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Abstract

In this paper we consider the Catalan triangle numbers ( B n , k ) n [?] 1 , 1 [?] k [?] n and ( A n , k ) n [?] 1 , 1 [?] k [?] n

+ 1 to define powers of Catalan generating function C ( T ) where T is a linear and bounded operator on a Banach space X.

When the operator 4 T is of power-bounded operator, the Catalan generating function is given by the Taylor series C ( T ) :

= [?] n = 0 [?] C n T n , where c = ( C n ) n [?] 0 is the Catalan sequence. Note that the operator C ( T ) is a solution of the

quadratic equation T Y 2 - Y + I = 0 . We obtain new formulae which involves Catalan triangle numbers ( B n , k ) n [?] 1

, 1 [?] k [?] n and ( A n , k ) n [?] 1 , 1 [?] k [?] n + 1 . As element in the Banach algebra 1 ( N 0 , 1 4 n ) , we describe

the spectrum of c * j for j [?]1, and the expression of c -* j in terms of Catalan polynomials. In the last section, we give some

particular examples to illustrate our results and some ideas to continue this research in the future.
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CMMSE: POWERS OF CATALAN GENERATING

FUNCTIONS FOR BOUNDED OPERATORS

PEDRO J. MIANA AND NATALIA ROMERO

Abstract. In this paper we consider the Catalan triangle numbers
(Bn,k)n≥1,1≤k≤n and (An,k)n≥1,1≤k≤n+1 to define powers of Catalan
generating function C(T ) where T is a linear and bounded operator on
a Banach space X. When the operator 4T is of power-bounded operator,
the Catalan generating function is given by the Taylor series

C(T ) :=

∞∑
n=0

CnT
n,

where c = (Cn)n≥0 is the Catalan sequence. Note that the operator
C(T ) is a solution of the quadratic equation TY 2−Y +I = 0. We obtain
new formulae which involves Catalan triangle numbers (Bn,k)n≥1,1≤k≤n
and (An,k)n≥1,1≤k≤n+1. As element in the Banach algebra `1(N0, 1

4n
),

we describe the spectrum of c∗j for j ≥ 1, and the expression of c−∗j

in terms of Catalan polynomials. In the last section, we give some
particular examples to illustrate our results and some ideas to continue
this research in the future.

1. Introduction

The well-known Catalan numbers (Cn)n≥0 is given by the combinatorial
formula

Cn =
1

n+ 1

(
2n

n

)
, n ≥ 0,

They may be defined recursively by C0 = 1 and

(1.1) Cn =

n−1∑
i=0

CiCn−1−i, n ≥ 1,

and first terms in this sequence are 1, 1, 2, 5, 14, 42, 132, . . . . They ap-
pear in a wide range of physical problems: counts the number of ways to
triangulate a regular polygon with n+ 2 sides; or, the number of ways that
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47A10.
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2 MIANA AND ROMERO

2n people seat around a circular table are simultaneously shaking hands
with another person at the table in such a way that none of the arms cross
each other, see for example [13, 15].

The generating function of the Catalan sequence c = (Cn)n≥0 is defined
by
(1.2)

C(z) :=
∞∑
n=0

Cnz
n =

1−
√

1− 4z

2z
, z ∈ D(0,

1

4
) := {z ∈ C | |z| < 1

4
}.

This function satisfies the quadratic equation zy2 − y + 1 = 0. These equa-
tions are frequently used in the study of, for example, physical or biological
phenomena.

The main aim in [10] is to consider the quadratic equation

(1.3) TY 2 − Y + I = 0,

in the set of linear and bounded operators, B(X) on a Banach space X,
where I is the identity on the Banach space, and T, Y ∈ B(X). Formally,
some solutions of this vector-valued quadratic equations are expressed by

Y =
1±
√

1− 4T

2T
,

which involves the (non-trivial) problems of the square root of operator
1− 4T and the inverse of operator T .

In this paper, we concern about the powers of (C(T ))n for n ∈ Z and it is
organized as follows. In the second section we consider the Catalan triangle
sequences (Bn,k)n≥1,1≤k≤n and (An,k)n≥1,1≤k≤n+1. We prove new formulae
for these numbers (Lemma 2.2) and their asymptotic estimation (Lemma
2.3). We treat polynomials and generating formulae for these Catalan tri-
angle numbers, see Definition 2.4 and Theorem 2.7.

In third section, we consider the Banach algebra (`1(N0, 1
4n ), ‖ ‖1, 1

4n
, ∗),

where

‖a‖1, 1
4n

:=

∞∑
n=0

|a(n)|
4n

<∞, (a ∗ b)(n) =

n∑
j=0

a(n− j)b(j), n ≥ 0,

where a, b ∈ `1(N0, 1
4n ). We consider Catalan triangle sequences (ak)k≥1,

(bk)k≥1 ⊂ `1(N0, 1
4n ) (Definition 3.1). These sequences are powers of the

Catalan sequence c in `1(N0, 1
4n ) (Proposition 3.2); we describe their spec-

trum set in Proposition 3.3. An original and motivating results connects
c−∗k and Catalan polynomials in Theorem 3.7.

