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Abstract

In recent years, spectrum analysis and computation have developed rapidly in order to explore and characterize the properties
of network sciences. Let Ln be obtained from the transformation of the graph 1.6,4,4 n , which obtained by attaching crossed
two four-membered rings to the terminal of crossed phenylenes. Firstly, we study the (nomalized) Laplacian spectrum of Ln
based on the decomposition theorem for the corresponding matrices. Secondly, we obtain the closed-term fomulas for the
(multiplicative degree) Kirchhoff index and the number of spanning trees from the relationship between roots and coefficients
in linear chain networks. Finally, we are surprised to find that the (multiplicative degree) Kirchhoff index of Ln is nearly to one

quarter of its (Gutman) Wiener index when n tends to infinity.
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1. Introduction

Throughout this article, we only consider simple, undirected and finite graphs and assume that all
graphs are connected. Suppose ¥ be a graph with the vertex set V(¥4) = {v1,v2, - ,v,} and the edge
set E(9) = {e1,ea, -+ ,em}. The adjacency matrix A(¥) is a 0 — 1 n X n matrix indexed by the vertices
of 4 and defined by a;; =1 if and only if vsv; € Eg. For more notation, one can be referred to [1].

The Laplacian matrix of graph ¢ is defined as L(¥) = D(¥) — A(¥), and assume that the eigenvalues
of L(¥) are labeled 0 = pg < po < -+ < fiy.

d57 s=1t
(L(9)st = —1, s#tand v, vy (1.1)
0, otherwise.

The normalized Laplacian matrix is given by

1, s =t;
(L(D)st = _\/dlsTt’ s #t and vs « vy; (1.2)
0, otherwise.

The distance, d;; = dg (us,u:), between vertices us and u; of ¢ is the length of a shortest us, us-path
in 4. The Wiener index [2, 3] is the sum of the distances of any two vertices in the graph ¢, that is

W(g) - Z dst-

s<t

In 1947, the distance-based invariant first appeared in chemistry [3,4] and began to apply it to
mathematics 30 years later [5]. Nowadays, the Wiener index is widely used in mathematics [6-8] and
chemistry [9-11].
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In a simple graph ¢, the degree, d; = dg(v;), of a vertex v; is the number of edges at v;. The Gutman
index [12] of the simple graph ¢ is expressed by

Gut(¥) = > dudydy. (1.3)

s<t

Klein and Randi¢ initially outlined the concepts associated with the resistance distance [13] of the
graph. Assume that each edge is replaced by a unit resistor, and we use ry to denote the resistance
distance between two vertices s and ¢. Similar to Wiener index, the Kirchhoff index [14,15] of graph ¢
is expressed as the sum of the resistance distances between each two vertices, that is

Kf(@) =) ra.

s<t

In 2007, Chen and Zhang [16] defined the multiplicative degree-Kirchhoff index [17, 18], that is

Kf(9) = dedra.

s<t

Phenyl is a conjugated hydrocarbon, and LS*?* denote a linear chain, containing n hexagons and
2n — 1 squares, please see it in Figure 1.

With the rapid changes of the times, organic chemistry has also developed rapidly, which has led to
a growing interest in polycyclic aromatic compounds. The benzene molecular graph has attracted the
attention of elites in various industries such as biology [19,20], mathematics [21,22], chemistry [23,24],
computers [25,26], and materials [27] because of its increasing application in daily life.

In 1985, the computational method and procedure of the matrix decomposition theorem were proposed
by Yang [28]. This led to the solution of some problems in graph networks and allowed the unprecedented
development of self-homogeneous linear hydrocarbon chains. For example, in 2021, X.L. Ma [30] got the
normalized Laplacian spectrum of linear phenylene, and the linear phenylene containing has n hexagons
and n — 1 squares. L. Lan [31] explored the linear phenylene with n hexagons and n squares. Umar
Ali [32] analyzed the strong prism of a graph G is the strong product of the complete graph of order
2 and G. X.Y. Geng [33] obtained the Laplacian spectrum of LS*% which containing n hexagons and
2n — 1 squares. J.B. Liu [34] derived the Kirchhoff index and complexity of O,,, which denoting linear
octagonal-quadrilateral networks. C. Liu [35] got the Laplacian spectrum and Kirchhoff index of L,,, and
the L, has t hexagons and 3t + 1 quadrangles. J.B. Liu [36] explored the multiplicative degree-Kirchhoff
index and complexity based on the graph Ls,. For more results, refer to [37-47].

