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Abstract

In this paper, we consider switched systems that allow discontinuous jumps in the state when switching occurs. In particular

we analyze the case where these jumps are dictated by a state reset rule. We show that it is possible to study the state

trajectories of a switched system with state reset by means of some switched systems without state resets, i.e., with continuous

state trajectories. We establish some sufficient conditions for stability of switched systems with state reset using the associated

systems without reset. The obtained results are used in numerical examples to show the effectiveness of the proposed approach.
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Abstract

In this paper, we consider switched systems that allow discontinuous jumps in the
state when switching occurs. In particular we analyze the case where these jumps are
dictated by a state reset rule. We show that it is possible to study the state trajectories
of a switched system with state reset by means of some switched systems without
state resets, i.e., with continuous state trajectories. We establish some sufficient con-
ditions for stability of switched systems with state reset using the associated systems
without reset. The obtained results are used in numerical examples to show the ef-
fectiveness of the proposed approach.
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1 INTRODUCTION

A switched linear system is a special type of time-variant system that can be viewed as a family of time-invariant linear systems
together with a switching law. The switching law determines which of the linear system within the family is active at each time
instant, hence defining how the time-invariant systems commute among themselves, giving origin to a time-variant system,1.
The most common approach when dealing with switched systems is not to allow jumps in the state during the switching in-

stants. In such case, even if each individual time-invariant system is stable the correspondent switched systemmay be unstable,2.
The stability of switched systems with continuous state trajectories has been widely investigated, see, for instance,3,4,5 and6.
However, in some situations it is natural and profitable to allow state jumps during switching instants. In fact, many processes

may experience abrupt state changes at certain moments of time and one effective approach to achieve stability is state resetting
at switching instants, see, for instance,7 and8. The resulting system is a switched system with state reset,9.
In this paper, we consider switched systems with state reset as switched systems where the state may change according with a

certain linear reset map when switching occurs. This reset map does not depend on the instant when the switching occurs itself,
but only on the value of the switching signal before and after the switching.
The analysis of the stability property of a switched system must take into consideration the possibility that all the components

of the state or only part of them may undergo the action of a reset and, if possible, whether the choice of resets is allowed and
whether there is a criterion of choice in order to ensure the stability of the switched system. These problems of stabilization
of a switched system using state reset have been considered in our previous work, see, for instance,10,11 and12. Recently, other
authors have considered similar stabilization problems in different frameworks, see, for instance,13,14 and15.
In the present work, we consider that resets can be applied at all the switching instants, however our focus is to investigate

the stability property of the switched system associated with a given class of resets. The stability analysis will be carried out
from the analysis of the trajectories of a time-variant system without resets whose dynamics is derived from the dynamics of the
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initial system. Using the obtained results, we present some sufficient conditions for the stability of a certain particular classes
of switched systems with state reset.

2 PRELIMINARIES

Let Σ =
{

Σp ∶ p ∈ 
}

be a family of linear time-invariant systems (LTI) state-space systems, where  = {1,⋯ , N} is a finite
index set. Since the focus is on internal stability, we consider systems without inputs and disregard the output equation. Let
ẋ(t) = Apx(t) be the state-space representation of Σp, for p ∈  . Additionally, define a switching law or a switching signal as a
piecewise constant function of time � ∶

[

t0,+∞
[

→  , such that, �(t) = ik−1, for t ∈
[

tk−1, tk
[

k∈ℕ ; the time instants tk, k ∈ ℕ,
such that t0 < t1 <… < tk−1 < tk… are called switching instants. The set of all switching signals is represented by  .

A triple S =
(

 ,Σ ,
)

is said to be a switched system with switching bank Σ , in the sense that each switching signal
�(⋅) ∈  produces the linear time-variant system Σ� (called �-switched system) defined by

ẋ(t) = A�(t)x(t) (1)

for all t ≥ t0, where x(t) ∈ ℝn is the state. With some language abuse, since LTI state-space systems are completely determined
by the state matrices, we also call

{

Ap ∶ p ∈ 
}

the switching bank of S. Here, no state jumps at the switching instants tk are
allowed.