The powers of the Catalan generating operator C(T ) are studied in forth
section. We transfer our results from the algebra `1(N0, 1

4n ) to B(X) via the
algebra homomorphism Φ,

Φ(a)x :=
∑
n≥0

anT
n(x), a = (an)n≥0 ∈ `1(N0,

1

4n
), x ∈ X,
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Note that Φ(c) = C(T ), Φ(bk) = (C(T ))2k and Φ(ak) = (C(T ))2k−1 for
k ≥ 1. We describe (C(T ))−j in terms of Catalan polynomials; we estimate
their norms and describe σ((C(T ))j) for j ∈ Z in Theorem 4.1.

In the last section we illustrate our results with some concrete operators
T in the equation (1.3). We consider the Euclidean space C2 and matrices

T =

(
λ 0
0 µ

)
,

(
0 λ
λ 0

)
,

(
λ µ
0 λ

)
.

We solve the equation (1.3) and calculate (C(T ))j for these matrices and
j ∈ Z. We also check (C(a))j for some particular values of a ∈ `1(N0, 1

4n )
and j ≥ 1. Finally we present some ideas to continue this research.

2. Some news results about Catalan triangle numbers

Calatan triangle numbers (Bn,k)n≥1,1≤k≤n were introduced in [11]. These
combinatorial numbers Bn,k are the entries of the following Catalan triangle:

(2.1)

n \ k 1 2 3 4 5 6 . . .
1 1
2 2 1
3 5 4 1
4 14 14 6 1
5 42 48 27 8 1
6 132 165 110 44 10 1

. . . . . . . . . . . . . . . . . . . . . . . .

which are given by

(2.2) Bn,k :=
k

n

(
2n

n− k

)
, n, k ∈ N, k ≤ n.

Notice that Bn,1 = Cn and Bn,n = 1 n ≥ 1.
In the last years, Catalan triangle (2.1) has been studied in detail. These

numbers (Bn,k)n≥k≥1 have been analyzed in many ways. For instance, sym-
metric functions have been used in [1], recurrence relations in [12], or in [5]
the Newton interpolation formula, which is applied to conclude divisibility
properties of sums of products of binomial coefficients.

Other combinatorial numbers An,k defined as follows

(2.3) An,k :=
2k − 1

2n+ 1

(
2n+ 1

n+ 1− k

)
, n, k ∈ N, k ≤ n+ 1,
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appear as the entries of this other Catalan triangle,

(2.4)

n \ k 1 2 3 4 5 6 . . .
0 1
1 1 1
2 2 3 1
3 5 9 5 1
4 14 28 20 7 1
5 42 90 75 35 9 1
6 132 297 275 154 54 11 1

. . . . . . . . . . . . . . . . . . . . . . . .

which is considered in [8]. Notice that An,1 = Cn and C2n+1,n−k+1 = An,k
for k ≤ n+ 1.

The entries Bn,k and An,k of the above two particular Catalan triangles
satisfy the recurrence relations

(2.5) Bn,k = Bn−1,k−1 + 2Bn−1,k +Bn−1,k+1, k ≥ 2,

and

(2.6) An,k = An−1,k−1 + 2An−1,k +An−1,k+1, k ≥ 2.

The generating function of the Catalan sequence (Cn)n≥0 is defined by
(2.7)

C(z) :=
∞∑
n=0

Cnz
n =

1−
√

1− 4z

2z
, z ∈ D(0,

1

4
) := {z ∈ C | |z| < 1

4
}.

Note that C(14) = 2.

Theorem 2.1. Take z ∈ D(0, 14).

(i) For λ 6= C(z),

1

λ− C(z)
=
λz − 1 + zC(z)

λ2z − λ+ 1
.

(ii) For w ∈ D(0, 14) and w 6= z
(1+z)2

,

C2(w)

1− zwC2(w)
=
C(w)− (z + 1)

w(1 + z)2 − z
.

Proof. (i) Note that

(λ− C(z))(λz − 1 + zC(z)) = zλ2 − λ+ C(z)− zC2(z) = zλ2 − λ+ 1,

for λ 6= C(z).
(ii) By item (i), we get that

C2(w)

1− zwC2(w)
= =

C2(w)

z

1
1+z
z − C(w)

= C2(w)
w(1 + z)− z + wzC(w)

w(1 + z)2 − z

=
C(w)− 1

w

w(1 + z)− z + wzC(w)

w(1 + z)2 − z
=
C(w)− (z + 1)

w(1 + z)2 − z
,
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where we have applied again the equality wC2(w)− C(w) + 1 = 0. �

The generating functions of the Catalan triangle sequences are defined by

∞∑
n=k

Bn,kz
n = zkC2k(z) = (C(z)− 1)k, k ≥ 1,(2.8)

∞∑
n=k

An,k+1z
n = zkC2k+1(z) = C(z)(C(z)− 1)k, k ≥ 0,(2.9)

for z ∈ D(0, 14) ([15, Exercise A.32(a)]). Since

lim
z→ 1

4

C(z) = 2, lim
z→− 1

4

C(z) = 2(
√

2− 1),

see for example[15, Exercise A.66], a direct application of Abel’s theorem
allows us to prove the following result.