Inspired by these recent works, we try to investigate the Laplacians and the normalized Laplaceians
for graph transformations on phenyl dicyclobutadieno derivatives.

The various sections of this article are as follows: In Section 2, we proposed some concepts and lemmas
and use them in subsequent articles. In Section 3 and Section 4, we acquired the Laplacian matrix and
the nomalized Laplacian matrix, then we make sure the Kirchoff index, the multiplicative degree-Kirchoff
index and the complexity of L,. In Section 5, we obtained conciusions based on the calculations in this

paper.

2. Preliminary Works

In this article, graph L,, and graph LS** are portrayed in Figure 1. Define the characteristic polynomial
of matrix U of order n is Py(z) = det(z — U).

It is easy to understand that m = (1,1)(2,2) - - (4n,4n) is an automorphism. Set Vi = {1,2,--- ,4n},

Vo ={1,2,--- ,4n}, |V(L,)| = 8n, |E(L,)| = 19n — 4. Thus the (normalized) Laplacians matrix can be



Figure 1: Graphs of L8*% and L.

expressed in the form of block matrix, that is

L VoVo L VoVi L VoVa L VoVo ‘CVO 1 ‘CVO Va
L<Ln) = LV1V0 LV1V1 LV1V2 ’ ‘C(Ln) = LV1V0 ‘CV1V1 ‘CV1V2 )
Lv,v, Lvyvy Lvyv, Lvive Lvyvi Lwv,y

where Ly, v, and Ly, v, is a submatrix consisting of rows corresponding to the vertices in V; and columns
corresponding to the vertices in V4, s,t = 0,1, 2.

Let
I; 0 0
1 1
Q = O ?I4n 721-[411 s
0 ﬁléln _72[471
then

QL(Ly)Q = < LAég) Ls(gg) > QL(Ly)Q' = ( EAég) ﬁs(zg) )

and Q' is the transposition of Q.
Ly=Lvv, +Lvv,, Ls = Lv,v, — Lvyv,, La=Lwvv, +Lviv,, Ls=Lvv, — Lvivs-

Theorem 2.1. [30] Set 4 is a graph and think that La(¥), Ls(¥), La(¥), Ls(¥) are determined as
above, then

V)W) = 00 ,9) W) O0Ls9)¥)s V) (Y) = 0c,9)Y)0rs9)(Y)-

Lemma 2.2. [48] With the extensive study of Kirchhoff index, Gutman and Mohar proposed a algorithm
based on the relation between Kirchhoff index and the Laplacian eigenvalues, namely

Kf(9) = nzg,
t=2 St



and the eigenvalues of L(9) are 0 =& <& < --- < &, (n > 2).

Lemma 2.3. [15] Let's say that the eigenvalues of L(¥) are &1 < &g < --- < en, then its multiplicative
degree-Kirchhoff index can be denoted by

[1] The number of spanning trees of the 4 can also be called the complexity of 4. If 4
Then the

Lemma 2.4.
is a graph with |Vg| = n and |Eg| = m. Let M\i(i = 2,3,...,n) be the eigenvalues of L(G).
complexity of 9 is

3. Kirchhoff index of L,

In this section, the main objective is to find out the Kirchhoff index of L,,. Then, combining the
definition of the Laplacian matrix and Eq.(1.1), we can write these block matrices as follows.

3 -1
-1 4 -1
-1 5 -1
-1 5 -1
-1 5 -1
Lv,v, -1 4 -1 7
-1 5 -1
-1 4 -1
-1 5 -1
-1 3 (4n) % (4n)
-1 -1
-1 0 -1
-1 -1 -1
-1 -1 -1
-1 -1 -1
Ly,v, -1 0 -1
-1 -1 -1
-1 0 -1
-1 -1 -1
-1 -1 (4n) % (4n)



Hence,

2 -2
2 4 -2
2 4 2
2 4 -2
-2 4 -2
Ly = -2 4 -2 7
2 4 -2
2 4 -2
-2 4 -2

(4n)x (4n)
and
Ls= dzag(4, 47 67 67 6a 4a I 6a 4) 67 4)(4n)

Assume that 0 = a1 < ag < ag < -+ < ay, are the roots of Pr,(z) =0, and 0 < 1 < fa < f3 <
- < Bap are the roots of Pr (z) = 0. By Lemma 2.2, we immediately have

Kf(Ly) = 2(4n)(zaii +Zﬁlj) (3.4)

Obviously, Z can be obtained according to Lg.