Next, we present the definition of switched system with state reset. At each switching instant the state reset is determined by
the systems Σp that are active before and after the switching. The state discontinuities are associated with a family of reset laws

 =
{

R(q,p) ∈ ℝn×n ∶ (q, p) ∈  ×  , q ≠ p
}

,

where R(q,p) are non-zero real matrices that act on the state of the system at the switching instants. These matrices are called
reset matrices or, simply, resets.

Definition 1. A quadruple SR =
(

 ,Σ , ,
)

is said to be a switched system with state reset if each switching signal �(⋅) ∈
 produces a linear time-variant system ΣR� defined as in (1), such that at each switching time instant tk, k ∈ ℕ, with t0 < t1 <
… < tk−1 < tk <…,

x(tk) = R(ik−1,ik)x(t
−
k ), if �(t) = ik−1 for t ∈

[

tk−1, tk
[

, (2)

where x(t−k ) ∶= limt→t−k
x(t) and R(ik−1,ik) are reset matrices from .

Clearly, according to Definition 1, if, for all (q, p) ∈  ×  , R(q,p) = In, where In denotes the identity matrix of order
n, the correspondent switched system is a system without state reset, i.e., a classical switched system where the state evolves
continuously. Note that, for these systems (without reset) we use the notation S =

(

 ,Σ ,
)

, as already mentioned.

Remark 2. Let � ∈  be a switching signal and� be the set of reset matrices associated to the �-switched system. Then

� ⊆ .

If  = {1,… , N}, then� has at mostN(N − 1) resets.

Next definition presents the notion of stability of a switched system (with or without reset) under arbitrary switching. Notice
that the used notion is the usual global uniform exponential stability, which for linear systems is equivalent to the property of
global uniform asymptotic stability,1. In this paper, we use simply the term "stable" to refer to both equivalent properties.

Definition 3. A switched system SR =
(

 ,Σ , ,
)

is stable if there exist , � ∈ ℝ+ such that, for every switch-
ing signal �, for every t0 ∈ ℝ and every x0 ∈ ℝn, the correspondent state trajectory x(t), with x(t0) = x0, satisfies
||x(t)|| ≤ e−�(t−t0)||x0||, for t ≥ t0.

Clearly, this definition also covers the case of switched systems without reset, for which =
{

In
}

, as mentioned earlier.
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Remark 4. Notice that a switched system with state reset SR =
(

 ,Σ , ,
)

is stable if for each switching signal � ∈ 
the correspondent �−switched system with state reset ΣR� defined by

ΣR� ∶=
{

ẋ(t) = A�(t)x(t)
x(tk) = R(ik−1,ik)x(t

−
k )

, R(ik−1,ik) ∈ � , (3)

is stable.

For a switched system to be stable, it is necessary to have a bank of stable invariant systems. So, in the following, we exclusively
consider switched systems that have a switching bank Σ formed by stable systems. On the other hand, a well-known condition
that guarantees the stability of a switched system S is based on the notion of common quadratic Lyapunov function (CQLF). A
function V (x) = xTPx, where P is a square symmetric positive definite matrix, is said to be a CQLF for a switched system S if

ATp P + PAp < 0, for all p ∈  .

With some abuse of language, we shall call the matrix P a CQLF for Σ and forAp, p ∈  . The existence of a CQLF is sufficient
to ensure stability of the switched system, under arbitrary switching signal as is stated in the following proposition.

Proposition 5. 4 The switched system S =
(

 ,Σ ,
)

is stable if there exists a CQLF for Σ .

Among the results related with the existence of a CQLF for a switched system, see, for instance,5,16 and17, we present the
following propositions in order to improve the readability of Section 4 of this paper.

Proposition 6. 18 Let A1, A2 ∈ ℝn×n be stable matrices. A1 and A2 have CQLF if and only if A1A2 and A1A−12 do not have
negative real eigenvalues.