Lemma 2.2. Given k ≥ 1,

∞∑
n=k

Bn,k
1

4n
= 1,

∞∑
n=k

Bn,k
(−1)n

4n
= (2
√

2− 3)k,

∞∑
n,k≥1

Bn,k
1

4n+k
=

1

3
,

∞∑
n,k≥1

Bn,k
(−1)n

4n+k
=

8
√

2− 13

41
,

∞∑
n=k

An,k+1
1

4n
= 2,

∞∑
n=k

An,k+1
(−1)n

4n
= 2(
√

2− 1)(2
√

2− 3)k,

∞∑
n,k≥0

An,k+1
1

4n+k
=

8

3
,

∞∑
n,k≥0

An,k+1
(−1)n

4n+k
=

8

41
(5
√

2− 3).

Proof. We apply formulae (2.8) and (2.9) in the points z = 1
4 and −14 . �

In the next lemma, we extend the asymptotic estimation for Catalan
numbers

Cn ∼
4n

√
πn

3
2

, n→∞,

([15, Exercise A.64]) to Catalan triangle numbers.

Lemma 2.3. Given k ≥ 1,

Bn,k ∼ 4n√
π

k

n
3
2

, n→∞,

An,k ∼ 4n√
π

2k − 1

n
3
2

, n→∞.

Proof. We use the well-known Stirling formula n! ∼ e−nnn
√

2πn to show
both equivalences. �
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Now we define polynomials taking into count the rows of the Catalan
triangle numbers.

Definition 2.4. Given n ≥ 0, we define the polynomials

Pn(z) :=
n∑
j=0

Bn+1,j+1z
j , Qn(z) :=

n+1∑
j=0

An+1,j+1z
j .

The first values of these families of polynomials are given by

P0(z) = 1, Q0(z) = 1 + z

P1(z) = 2 + z, Q1(z) = 2 + 3z + 1

P2(z) = 5 + 4z + z2, Q2(z) = 5 + 9z + 5z2 + z3

P3(z) = 14 + 14z + 6z2 + z3, Q3(z) = 14 + 28z + 20z2 + 7z3 + z4

Theorem 2.5. (i) The only solution of the recurrence system{
R0(z) = 1,

zRn(z) + Cn = (z + 1)2Rn−1(z), n ≥ 1,

is the polynomial sequence (Pn)n≥0 given in Definition 2.4.

(ii) The only solution of the recurrence system{
R0(z) = 1 + z,

zRn(z) + Cn = (z + 1)2Rn−1(z), n ≥ 1,

is the polynomial sequence (Qn)n≥0 given in Definition 2.4.

Proof. It is enough to check that the sequence (Pn)n≥0 satisfies the recur-
rence relation. Similarly the polynomial sequence (Qn)n≥0 does. By the
recurrence relation 2.5, we get

Pn+1(z) =

n+1∑
j=0

Bn+2,j+1z
j =

n+1∑
j=0

(Bn+1,j + 2Bn+1,j+1 +Bn+1,j+2)z
j

= z
n+1∑
j=1

Bn+1,jz
j−1 + 2

n+1∑
j=0

Bn+1,j+1z
j +

1

z

n+1∑
j=0

Bn+1,j+2z
j+1

= (z + 2)Pn(z) +
1

z

 n∑
j=0

Bn+1,j+1z
j −Bn+1,1


=

(z + 1)2

z
Pn(z)− Cn+1

z
,

and we conclude the equality. �

Remark 2.6. The sequences of polynomials (Pn)n≥0 and (Qn)n≥0 are useful
to prove equalities for Catalan triangles numbers and other sequences of
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integer numbers. For example, taking z = 1 in Theorem 2.5, we prove easily
that

n∑
k=1

Bn,k =
n+ 1

2
Cn,

n+1∑
k=1

An,k = (n+ 1)Cn, n ≥ 1,

see an alternative proof in [11, Proposition 3.1]; and for z = −1, we get that

n∑
k=1

(−1)kBn,k = −Cn−1,
n+1∑
k=1

(−1)kAn,k = 0, n ≥ 1.

see, for example [9, Theorem 2.1 and 2.2] and references therein.
For z = 1

4 , we get that

n∑
k=1

Bn,k

(
1

4

)k
=
a(n)

4n
,

n+1∑
k=1

An,k

(
1

4

)k
=
b(n)

4n+1
,

where (a(n))n≥1 is the integer sequence A194725 and (b(n))n≥0 is A130970
given in the The On-Line Encyclopedia of Integer Sequences by N.J.A.
Sloane, [14].