Ji= 1F
11 1 In +2
— == — - 9) = . .
;:1 5 "6 X (3n—2)+ 7 x (n+2) 5 (3.5)

Next, we focus on computing Z . Let

i=2 oy
Pp,(x) =det(xl — Ly) = x(x4"71 +a gl 4 tag, o+ G4n—1); Gan—1 7 0.

Based on the Vieta's theorem of Py, 4 (x), we can exactly get the following equation,

zn: i 1)4n—2a4n 2

— )4 lay, |

For the sake of convenience, let M is used to express the s — th order principal minors of matrix A,
and mg = detMy is recorded. We can get m; =2, mg =4, mg = 8.
And

ms =4dmg_1 —4dms_o, 4 < s < 4n,
by further induction, we have
mg = 2°.

In this way, we can get two theorems.

Theorem 3.1. (—1)""lay, ; = (4n)24n~1L.



Proof. Due to the sum of all the principal minors of order 4n — 1 of L4 is (—1)4”_1a4n_1, then

4n
(- ey = Y detLals)
s=1
4n
_ Ms—l 0
= Zdet ( 0 []4717S )
s=1
4n
= Z detMs_1 - detUygp—s,
s=1
where
lip -2 0
—2 g9 0
Msfl = : ’
0 O e 1571,571 (s—l)X(s—l)
ls+1,s+1 e 0 0
U4nfs =
0 o lp—1anr 2
0 e -2 l4n74n

(4n—s)x (4n—s)
Let mg =1, detUy = 1, because of the symmetry of matrix L4, then detUy,_s = det My, _s. Hence

4an
(71)471710447171 - Zdetm5,1 . detm4n,s

s=1
= (4n)24" 1
as desired. n
Theorem 3.2. (_1)47172&4”72 _ (4n71)(4n)(4n+1)24n—3.

3
Proof. Since the (—1)*""2ay,, 5 is the tatal of all the principal minors of order 4n — 2 of L4, we have

(=1D)*Pay 2= > detLals,t],

1<s<t<dn
where
M,_1 0 0
Lyls,t] = 0 Nie_oq 0 , 1 <s<t<dn,
0 0 U4n7t
and
4 =2
-2 4 =2
-2 4 =2
Ny g1 =
-2 4 =2
-2 4 =2
-2 4 (t—s—1)
= (t—s)2!757 L



Therefore, we can have

(_1)4n72a4n—2 = Z d@tMs_l : deth_s_l : detU4,,L_t
1<s<t<4n
= Z (t— 3)2’5_‘9_1 ~detmg_q1 - Man—¢
1<s<t<4n
(4n — 1)(4n)(4n + 1)247=3
3 .

The proof is over. [
From the results of Theorem 3.1 and Theorem 3.2, we can get

i 1 (—1)* 244, 5  16n*—1

= 3.6
(67} (71)47171(14”_1 12 ’ ( )

where the eigenvalues of L are 0 = a3 < as < a3z < -+ < ayp.
Theorem 3.3. Suppose L5%* be the dicyclobutadieno derivative of phenylenes and the graph L, be
obtained from the transformation of the graph L5%4.

_ 32n3 + 18n?% + 2n
= 3 )
Proof. Substituting Egs.(3.5) and (3.6) into (3.4), the Kirchhoff index of L,, can be expressed

Kf(Ln)

4n 4n
1 1
Kf(L,) = 2(4n)(z —+y E)
i=2 v j=1"J
B In+2 (An+1)(4n—1)
- (8”)( 2 12 )
B 32n3 + 18n2% + 2n
3 .
The result as desired ]

The Kirchhoff index of L,, from L to Li5, see Table 1.