Proposition 7. 19 Let A1, A2 ∈ ℝn×n be stable matrices such that rank(A1 − A2) = 1. The matrices A1 and A2 have CQLF if
and only if A1A2 does not have negative real eigenvalues.

3 REDUCTION TO A DYNAMICS WITHOUT RESET

In this section, we analyze the stability property of a switched system with state reset SR =
(

 ,Σ , ,
)

analyzing the
property of each �-switched system with state reset ΣR� . This is carried out by relating the state trajectories of the SR with the
ones of a time-variant system without resets, i.e., with no jumps on the state.

We next produce a switching dynamics without reset that allows an analysis of the trajectories of the reset switched system ΣR� .
The trajectories of this new dynamics will be denoted by x̃(t). Here, to simplify the notation we define ck = (ik−1, ik), for k ∈ ℕ.

Lemma 8. Let ΣR� be a �-switched system with state reset defined according to (3). Assume that all the reset matrices are
invertible. The following time-variant linear system

̇̃x(t) = Ã(t)x̃(t) (4)

where
Ã(t) = Ai0 , para t ∈

[

t0, t1
[

;

Ã(t) =
(

∏1
m=kRcm

)−1
Aik

∏1
m=kRcm , for t ∈

[

tk, tk+1
[

, k ∈ ℕ;
(5)

and x̃(tk) = x̃(t−k ) is such that

x(t) =
0
∏

m=k
Rcm x̃(t), for t ∈

[

tk, tk+1
[

, k ∈ ℕ0.

By convention, Rc0 = In.

Proof. For t ∈
[

t0, t1
[

, ẋ(t) = Ai0x(t), that is equivalent to
̇̃x0(t) = Ã(t)x̃0(t), where x̃0(t0) = x(t0), such that

x̃0(t) = x(t) and Ã(t) = Ai0 . (6)

For t ∈
[

t1, t2
[

, ẋ(t) = Ai1x(t), with x(t1) = Rc1x(t
−
1 ). So

R−1c1 ẋ(t) = R
−1
c1
Ai1Rc1R

−1
c1
x(t)
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and R−1c1 x(t1) = x(t
−
1 ), which, by (6), this is equivalent to x(t

−
1 ) = x̃0(t

−
1 ). Consequently,

R−1c1 ẋ(t) = R
−1
c1
Ai1Rc1R

−1
c1
x(t) and R−1c1 x(t1) = x̃0(t

−
1 ). (7)

Taking
x̃1(t) = R−1c1 x(t), (8)

and considering (7), we obtain
̇̃x1(t) = Ã(t)x̃1(t) and x̃1(t1) = x̃0(t−1 ),

for t ∈
[

t1, t2
[

and Ã(t) = R−1c1 Ai1Rc1 .
For t ∈

[

t2, t3
[

, ẋ(t) = Ai2x(t), with x(t2) = Rc2x(t
−
2 ). Hence, by (8), we have Rc1 x̃1(t

−
2 ) = x(t

−
2 ) and consequently

x(t2) = Rc2Rc1 x̃1(t
−
2 ).

Therefore,
R−1c1 R

−1
c2
ẋ(t) = R−1c1 R

−1
c2
Ai2Rc2Rc1R

−1
c1
R−1c2 x(t) and R−1c1 R

−1
c2
x(t2) = x̃1(t−2 ). (9)

Taking
x̃2(t) = R−1c1 R

−1
c2
x(t),

(9) is equivalent to
̇̃x2(t) = Ã(t)x̃2(t); x̃2(t2) = x̃1(t−2 ),

for t ∈
[

t2, t3
[

and Ã(t) = R−1c1 R
−1
c2
Ai2Rc2Rc1 .