For z = −1
4 , we obtain that

n∑
k=1

Bn,k

(
−1

4

)k
= − d(n)

(−4)n
,

n+1∑
k=1

An,k

(
−1

4

)k
= − e(n)

4n+1
,

where (d(n))n≥1 is the integer sequence A051550 and (e(n))n≥0 is A132863
given in [14].

In the next theorem, we obtain the bivariate generating function for poly-
nomial (Pn)n≥0 and (Qn)n≥0 given in Definition 2.4.

Theorem 2.7. For n ≥ 0,

P (z, w) :=
∑
n≥0

Pn(z)wn =
C(w)− (z + 1)

w(1 + z)2 − z
,

Q(z, w) :=
∑
n≥0

Qn(z)wn =
(C(w)− (z + 1))(z + 1)

w(1 + z)2 − z
= P (z, w)(z + 1).

Proof. We take z, w ∈ C such that the bivariate generating function for
polynomial (Pn)n≥0 converges. Then

P (z, w) =
∑
n≥0

Pn(z)wn =
∑
n≥0

n∑
j=0

Bn+1,j+1z
jwn =

∑
j≥0

zj
∞∑
n=j

Bn+1,j+1w
n

=
∑
j≥0

zjwjC2j+2(w) =
C2(w)

1− zwC2(w)
=
C(w)− (z + 1)

w(1 + z)2 − z
,

where we have applied the equation (2.8), and Theorem 2.1 (ii).
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Similarly,

Q(z, w) =
∑
n≥0

Qn(z)wn =
∑
n≥−1

n+1∑
j=0

An+1,j+1z
jwn − 1

w

=
∑
j≥0

zj
∞∑

n=j−1
An+1,j+1w

n − 1

w
=
∑
j≥0

zjwj−1C2j+1(w)− 1

w

=
1

w

C(w)− 1 + zwC2(w)

1− zwC2(w)
=

(1 + z)C2(w)

1− zwC2(w)

=
(C(w)− (z + 1))(z + 1)

w(1 + z)2 − z
= P (z, w)(z + 1),

where we have applied the equation (2.9), and Theorem 2.1 (ii). �

Remark 2.8. Note that for |w| ≤ 1
4 and |z| < 1, functions P (z, w) and

Q(z, w) are well-defined due to

|P (z, w)| ≤
∑
n≥0
|Pn(z)| 1

4n
= 4

∑
j≥0
|z|j = 4

1

1− |z|
.

Formulae given in Theorem 2.7 extend several known generating formula,
for example, for Catalan numbers

P (0, w) =
∑
n≥0

Pn(0)wn =
∑
n≥0

Bn+1,1w
n =

∑
n≥0

Cn+1w
n =

C(w)− 1

w
,

Q(0, w) =
∑
n≥0

Qn(0)wn =
∑
n≥0

An+1,1w
n =

∑
n≥0

Cn+1w
n =

C(w)− 1

w
.

Other generating functions for integer natural sequences, see Remark 2.6,
are also obtained.

3. Sequences of Catalan triangle numbers

In this section, we consider the weight Banach algebra `1(N0, 1
4n ). This

algebra is formed by sequence a = (a(n))n≥0 such that

‖a‖1, 1
4n

:=
∞∑
n=0

|a(n)|
4n

<∞,

and the product is the usual convolution ∗ defined by

(a ∗ b)(n) =

n∑
j=0

a(n− j)b(j), a, b ∈ `1(N0,
1

4n
).

We write a∗0 = a and a∗n = a . . .n−1 a for n ∈ N.
The canonical base {δj}j≥0 is formed by sequences such that (δj)(n) :=

δj,n is the known delta Kronecker. Note that δ∗n1 = δn for n ∈ N. This
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Banach algebra has identity element, δ0, its spectrum set is the closed disc

D(0, 14) and its Gelfand transform is given by the Z-transform

Z(a)(z) :=
∞∑
n=0

a(n)zn, z ∈ D(0,
1

4
).

It is straightforward to check that Z(δn)(z) = zn for n ≥ 0 (see, for example,
[7]).

We recall that the resolvent set of a ∈ `1(N0, 1
4n ), denoted as ρ(a), is

defined by

ρ(a) := {λ ∈ C : (λδ0 − a)−1 ∈ `1(N0,
1

4n
)},

and the spectrum set of a is denoted by σ(a) and given by σ(a) := C\ρ(a).
The Catalan numbers may be defined recursively by C0 = 1 and

(3.1) Cn =

n−1∑
i=0

CiCn−1−i, n ≥ 1.