Table 1: The Kirchhoff indices of Ly, Lo...L15
Y\ Kf9) |9 | Kf9) |9 | Kf9)| 9 | Kf¥Y) | 9 | Kf¥Y)
Ly 17.3 Ly 781.3 Ly | 3957.3 | Lig | 11273.3 | L3 | 24457.3
Lo 110.7 | Ls | 1486.7 | Lg | 5850.7 | L1y | 14930.7 | L14 | 30454.7
Ly | 3440 | Lg | 2524.0 | Lg | 8268.0 | L12 | 19304.0 | L15 | 37360.0

Next, we will further consider the Wiener index of L,,.
Theorem 3.4. Let LS%* be the dicyclobutadieno derivative of [n]phenylenes and the graph L, be
obtained from the transformation of the graph LS*# then
- Kf(Ln) 1
lim ———= = —.
n—soo W(Ly) 4
Proof. Consider dg; for all vertices. For the calculation of convenience, we divide the vertices of the
graph into the following five categories.
Case 1. Vertex 1 of L,:

a() =1 +2(4§1k).



Case 2. Vertex 45 —3(j = 1,2,--- ,n) of L,, i =4j — 3:

An—1i

_1+2<;k+ Zk).

Case 3. Vertex 45 — 2(j =1,2,--- ,n) of L, i =45 — 2:

An—1i

—1+2<Zk+z )

Case 4. Vertex 4j — 1(j =1,2,--- ,n—1) of L,,, i =45 — 1:

4dn—1

1+2<;k+z )

Case 5. Vertex 45(j =1,2,--- ,n—1) of L,, ¢t = 4j:

4dn—1

—1+2(Zk+ Z k).
k=1
Hence, we have

Ag1(0) + 2305 4;59200) + 235,45 293(0) + 230541 9a(0) + 23,4 95(9)

W(Ln) =

2
41425 k) 2 1[1+2( A yin4it2 g )}
- 2
45—3 4n— 4 2 45—2 4n— 4
250, 2+ 20005 b+ S0 42 1420 e+ Y k)
+ 2
22 {1+2( el D e 4%)}
2
128n2 + 48n2 — 5n + 3

3

Consider the above results of Kirchhoff index and Wiener index, we can get following equation when
n tends to infinity.

. Kf(Ln) _ 1
P TS

The result as desired. [ ]



4. Multiplicative degree-Kirchhoff index and complexity of L,

In this section, we use the eigenvalues of normalized Laplacian matrix to determine the multiplicative
degree-Kirchhoff index of L,. Besides, we calculate the complexity of L,,. Then

1 =1
V12
=1 1 =1
vize v
 LF
=1 1 =1
5 5
=1 1 =1
° vV
Lviv; Vo 1 Vs :
_Ti 1 =1
VR
w Lom
w1 s
Vs 1 (4n) x (4n)
and
-1 =1
3 V12
=1 0 =1
I
N R
R R R
5 5 V20
-1 0 =1
Ly, v, V20 V20
;i -1 =1
5 5 V20
=1 0 =1
15 3 (4n)x (4n)
Therefore,
2 =1
L%
i P,
V5 5 5
=2 4 =2
EREC R |
5 5 5
=1 1 =1
La = V5 V5 ,
—2 4 =1
55 \{5 o
Ve =1 \25 =2
V5 3/ (4n)x(4n)
and
4 6 6 6 6 6 4
ﬁ =di (7717777777' 77717777>
§= N3 V555 553/ 4n)



Assume that the roots of Pz, (x) =0are 0 =& < & <& < -+ < &apqo,and 0 <93 <5 <3 <
-+« < 3,42 are the roots of Py, (x) = 0. By Lemma 2.3, we can get

4n 4n
Kf*(Ly) = 2(19n—4)<2%+2%).
i=2 > =1 "

Since L is a diagonal matrix. Obviously, its diagonal elements 1, % and g correspond to the eigenvalues
of L4 respectively. Then it can be clearly obtained

4n

1 2In—1
— = ”T. (4.7)
iz Vi
Let
P, (z) =det(xl — L) = 2™ + bz 4+ - £ by 12, b1 # 0,
ie., é, é, e &% are the roots of the following eqution

b4n_1$4n_1 + b4n_2x4"_2 +-o+biz+1=0.

Based on the Vieta's theorem of Py, (), we can get

Z l (71)471721)4”_2
& (D) lby,q

Similarly, we can get another two interesting facts.
4 \n

5)"- )
782:§u 83:ﬁ7 84:ﬁ7 85_3757 86:3757 St =

Theorem 4.1. (—1)*""1by, 1 = 22(38n — 8)

Proof. Let s, = detF),, then we have s; =

8 g — 16
18757 °8 — 9375>

:

and

S4p = §Sap—1 — 35 54p—2;
S4p+1 = %841) - %841)—1;
S4p+2 = S4p4+1 — %5413;
S4p4+3 = %54p+2 - %s4p+1~

After further simplification, the transformation form of the above formula is obtained.

sip =13 (135)7 1 <p<n;

s4p+1:%'(1§5)pa 0<p<n-—-1I
Sipr2 =1 (3s)P, 0<p<n—1;
saps = 15 (195)7, 0<p<n—1.