Following the previous process, we obtain for t ∈
[

tk, tk+1
[

̇̃xk(t) = Ã(t)x̃k(t), (10)

where
x̃k(tk) = x̃k−1(t−k )

Ã(t) =

( k
∏

m=1
R−1cm

)

Aik

1
∏

m=k
Rcm

x̃k(t) =

( k
∏

m=1
R−1cm

)

x(t),

(11)

with k ∈ ℕ.
Considering x̃(t) = x̃k(t), for t ∈

[

tk, tk+1
[

, k ∈ ℕ0, (10) and (11) can be written as
̇̃x(t) = Ã(t)x̃(t); (12)

where

Ã(t) = Ai0 , for t ∈
[

t0, t1
[

Ã(t) =

( 1
∏

m=k
Rcm

)−1

Aik

1
∏

m=k
Rcm , para t ∈

[

tk, tk+1
[

, k ∈ ℕ,

and x̃(tk) = x̃(t−k ). From (11), it follows that

x(t) =
0
∏

m=k
Rcm x̃(t), for t ∈

[

tk, tk+1
[

, k ∈ ℕ0.

In order to avoid long mathematical expressions, we will use the following notation:

R�,0 ∶= In
R�,k ∶=

∏1
m=kRcm , k ∈ ℝ.

(13)
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Remark 9. Notice that, in the proof of Lemma (8 ), we have associated to the original �-switched system with state reset a
time-variant system with a linear and piecewise invariant dynamics. That dynamics is determined by the following set of stable
matrices:

̃ =
{

Ai0 , R
−1
�,1Ai1R�,1, R

−1
�,2Ai2R�,2,…

}

.

Although the number of distinct reset matrices is finite, the set ̃ may be infinite. In this case, the time-variant system (4) does
not fit into the definition of �-switched system without reset, (1). Nevertheless, if

∏

� ∶=
{

R�,k ∶ tk is a switching instant for �
}

,

is finite, then the time-variant linear system (4) can be considered a �̃-switched system (without reset) for some switching signal
�̃ that supervises the switching among those systems. This switching signal, �̃, will have switching instants in the same set of
switching instants of �. Indeed, let us suppose that

∏

� =
{

R̂l ∶ l ∈  = {0,… , T }
}

, for some T ∈ ℕ.

Then x̃(t) corresponds to a trajectory of a switched system for which the switching bank can be associated to the set

̃ =
{

Ã(p,l) = R̂−1l ApR̂l ∶ (p, l) ∈ 
}

for a given switching signal �̃ ∶
[

t0,+∞
[

→ , where  ⊂  × . Moreover, �̃ will have switching instants in the same set of
switching instants of �.

The next result assures that, for a switching signal � and under certain conditions, if the time-variant system (4) is stable, then
the �- switched system with state reset ΣR� is stable too. We denote by ‖⋅‖ the spectral norm (i.e., the maximum singular value
of a matrix).

Theorem 10. Let ΣR� be a �-switched system with state reset, defined as in (3), for which
{

‖

‖

‖

R�,k
‖

‖

‖

∶ k ∈ ℕ
}

is upper bounded.
If the time-variant system (4) is stable, then ΣR� is stable.

Proof. Let ΣR� be a �-switched system with state reset defined in (3) associated to a switching signal � ∶
[

t0,+∞
[

←→  , with
switching instants t1 <… < tk <… , k ∈ ℕ.
By Lemma 8,

x̃k(t) = x̃(t) and �(tk) = �(t), for any t > t0,

where x̃(t) is the trajectory of the system (12), i.e., ̇̃x(t) = Ã(t)x̃(t). Then, for any t > t0, there exists k ∈ ℕ such that

x̃(t) = R
−1
�,kx(t).

Therefore for each t > 0,

‖x(t)‖ ≤ ‖

‖

‖

R�,k
‖

‖

‖

‖x̃(t)‖, for some k ∈ ℕ.

Since
{

‖

‖

‖

R�,k
‖

‖

‖

∶ k ∈ ℕ
}

is an upper bounded set, then there exists L > 0 such that ‖‖
‖

R�,k
‖

‖

‖

< L. Consequently, ‖x(t)‖ ≤
L‖x̃(t)‖ and the �-switched system with state reset ΣR� is stable.

