr < C(t, up, wo, bo).
0

The Gronwall inequality implies
t
[A*u(t)[|Z2 + [IA*w(t)72 + HAsb(t)H%fr/O (IMA u(T)[[Z2 + [|A7D(7)|[Z2) dr

SC(t, Up, Wo, b0)7

which concludes the proof of Theorem 1.1.
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