16 4

4 _ 8 _ _ _ 16
13 = 15, ta= 75, 5 = 378, t6 = 1750 17 = Ta750 18 = ga75, and

Gl

Similarly, we have t; = %, ty =

2 2 .
tap = Flap—1 — Ftap—2;
4 4 .

tap+1 = Flap — 35tap—1;
_ 4 4 .
lap+2 = Flap+1 — g5tap;

1
tap+s = tapy2 — Flapta.

10



Therefore, the transformation form of the above formula is obtained.

tip-1=3 (35)" 1<p<m

tap-3=73 (135)" 0<p<n—1;
tap—2 =15 (135)", 0<p<n—1
t4p—1:1275'(14%)p7 0<p<n—-1

Since the (—1)3"*1bs,, 11 is the total of all the principal minors of order 3n + 1 of L4, we have

4n
(—1)4n_1b4n,1 = Z detNL 4 [Z] + Syp + tan
=2
n n—1 n—1
= > detNLs[dg]+ Y detNLa[4g+1]+ > detNLa[dg + 2]
q=1 q=1 q=0

n

= Z detNLa [4q + 3] + San + tan + S4(q71)+3t4(n7q)+1

q=0 q=1
n—1 n—1 n—1
= Z Sagla(n—q) + Z Sag+1ta(n—q-1)+3 + Z Sag+2ta(n—q—1)+2 + San + lan
q=1 q=0 q=0
1 4
= g(%n — 8)(1—25) .
The proof of Theorem 4.1 completed. m
Theorem 4.2. (—1)*""2by, 5 = 335(14520n3 + 4599n? — 1496n + 3)(155)"™
Proof. We observe that the sum of all the principal minors of order 4n of £ 4 is the (—1)*"~2b,,,_o, then
()" by a= Y detLa[s,t] foo1 fan - (4.8)
1<s<t<4n

By Eq.(4.8), we know that the result of detL[s,t] will change with the values of s and t. Then we
can get the following twenty cases.
Case 1. i =4s, j=4t, 1 <s<t<n,

‘wmm
S
Ui, ‘
—
S

7S

= =

=
|

|

(SN

detyp =

[,
SHIE
(SN

[N

|
SIS

‘ BHES
S»—A o
o

[
SN %,_.
ot ot
[SAIFS

S,_.

ot

(4t—4s—1)

= 10(t - s)(ﬁ)m.

11



Case 2. i =4s, j=4t+1, 1 <s<t<n-1,

4 _ 1
Y
Ve _ 1 é\/g _2
V5 5 5
detyp = _é A L
T Y
Ve _ 1 4/5 _2
I
5 5 l(at—as)
4 1 4 t—s
= ()
4t = 5)+ 1)1z
Case 3. i=4s, j=4t+2, 1 <s<t<n-1,
4 _ 1
Y
Ve _ 1 é\/g _2
V5 5 5
detyp = _i . L
Ve _ 1 4/5 _2
Ve jz éS _2
5 5 S
5 5 l(4t—4s+1)
4 4 t—s
= C[t- 1(—) .
120t =) +1]( 155
Case 4. i =4s, j=4t+3, 1 <s<t<n-1,
4 _ 1
Y
Ve _ 1 é\/g _2
Ve 5 5
detyy = _i PR
Ve _52 45 _2
5 5, 5 L
5 5 -5
_1 1
NG (4t—45+2)

_ %[4@ _s) +3](E)H.