Remark 11. Notice that, additionally, if the set
{

‖

‖

‖

R�,k
‖

‖

‖

−1
∶ k ∈ ℕ

}

is upper bounded, then the sufficient condition of the

theorem is also necessary. For example, this happens when the set of matrices
{

R�,k ∶ k ∈ ℕ
}

is finite.

Remark 12. For some families of resets, the set
{

‖

‖

‖

R�,k
‖

‖

‖

∶ k ∈ ℕ
}

is upper bounded, for every switching signal.

One of those cases is analyzed in the next section.
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4 STABILITY ANALYSIS UNDER RESTRICTED RESETTING

In this section, we consider that the set of reset matrices is restricted to have a certain structure and briefly illustrate how to
apply Theorem 10 in the stability analysis of a switched system with state reset SR =

(

 ,Σ , ,
)

, with  = {1, 2}. More
precisely, we consider that reset matrices R(q,p), with q, p ∈  , are such that:

R(q,p) =
{

R, if p = 1
R−1, if p = 2 ,

where q, p ∈  are the values that � takes at the switching instants tk−1 and tk, k ∈ ℕ, respectively. Thus R(2,1) = R and
R(1,2) = R−1.

In light of the results established in the previous section, namely Lemma (8) and Theorem (10), stability analysis of SR can
be done analyzing the stability property of each �−switched system with state reset as is described next, in (i) and (ii).

(i) For each switching signal � such that �(t) = 1 for t ∈
[

t0, t1
[

, taking into account (13), we have

R�,0 = In,

R�,1 = R(1,2) = R−1,

R�,2 = R(2,1)R(1,2) = RR−1 = In
and so on, i.e., we obtain the finite set

{

R�,k ∶ k ∈ ℕ0
}

=
{

I, R−1
}

.
Consequently, the obtained time-variant system is a switched system, say �1-switched system (without reset), for the
switching signal �1 ∶

[

t0,+∞
[

→  such that

�1(t) =

{

1 if t ∈
[

t2k−2, t2k−1
[

2 if t ∈
[

t2k−1, t2k
[ , k ∈ ℕ,

with the following (finite) switching bank

̃1 =
{

Ai0 , R
−1
�,1Ai1R�,1, R

−1
�,2Ai2R�,2,…

}

=
{

A1, RA2R
−1} .

Moreover, being
{

‖

‖

‖

R�,k
‖

‖

‖

∶ k ∈ ℕ
}

upper bounded, according to Theorem 10, if the �1-switched system (without reset)
is stable, then the associated reset �1-switched system ΣR�1 is stable.

(ii) Similarly, for each switching signal � such that �(t) = 2 for t ∈
[

t0, t1
[

, we obtain a �2-switched system (without resets),
for the switching signal �2 ∶

[

t0,+∞
[

→  , such that

�2(t) =

{

2 if t ∈
[

t2k−2, t2k−1
[

1 if t ∈
[

t2k−1, t2k
[ , k ∈ ℕ,

with the following finite switching bank
̃2 =

{

A2, R
−1A1R

}

.
According to Theorem 10, if the �2-switched system (without reset) is stable, then the associated reset �2-switched system
ΣR�2 is stable.

These conclusions allow to state the following proposition.

Proposition 13. Let SR =
(

 ,Σ , ,
)

be a switched system with state reset, where  = {1, 2}, Σ is the switching bank
associated to the matrices A1, A2 ∈ ℝn×n and is the set of reset matrices R(q,p) defined as

R(q,p) =
{

R, if p = 1
R−1, if p = 2 , (14)

being q and p the values that � takes at the switching instants tk−1 and tk, k ∈ ℕ.
The system SR =

(

 ,Σ , ,
)

is stable if the switched systems
(

 ,Σ1 ,
)

and
(

 ,Σ2 ,
)

, with switching banks Σ1 and
Σ2 associated to

{

A1, RA2R−1
}

and
{

A2, R−1A1R
}

, respectively, are stable.
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Using a CQLF approach the next two corollaries are established, using Propositions (6) and (7).