We write c = (Cn)n≥0 and then ‖c‖1, 1
4n

= 2 and C(z) = Z(c)(z) for z ∈
D(0, 14). We may interpret the equality (3.1) in terms of convolution product
in the following closed form

δ1 ∗ c∗1 − c+ δ0 = 0,

where we deduce that

(3.2) c−1 = δ0 − δ1 ∗ c.

Definition 3.1. Given the Catalan triangle numbers (Bn,k)n,k and (An,k)n,k
considered in Section 2, we define the Catalan triangle sequences ak and bk
by

ak(n) := An+k−1,k, bk(n) := Bn+k,k, n ≥ 0,

for k ≥ 1. Note that a1(n) = An,1 = Cn and b1(n) = Bn+1,1 = Cn+1 for
n ≥ 0.

Proposition 3.2. For k ≥ 1, consider the sequences ak and bk given in
Definition 3.1. Then

(i) ak, bk ∈ `1(N∗, 1
4n ) and

‖ak‖1, 1
4n

= 22k−1, ‖bk‖1, 1
4n

= 22k.

(ii) Z(ak)(z) = (C(z))2k−1 and Z(bk)(z) = (C(z))2k for z ∈ D(0, 14).

(iii) ak = c∗(2k−2) and bk = c∗(2k−1).

Proof. The item (i) is a consequence of Lemma 2.2. To check (ii), note that

Z(ak)(z) =
∑
n=0

An+k−1,kz
n = z−k+1

∑
m=k−1

Am,kz
m = C2k−1(z),

Z(bk)(z) =
∑
n=0

Bn+k,kz
n = z−k

∑
m=k

Bm,kz
m = C2k(z),
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where we have applied fomulae (2.8) and (2.9). The item (iii) is a straight-
forward consequence of (ii). �

Proposition 3.3. The spectra of the Catalan triangle sequences (ak)k≥1
and (bk)k≥1 in the algebra `1(N0, 1

4n ) are given by

σ(ak) =

(
C(D(0,

1

4
))

)2k−1
, σ(bk) =

(
C(D(0,

1

4
))

)2k

,

for k ≥ 1. Their boundary is given by

∂(σ(ak)) =

22k−1e−i(2k−1)θ

(
1−

√
2| sin(

θ

2
)|e

i(π−θ)
4

)2k−1

: θ ∈ (−π, π)

 ,

∂(σ(bk)) =

22ke−i2kθ

(
1−

√
2| sin(

θ

2
)|e

i(π−θ)
4

)2k

: θ ∈ (−π, π)

 .

Proof. As the algebra `1(N0, 1
4n ) has identity and σ(c) = C(D(0, 14)) ([10,

Proposition 3.2]), we apply [7, Theorem 3.4.1] and Proposition 3.2 (ii) to
get both first equalities, i.e,

σ(ak) = Z(ak)(D(0,
1

4
)) =

(
C(D(0,

1

4
))

)2k−1
,

σ(bk) = Z(ak)(D(0,
1

4
)) =

(
C(D(0,

1

4
))

)2k

,

for k ≥ 1. As

∂(σ(c)) =

{
2e−iθ

(
1−

√
2| sin(

θ

2
)|e

i(π−θ)
4

)
: θ ∈ (−π, π)

}
,

see [10, Proposition 3.2], we obtain second equalities from previous ones. �

Remark 3.4. In the Figure 1, we plot the sets ∂(σ(c)), ∂(σ(b1)) and ∂(σ(a2)).

Catalan polynomials is defined by the following linear recurrence relation

(3.3) Pk+2(z) = Pk+1(z)− zPk(z), k ≥ 2,

and the starting values P0(z) = P1(z) = 1. The first values obtained are
P2(z) = 1− z, P3(z) = 1− 2z and P4(z) = 1− 3z + z2. The closed form of
Pk is given by the formula

Pk(z) =
(1 +

√
1− 4z)k+1 − (1−

√
1− 4z)k+1

2k+1
√

1− 4z
,

for k ≥ 0. The bivariate generating function is

1

1− t+ zt2
=
∑
k≥0
Pk(z)tk,
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Figure 1. Sets ∂(σ(c)), ∂(σ(b1)) and ∂(σ(a2)).

see these and other properties in [6]. Other interesting property of Catalan
polynomials is the following

dPk(z)
dz

=
−1

2k−1

k−2∑
l=0

(l + 2)2lPl(z), k ≥ 2,

([2, Identity II]) which implies that the sign of coefficients are alternative.
In the next results, we use the usual notation P (δ1) where

P (δ1) :=
n∑
k=0

akδ
∗k
1 =

n∑
k=0

akδk

and P is the polynomial, P (z) =
∑n

k=0 akz
∗k.

Lemma 3.5. Take the Catalan sequence polynomials (Pk)k≥0. Then Pk(δ1) ∈
`1(N0, 1

4n ), ‖P0(δ1)‖1, 1
4n

= 1 and

‖Pk(δ1)‖1, 1
4n

= Pk(
−1

4
) =

αk
4k−1

, k ≥ 1,

where α1 = 1, α2 = 5 and αk = 4(αk−1 + αk−2) for k ≥ 3.