12



Case 5. 1=0, j=4n, 1 <s<t,

4 _ 1
T
Ve _ 1 é\/g _2
VS 5 5
detyp = _é s L
R TP
T L
i, P
NG 5 l(an—4s-1)
4 n—s
— 10(n— (—) .
0(n —s) 195
Case 6. i =4s+1, j=4t, 0<s<t<mn,
1 _1
_ 1 %/5 _2
VS 8
5 5 5
detyp = 72 4 P
R L
N
s L
V5 5 (4t—4s—2)
25 4 \t—s
- —4t—4—1(—> .
7 s~ (13
Case 7. it =4s+1, j=4t+1, 0<s<t<n-—1,
L
_ 1 é\/s _2
Ve _52 éS _2
5 5 5
detyp = _é 4 e
T L
V5 _ 1 é\/g _2
N
5 5 l(4t—4s—1)

= 10(t - s)(%)t_s.

13



Case 8. i =4s+1, j=4t+2, 0<s<t<n-1,

dety

det)

Case 10. i =1, j

dety

‘ —
_
S
[SUPS ‘
—
B
[SIN)

ol
(S

(SN

Sl

s s (2N
t— —) .
( 5+ )<125)

Case 9. i=4s+1, j=4t+3, 0<s<t<n-1,

Case 11. i =4s+2, j=4t, 0< s <t < n,

det)

25(2t — 25 — 1) ( o

1 _1
RIS
i S
5 5 5
L
75
4 t—s
2% -2 1(—) .
( s+ (125
=4dn+1, 0<s<n,
1 _1
EET SR
VS S
5 5 5
2
—3
25 4 \n—s
an —4s—1 (—) .
g (= 4s = Dl 155
4 2
P2 4L 2
5 52 45 9
-5 5 —3
2
5

(S
(SIS

)"

14

‘ =
—
S

(SN

[S1N)

(S
[S1N) (SN

SIS
N

Sl

1
5
P
5 5
2 4
b5
5
2
£ 1
5 5
_1 1
V5
1
5
1 _ 1
5
a2
N
1
75
1 _ 1
5
IS
55

(S

SN

(4t—4s)

(4t—4s+1)

(4n—4s5—2)

(4l—4s—3)



Case 12. i =4s+2, j=4t+1, 0<s<t<n-—1,

4 2

[S1N)
(S

(Sl

il
ol

Sl

det)

Sk

54t — s — 1) (%)tis.

-
-
S

Case 13. i =4s+2, j=4+2, 0<s<t<n-—1,

det)

4 2

5

1N

i
T
|

]
ot

(S
|

<yl
Sl
o

Sk

8(t — 5)] (%)H.

-
-
S

Case 14. i =4s5+2, j=4t+3, 0<s<t<n-—1,

det)

4
5

SN
‘ (S
SIS [SU™)
SIS
SN
Sl
ot

Sk

(4t — ds + 1)(%)“.

Case 15. i =2, j=4n+2, 0<s<n-—1,

det)

4 2
P2 4 2

RS S
5 5 5
2
5

25(2n — 25 — 1) 1 )"75
noes 125

(S

(SN

T, ‘
—_
S

\
o

(S ‘w
S

|
i

|
(S]]

(S
(SIS

S |
[SIN) (SN

(Sl
[SIN]

[S[N)

1N

‘ IS
%»—I i
(o)

\
(S )

(S

|
(S]]

(S

‘
=
&

(4t—4s—2)

(4t—45—1)

(4t—4s)

(4n—4s—3)



Case 16. i =4s+3, j=4t, 0< s <t <n,

(SN

4 2
IV

T

75 75
detp = '.2 4
-3 3

125 4 \t-s

= 22— 45— (—) .

3 W45 =3 155

Case 17. i =4s+3, j=4t+1, 0<s<t<n-—1,
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= 25(2t— 25— 1)(%5)H.

Case 18. i =4s+3, j=4+2, 0<s<t<n-—1,
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Case 19. i =4s+3, j=4+3, 0<s<t<n-1,