Corollary 14. Let SR =
(

 ,Σ , ,
)

be a switched system with state reset, where  = {1, 2}, Σ is the the switching bank
associated to the matrices A1, A2 ∈ ℝ2×2 and is a set of reset matrices R(q,p) defined as in (14).
The system SR =

(

 ,Σ , ,
)

is stable if A1RA2R−1 and A1RA−12 R
−1 do not have real negative eigenvalues.

Proof. If A1RA2R−1 and A1RA−12 R
−1 do not have real negative eigenvalues, then A1 and RA2R−1 have CQLF (by Proposition

(6)). On the other hand, it is easy to see that A1RA2R−1 and A1RA−12 R
−1 do not have real negative eigenvalues if and only

if R−1A1RA2 and R−1A1RA−12 do not have real negative eigenvalues. So, A2 and R−1A1R have also a CQLF. Therefore, the
switched systems

(

 ,Σ1 ,
)

and
(

 ,Σ2 ,
)

are stable and the switched system with state reset SR is stable.

Corollary 15. Let SR =
(

 ,Σ , ,
)

be a switched system with state reset, where  = {1, 2}, Σ is the the switching bank
associated to the matrices A1, A2 ∈ ℝn×n, n ∈ ℕ, such that rank(A1 − A2) = 1, and is a set of reset matrices R(q,p) defined as
in (14).
The system SR =

(

 ,Σ , ,
)

is stable if A1RA2R−1 does not have real negative eigenvalues.

Example 16. The switched system with state reset SR =
(

 ,Σ , ,
)

, as in Proposition 13, where

A1 =
[

−0.05 2
−1 −0.05

]

, A2 =
[

−0.05 1
−2 −0.05

]

and R(2,1) = R(1,2) =
[

0 1
1 0

]

is stable, since, by Corollary 14, the matrices

Ã1 = A1 and Ã2 = RA2R−1 =
[

−0.05 −2
1 −0.05

]

are such that Ã1Ã2 and Ã1Ã−12 do not have real negative eigenvalues.

Example 17. The switched system with state reset SR =
(

 ,Σ , ,
)

, as in Proposition 13, where

A1 =
⎡

⎢

⎢

⎣

0 1 0
0 0 1
−6 −11 −6

⎤

⎥

⎥

⎦

, A2 =
⎡

⎢

⎢

⎣

0 1 0
0 0 1
−20 −15 −2

⎤

⎥

⎥

⎦

and

R(2,1) =
⎡

⎢

⎢

⎣

1 1 0
2 0 0
0 0 1

⎤

⎥

⎥

⎦

and R(1,2) =
⎡

⎢

⎢

⎣

0 0.5 0
1 −0.5 0
0 0 1

⎤

⎥

⎥

⎦

,

is stable, since, by Corollary 15, the matrices

Ã1 = A1 and Ã2 = RA2R−1 =
⎡

⎢

⎢

⎣

1 −0.5 1
2 −1 0
−15 −2.5 −2

⎤

⎥

⎥

⎦

are such that Ã1Ã2 does not have real negative eigenvalues.

5 CONCLUSION

In this paper we have investigated the stability property of a switched system in which, once switching occurs, the state is forced
to assume (is reset to) a new value which is a linear function of the previous state. This type of system is called a switched system
with state reset. We were able to identify the relation between the trajectories of a switched system with state reset and the
trajectories of a time-variant system (without reset). This reduction to a dynamics with continuous state trajectories, presented
in Lemma 8, has allowed a different approach to the study of the stability of switched systems with state reset. It turns out that,
for bounded sets of resets, the stability of the associated time-variant system (without reset) implies the stability of the original
system (with reset), Theorem 10. Additionally, we have applied this result in the study of systems that have a particular type
of resetting. In this case, the sets of resets are bounded, which allowed to establish two sufficient conditions for stability. Two
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illustrative examples were included. In future research, we expect to identify other classes of systems where this approach may
be carried out with identical success.
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