Proof. It is clear that Pk(δ1) ∈ `1(N0, 1
4n ) and ‖P0(δ1)‖1, 1

4n
= 1. As the sign

of coefficients in polynomials (Pk)k≥0 are alternative, we have that

‖Pk(δ1)‖1, 1
4n

=

k∑
j=0

aj

(
−1

4

)j
= Pk(

−1

4
)

=
(1 +

√
2)k+1 − (1−

√
2)k+1

√
22k+1

=
αk

4k−1
,

where the integer sequence (αk)k≥1 is numbered as A086347 in [14] and
treated in detail there. �
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Remark 3.6. The first values of the sequence (αk)k≥1 are 1, 5, 24, 116,
560.... This sequence is an example of generalized Fibonacci numbers g(k) =
cg(k − 1) + dg(k − 2) for k ≥ 2 and seed values g(0) = a and g(1) = b
(a, b, c, d ∈ N.)

Theorem 3.7. For k ≥ 1,

(c∗k)−1 = Pk(δ1) + (−c ∗ δ1) ∗ Pk−1(δ1).

Moreover ‖(c ∗ c)−1‖1, 1
4n

= 3
2 and ‖(c∗k)−1‖1, 1

4n
≤ 1

4k
(αk+1 + 4αk−1) for

k ≥ 2, where (αk)k≥1 are defined in Lemma 3.5.

Proof. Note that c−1 = δ0 − δ1 ∗ c, see formula (3.2) and then

(c ∗ c)−1 = c−1 ∗ c−1 = δ0 − 2δ1 ∗ c+ δ1 ∗ (δ1 ∗ c ∗ c)
= δ0 − δ1 − δ1 ∗ c = P1(δ1) + (−c ∗ δ1) ∗ P0(δ1),

where we have applied that δ1 ∗ c∗1 = c− δ0. By induction, we have that

(c∗(k+1))−1 = c−1 ∗ (c∗k)−1 = (δ0 − δ1 ∗ c) ∗ (Pk(δ1) + (−c ∗ δ1) ∗ Pk−1(δ1))
= Pk(δ1)− δ1 ∗ c ∗ Pk(δ1)− δ1 ∗ Pk−1(δ1)
= Pk+1(δ1) + (−c ∗ δ1) ∗ Pk(δ1),

where we have applied the recurrence relation (3.3).
Finally, we apply Lemma 3.5 to get

‖(c∗k)−1‖1, 1
4n
≤ ‖Pk(δ1)‖1, 1

4n
+

1

2
‖Pk−1(δ1)‖1, 1

4n
=

1

4k
(αk+1 + 4αk−1)

for k ≥ 2. �

4. Powers of Catalan generating functions for bounded
operators

In this section, we consider the particular case that T is a linear and
bounded operator on the Banach space X, T ∈ B(X), such that

(4.1) sup
n≥0
‖4nTn‖ := M <∞,

i.e., 4T is a power-bounded operator. In this case σ(T ) ⊂ D(0, 14). Under
the condition (4.1), we define the Catalan generating function, C(T ), by

(4.2) C(T ) :=
∑
n≥0

CnT
n,

see [10, Section 5]. The bounded operator C(T ) may be consider as the
image of the Catalan sequence c = (Cn)n≥0 in the algebra homomorphism
Φ : `1(N0, 1

4n )→ B(X) where

Φ(a)x :=
∑
n≥0

anT
n(x), a = (an)n≥0 ∈ `1(N0,

1

4n
), x ∈ X,
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i.e., Φ(c) = C(T ). The Φ algebra homomorphism (also called functional
calculus) has been considered in several papers, two of them are [3, Section
2] and more recently [4, Section 5.2]. Note that

‖Φ(a)‖ ≤ sup
n≥0
‖4nTn‖ ‖a‖1, 1

4n
, a ∈ `1(N0,

1

4n
).

In particular, the map Φ allows to define the following operators

Φ(δn) = Tn, n ≥ 0,

Φ(
1

λ
pλ) = (λ− T )−1, |λ| > 1

4
,

Φ(P ) =
n∑
k=0

akT
k,

where P is the compact support sequence, P (z) =
∑n

k=0 akδk.

Theorem 4.1. Given T ∈ B(X) such that 4T is power-bounded and c =
(Cn)n≥0 the Catalan sequence. Then

(i) The powers (C(T ))2k−1 = Φ(ak) and (C(T ))2k = Φ(bk) for k ≥ 1,
and

‖(C(T )j‖ ≤ (C(‖T‖))j , j ≥ 1.