4 2
B TV
T Y
V5 NG
detyp = 7'; 4 32
VRS
R T U
5 5 V5
_1 1
V5 (4t—4s—1)
4 t—s
_ 10l—k<—> .
( ) 125
Case 20. i1 =3, j=4t, 0<s<n-—1,
4 _2
Py 2 1
T L
VB V5
dety = s o4 2
R P
U L
T
NG 5 (4n—4s—4)
125 4 \n—s
- o)
7 Un—4s=3) (155
Therefore, we can get
(71)4”'72[)4”_2 = Z detﬁA[Z,]] cSi—1 " t4n—j
1<p<qg<4n
= I+ FEy+ E3+ Fy,
where
By = > detNLa[s,4t]+ Y detNLa[4s,4t + 1]
1<s<t<n 1<s<t<n-—1
+ ) detNLa[s,4t+2]+ Y detNLy[ds 4t + 3]
1<s<t<n—1 1<s<t<n—1
+ Z detN L 4[4s,4n]
1<s<n
— Lot s —sm +4)(i)”71
TR " " 125)
By = > detNLaMs+1,4t]+ > detNLa[ds+1,4t+1]
0<s<t<n 0<s<t<n—1
+ ) detNLa[s+1,4t+2]+ Y detNLs[ds+1,4t+ 3]
0<s<t<n-—1 0<s<t<n—1
+ > detNLa[4s + 1,4n]
0<s<n
— L (9080 4 343102 + 523 )( 1 )n
= e " "N\125) -
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Es = ) detNLa[ds+2,4t]+ Y detNLa[ds+2,4t + 1]

0<s<t<n 0<s<t<n—1

+ ) detNLa[s+2,4t+2]+ Y detNLs[ds+ 2,4t + 3]

0<s<t<n—1 0<s<t<n—1
+ ) detNLy[4s +2,4n)

0<s<n

1 4 \n
= (4540”1375 — 1079m) (- )
45( 54n° + 1375n 079n) 198

Ex = ) detNLa[4s+3,4t]+ Y detNLa[4s+ 3,4t + 1]
0<s<t<n 0<s<t<n—1
+ Y detNLa[As+3,4t+2]+ > detNLa[ds+ 3,4t + 3]
0<s<t<n—1 0<s<t<n—1
+ > detNLa[4s + 3,4n]
0<s<n
_ 1 3 2 4\l
= 57(92n% + 561n —611n)(ﬁ5) .

Hence

1 , 4\"
_1)\4n—2 _ = — 3 2_
(—1) bip—o=F1+ FEy + FE3+ Ey 3240(1452071 + 4599n 1496n + 4)(125) .

The proof of Theorem 4.2 completed. [
Let 0 =& <& < &3 < -+ < &340 are the eigenvalues of L4, we can get the following exact equation

4n_1b4n—1 D)

i 1 (1)* by 1 ,145200% + 459907 — 1496n + 8
—~& (-1 .

-1 ( 38n — 8
Theorem 4.3. Set L&** be the derivative [n]pheylenes, and the expression of the multiplicative degree-
Kirchhoff index is

_ 2904013 + 899612 — 3198n + 8
B 144 '

Kf*(Ln)

Proof. Together with Eq.(4.7), Theorems 4.1 and 4.2, one can get

4n 1 4n 1
K (L) = 200n-0(3 - +3 )

i—2 & - Vi
1 ,14520n3 + 4599n% — 1496n 4+ 8. 21n—1

— 20190 —4 [7

(1n = 4) |75 ( 38n— 8 )+ %
~29040n° + 899612 — 3198n + 8
- 144 '
The result as desired. ]

The multiplicative degree-Kirchhoff indices of L,, from L to Li5, see Table 2.
Then we want to calculate the Gutman index of L,,.
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Table 2: The multiplicative degree-Kirchhoff indices of L, L,,...L15.
L, | Kf*(Ln) | Ln | Kf*(Ly) | Ln | Kf*(Lpn) | Ln | Kf*(Ln) | Ln | Kf*(Ly)
Ly 241.98 Ly | 13817.44 | Ly | 720774 | Lig | 207691.9 | Lq3 | 45333.08
Lo 1818.86 | Ls | 26659.15 | Lg | 107073.9 | L1y | 275733.2 | L14 565307
L3 | 5940.68 | Lg | 45675.81 | Lg | 151875.4 | L1 | 357209.6 | Ly5 | 694348.2

Theorem 4.4. Suppose that LS4 be the dicyclobutadieno derivative of [n]phenylenes and the graph
L,, be obtained from the transformation of the graph L%%%, then

o 0] 1

n—oo Gut(L,) 4

Proof. Consider d;; for all vertices, we divide the vertices of L,, into the following four categories.
Case 1. Vertex 4i —2(i = 1,2,--- ,n) of Ly:
i—1

faice = 22[4x4><2+2><3><4><(4z’—3)+2x3><4><(4n—4¢+2)+224x4x4x(¢—t)

=1 t=1

423 AxAxAx(E—i)+2) AxEx (4i—4t+1)+2 Y 4x5x (4 —4i—1)
t=i+1 t=2 t=i+1
3 n i—1

K2
2D AXEX (4i—4t+2)+2 Y AxEx (4t —4i—2)+2) 4x5x (4i—4t 1)
t=2 t=i+1 t=1

+23 4 x5 x (4t74i+1)}
t=1

10
= gn(56n2 — 24n + 37).