(ii) The operator C(T ) is invertible, (C(T ))−1 = I − TC(T ),

(C(T ))−(j+1) = Pj(T )− TC(T )Pj−1(T ) j ≥ 1,

‖C(T )−1‖ ≤ 1+ 1
2 supn≥0 ‖4nTn‖, ‖C(T )−2‖ ≤ 3

2 supn≥0 ‖4nTn‖ and

‖(C(T ))−(j+1)‖ ≤ 1

4j
sup
n≥0
‖4nTn‖ (αj+1 + 4αj−1) , j ≥ 2,

where (αj)j≥1 are defined in Lemma 3.5.
(iii) Take (Pn)n≥0 and (Qn)n≥0 polynomials given in Definition 2.4. Then∑

n≥0
Pn(z)Tn =

C(T )− (z + 1)

T (1 + z)2 − z
,

∑
n≥0

Qn(z)Tn =
(C(T )− (z + 1))(z + 1)

T (1 + z)2 − z
,

for |z| < 1.
(iv) The spectral mapping theorem holds for (C(T ))n, i.e, σ((C(T ))n) =

Cn(σ(T )) for n ∈ Z.

Proof. (i) From (4.2), Φ(c) = C(T ) ∈ B(X) as we have commented above.
By Proposition 3.2 (iii), we have

(C(T ))2k−1 = (Φ(c))2k−1 = Φ(c∗(2k−2)) = Φ(ak),

(C(T ))2k = (Φ(c))2k = Φ(c∗(2k−1)) = Φ(bk),
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for k ≥ 1. By Proposition 3.2 (ii), we get

‖(C(T ))2k−1‖ = ‖Φ(ak)‖ ≤
∑
j≥0

ak(j)‖T‖j = (C(‖T‖))2k−1,

‖(C(T ))2k‖ = ‖Φ(bk)‖ ≤
∑
j≥0

bk(j)‖T‖j = (C(‖T‖))2k,

for k ≥ 1 and we conclude the proof of (i).
(ii) As the homomorphism Φ is continuous, we apply the formula (3.2) to
get

C(T )(I − TC(T )) = Φ(c)(Φ(δ0 − δ1 ∗ c)) = Φ(c− δ1 ∗ c∗1) = Φ(δ0) = I.

In fact (C(T ))−1 = Φ(c−1) and

(C(T ))−(j+1) = Φ((c−1)∗j) = Φ(c∗j)−1 = Pj(T )−TC(T )Pj−1(T ), j ≥ 1,

where we have applied Theorem 3.7 and Φ is an algebra homomorphism.
The estimation of ‖(C(T ))−(j+1)‖ follows also from Theorem 3.7.
(iii) For |z| < 1, and Theorem 2.7, we have

∑
n≥0

Pn(z)Tn =
∑
n≥0

n∑
j=0

Bn+1,j+1z
jTn =

∑
j≥0

zj
∞∑
n=j

Bn+1,j+1T
n

=
∑
j≥0

zjT jC2j+2(T ) =
C2(T )

1− zTC2(T )
=
C(T )− (z + 1)

T (1 + z)2 − z
.

Similarly we check that
∑
n≥0

Qn(z)Tn =
(C(T )− (z + 1))(z + 1)

T (1 + z)2 − z
for |z| < 1.

(iv) Since 4T is power bounded, the spectral mapping theorem for Cn(T )
may found in [3, Theorem 2.1] and then σ((C(T ))n) = Cn(σ(T )) for n ∈
Z. �

Remark 4.2. As σ(T ) ⊂ D(0, 14), we apply Proposition 3.3 to conclude that

σ(Cn(T )) ⊂ Cn(D(0,
1

4
)), n ∈ Z.

5. Examples, applications and final comments

In this section we present some particular examples of operators T for
which we solve the equation (1.3), calculate C(T ) and (C(T ))k for k ∈ Z. In
the subsection 5.1, we consider the Euclidean space C2 and some matrices T .
To resolve this matrix equation, we need to solve a system of four quadratic
equations. We also calculate (C(T ))n for these matrices. In subsection 5.2
we check C(a) for some a ∈ `1(N0, 1

4n ). Finally we present some ideas to
continue this research in subsection 5.3.
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5.1. Matrices on C2. We consider the Euclidean space C2 and the operator

T =

(
λ 0
0 µ

)
, with 0 6= λ, µ ∈ C. For λ = µ, the solution is presented in

[10, Subsection 6.1]. For λ 6= µ, the solution of (1.3) is given by

Y =

(
1±
√

1−4λ)
2λ 0

0 1±
√
1−4µ
2µ

)
,

where the allowed signs are all four combinations. In the case that |λ|, |µ| ≤
1
4 , note that

(C(T ))j =

(
(C(λ))j 0

0 (C(µ))j

)
.

for j ∈ Z.

Now we study the case T =

(
0 λ
λ 0

)
with λ ∈ C\{0}. When |λ| ≤ 1

4 , we

get that

C(T ) =

(
Ce(λ) Co(λ)
Co(λ) Ce(λ)

)
,

where functions Ce and Co are functions given by

Ce(z) :=
∞∑
n=0

C2nz
2n =

√
1 + 4z −

√
1− 4z

4z
,

Co(z) :=
∞∑
n=0

C2n+1z
2n+1 =

2−
√

1 + 4z −
√

1− 4z

4z
,

see [10, Section 6.1]. As(
a b
b a

)2n

=

(
a2n +

(
2n

2

)
a2(n−2)b2 + . . . ...+ b2n

)(
1 0
0 1

)
+

((
2n

1

)
a2n−1b+ . . . ...+

(
2n

1

)
ab2n−1

)(
0 1
1 0

)
,(

a b
b a

)2n+1

=

(
a2n+1 + . . . ...+

(
2n+ 1

2n

)
ab2n

)(
1 0
0 1

)
+

((
2n+ 1

1

)
a2nb+ . . . ...+ b2n+1

)(
0 1
1 0

)
,

we may also obtain (C(T ))n using Theorem 4.1 and get new generating
formulae for Catalan triangle numbers.

Theorem 5.1. Take n ≥ 0 and z ∈ D(0, 14). Then

∞∑
k=n

B2k−n,nz
2k = z2n

(
C2n
e (z) +

(
2n

2

)
C2(n−2)
e (z)C2

o (z) + . . . ...+ C2
o (z)

)
,
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∞∑
k=n

B2k+1−n,nz
2k+1 = z2n

((
2n

1

)
C2n−1
e (z)Co(z) + . . . ...+

(
2n

1

)
Ce(z)C

2n−1
o (z)

)
,

∞∑
k=n

A2k−1−n,nz
2k = z2n

(
C2n−1
e (z) + . . . ...+

(
2n− 1

2n− 2

)
Ce(z)C

2n−2
o (z)

)
,

∞∑
k=n

A2k−n,nz
2k+1 = z2n

((
2n− 1

1

)
C2n−1
e (z)Co(z) + . . . ...+ C2n−1

o (z)

)
,

Finally we study the case T =

(
λ µ
0 λ

)
with λ, µ ∈ C\{0}. The solutions

of (1.3) are given by

Y =

(
a µ(a−1)

λ(1−2λa)
0 a

)
where a is a solution of the quadratic Catalan equation λa2 − a+ 1 = 0. In
the case that |λ| ≤ 1

4 , we get that

C(T ) =

(
C(λ) µ((C(λ)−1)

λ(1−2λC(λ))

0 C(λ)

)
,

and

(C(T ))j =

(
(C(λ))j n(C(λ))j−1 µ((C(λ)−1)

λ(1−2λC(λ))

0 (C(λ))j

)
,

for j ≥ 1. As (C(T ))−1 = 1
(C(λ))2

(
C(λ) − µ((C(λ)−1)

λ(1−2λC(λ))

0 C(λ)

)
, we get that

(C(T ))−j =
1

(C(λ))2j

(
(C(λ))j −n(C(λ))j−1 µ((C(λ)−1)

λ(1−2λC(λ))

0 (C(λ))j

)
,

for j ≥ 1.

5.2. Catalan operators on `p. We consider the space of sequences `p(N0, 1
4n )

where

‖a‖p, 1
4n

:=

( ∞∑
n=0

|an|p

4np

) 1
p

<∞,

for 1 ≤ p < ∞ and `∞(N0, 1
4n ) the space of sequences embedded with the

norm

‖a‖∞, 1
4n

:= sup
n≥0

|an|
4n

<∞.

Note that `1(N0, 1
4n ) ↪→ `p(N0, 1

4n ) ↪→ `∞(N0, 1
4n ).

Now we consider sequences c, (ak), (bk) ∈ `1(N0, 1
4n ), the Catalan triangle

sequences given in Definition 3.1 and convolution operators C(f) := c ∗ f ,
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C2k(f) = bk ∗ f and C2k−1(f) = ak ∗ f for f ∈ `p(N0, 1
4n ) and k ≥ 1 with

1 ≤ p ≤ ∞. By Theorem 4.1 (iv), we get that

σ(Cn) = Cn(σ(δ1)) = Cn(D(0,
1

4
)), n ≥ 1.

Note that the set σ(Cn) independent on p and coincides with the spectrum
of the power of Catalan sequence c in `1(N0, 1

4n ) (Proposition 3.3).

5.3. A future research. Given a, b 6= 0 ∈ C, the quadratic equation

(5.1)
bz

2
y2 − y +

a

2b
= 0,

has two solutions given by

y =
1±
√

1− za
bu

.

We define Ca,b(z) :=
1−
√

1− za
bz

; note that Ca,b(z) =
a

2b
C(
az

4
) and

Ca,b(z) =
∑
n≥0

an+1

22n+1b
Cnz

n.

It would be natural to consider a vector-valued of equation (5.1) for
a, b, z ∈ B(X).
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