Case 2. Vertex 4i — 1(i = 2,3,--- ,n) of L,:

fac1 = 22[5><5><1+2><3><5><(4i—1)+2><3><5><(4n—4i+1)+225><4><(4i—4t+1)

=1 t=1

42 ) 5xAx (4t —4i—1)+2) 5x5x(4i—4t+3)+2 Y 5x5x (4 —4i—3)
t=i+1 t=2 t=i+1
% n i—1

+2) 5 x5 x (4i—4t+2)+2 Y 5x5x (4 —4i—2)+2> 5x5x4x (i—1)

t=2 t=i+1 t=1

n
+2 ) 5><5><4><(t—z‘)}
t=i+1

10
= gn(152n2 — 48n — 29).
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Case 3. Vertex 4i(i = 2,3,--- ,n) of L,:

{5><5><1+2><3><5><(42’—1)+2><3><5><(4n—4i+1)+225><4><(4i—4t+2)

1 t=1

-

fag = 2

(2

42 ) 5 xAx (4t —4i—2)+2) 5x5x (4i—4t+5)+2 Y 5x5x (4 —4i—3)

t=i+1 t=2 t=i+1
i n i—1
42> 5x5x (4i—4t+1)+2 Y 5x5x (4t —4i—3)+2) 5x5x4x (i—1)
t=2 t=i+1 t=1
n
+2 Y 5><5><4><(t—i)}
t=1+1

10
= En(140n2 — 48n + 43).

Case 4. Vertex 4i —3(i = 2,3,--- ,n) of Ly:

n i—1
faics = 22[5><5><1+2x3><5x(4i—4)+2x3><5><(4n—4i+4)+2z5x4><(4i—4t—1)
1=2 t=1
n i—1 n
42D B xAx (4t —4i+1)+2) 5x5x (4i—4t)+2 Y 5x5x (4t — 4i)
t=1 t=2 t=i+1

i—1 n i—1
+2) 5 x5 x (4i—4t—2)+2 Y 5x5x (4t —4i+2)+2) 5x5x (4i—4t+1)

t=1 t=i41 t=1

+22n:5><5><(4t—4i+1)}

t=1
10
= En(136n2 —6n+ 71).
According to Eq.(1.3), the Gutman index of L,, is
Jai + faic1 + faic2 + fais

2
1
= Eon(242n2 —63n +61).

Gut(L,) =

Therefore, combining with K f*(L,) and Gut(L,), we have
Kf*(L,) 1

lim ————"% = —.
o Gut(Ly,) 4

The result as desired. L]
Finally, we want to get the complexity of L,,.
Theorem 4.5. For the graph L,,, we have

T(Ln) — 23n+2 3 33”—2

Proof. Based on Lemma 2.4, we can get

8n 4an 4an
Hdi Hai H Bi = 2(19n—4)-7(Ly)
i=1 =2 j=1
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Note that

8n
Hdl _ 34 . 42n . 567174
=1

4n
25 4

;= = .(38n—8)- (—)"
Mo = 5609 (9)

4an
1% - (37 (G

Hence,
T(Ln) — 23n+2 . 33n—2

The proof is over.
Thus we can get the complexity of L,, from Wy to Wiy which are listed in Table 3.

Table 3: The complexity of Wi, Ws...Wiy.

9 7(9) 4 7(9)
Wi 96 W 45137758519296
Wo 20736 W 9749755840167936

W3 4478976 Ws 2105947261476274176
Wy 967458816 Wy 454884608478875222016
W | 208971104256 | Wi | 98255075431437047955456

5. Conclusion

In this paper, the linear chain network with n hexagons and 2n — 1 squares is considered. We
have devoted to calculate the (multiplicative degree) Kirchhoff index, Wiener indexGutman index and
complexity. In the meantime, we deduced that the ratio of (multiplicative degree) Kirchhoff index of to
(Gutman) Wiener index is nearly a quarter when n tends to infinty. Furthermore, we got some important
rules of L&%4. These rules also apply to some other graphs.
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