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1. INTRODUCTION

Let Q be a bounded domain in R¢, d = 2, 3, with a smooth boundary 92, and Q7 = Qx (0,7
be a cylinder with a lateral I'y = 92 x [0, T]. In Qr, we consider the following inverse source
problem of the Boussinesq system for an incompressible viscoelastic non-isothermal Kelvin-
Voigt fluids

vi+ (v:-V)v —xAv, —vAv + V1 = g(x,t)0(x,t) + f(t)h(x,t), (z,t) € Qr, (1.1)

divv(x,t) =0, (z,t) € Qr, (1.2)
O+ (v- V)0 — ANAO = j(t)p(x,t), (x,t) € Qr, (1.3)

which is supplemented with the initial conditions
v(x,0) =vg(x), 0(x,0) = bOy(x), x€Q, (1.4)
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the dirichlet boundary condition for 6(x, t)

0(x,t) =0, (x,t) € I'r, (1.5)
and the sticking-boundary condition for v
v(x,t) =0, (x,t)elr, (1.6)

and with the integral overdetermination conditions

/Vc’(x)dx = e(t), /Qn(x)dx =4§(t), t > 0,where o(x)=w(x)—xAw(x). (1.7)

Q Q
Instead of (1.6), the sliding-boundary condition (see [20], [23,24])
vn(x,t)=v-n=0, (D(v)-n)vxn=0, (x,t)elyr (1.8)

also will be considered. Thus, in this paper we will deal with the two inverse problems:
the first inverse problem, which we will denote by PI for simplicity, consists of determining
unknown functions v(x,t), m(x,t), 0(x,t), f(t), and j(t) from (1.1)-(1.7); the second inverse
problem consists of determining the unknown functions v(x,t), 7(x,t), 0(x,t), f(t), j(t)
from (1.1)-(1.5), (1.8), and (1.7), and we will denote it by PII.

In (1.1)-(1.3), v(x,t), m(z,t), and O(x,t) are respectively a velocity field, a pressure and a
temperature, and %, v, A are given constants and vo(z), 6p(x), g(x,t), h(x,t), ¢(x,t), e(t),
i(t), o(x), and n(x) are given functions. In specifically, v, %, and A > 0 are coefficients of
the kinematic viscosity, relaxation and heat conductivity of the fluids, respectively, g(x,t)
is the acceleration due to gravity. The vector-functions F(x,t) := f(t)h(z,t) and G(x,t) :=
Jj(t)o(x,t) are the density of external forces and the heat source with unknown intensities
f(t) and j(t), respectively. The scalar-valued functions e(t) and 6(¢) are the average value of
the velocity and temperature over the entire area € by observing functions o (x) and 7(x),
respectively. In (1.8), D is the strain tensor, given by

D(v) = 5(Vv+ Tv7),

vy is the normal component of v(x,t) on 012, and n denotes the unit outward normal vector
to 0f2.

Note (see [18,23,24]) that the condition (1.8) is equivalent to
Va(x,t) =v-n=0, rotvxn=0, (x,t) €' (1.9)

in the case d = 3, and

0 0
Va(Xx,t) =v-n =0, rOtVE@;j_O;;:O’ (x1,29,t) € I'p (1.10)

in the case d = 2.
The system of equations (1.1)-(1.2) is called the Kelvin-Voigt system and it models the

motion of a viscoelastic incompressible Kelvin-Voigt fluids, i.e. fluids with the properties of
elasticity and viscosity, see e.g. [6], [29], [22], [27].

The Boussinesq system of hydrodynamics equations arises from a zero order approximation
to the coupling between the momentum equations and the thermodynamic equation. For
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a detailed discussion on the Boussinesq approximation, see e.g. Joseph [14], Rajagopal et
al. [25] and the references cited therein.

The existence and uniqueness of weak solutions to the direct problems (when the right-hand
sides F(x,t) and G(x,t) are given) for the Boussinesq system (1.1)-(1.3) were established
by Oskolkov [22] and Sukacheva [26] with the sticking-boundary condition (1.6), and by
Khompysh [17] with the sliding-boundary condition (1.8).

In the study of direct problems, it is important know a significant amount of information of
the physical parameters affecting to the processes such as the coefficients v, %, and A, and
the external forces F(x,t) and G(x,t), and et al. However, there are problems requiring in
addition to a solution of a direct problem, to determine some of such parameters, which are
unknown or located in an unacceptable places for direct measurement, such as underground
or in a high temperature media. Such problems are inverse problems, which the statements
of them have to be supplemented with some additional information on the solutions due to
the additional unknowns.

The investigating inverse problems here concerned to such type problems since they are
consist of determining in addition to the velocity, the pressure, and the temperature, the
unknown intensities of the density of external forces and heat source under given additional
information (1.7).

On the other hand, if » = 0, the system (1.1)-(1.3) becomes a classical Boussinesq system
which is connected to the Navier-Stokes equations. An inverse problems for this Boussi-
nesq system have not been studied a lot, for instant, in [1], [8], [10], the results of existence
and uniqueness of solutions of such inverse problems have been established in two dimen-
sional case, by different methods. But, there are many works on inverse source problems of
hydrodynamics, in particulary for Navier-Stokes system, we refer to [28], [7], [9], [11] and
references there in. To our best knowledge, an inverse source problem for heat convection
for Kelvin-Voigt system has not been studied, however there are several inverse problems for
Kelvin-Voigt equations, which one can find in [5], [12], [15,16], [21].

The aim of the present paper is to establish the local and global in time existence and
uniqueness of a weak and also strong solutions to the inverse problems PI and PI1.

The outline of the paper is the following. In Section 2, we introduce the functional spaces and
some auxiliary materials related to the boundary conditions (1.6) and (1.8), and the main
notation used throughout this paper. In Section 3, we define the weak and strong solutions to
the inverse problems PI and PII and reduce them to an equivalent direct problems, which
we handle further. The local in time existence of weak solutions of the equivalent direct
problems corresponding to the inverse problems PI and PII is established in Section 4 and
5, respectively. Here, the Galerkin approximation method was used to prove the existence
of solutions. Then a priori estimates and the convergence of the corresponding Galerkin
approximations were obtained.

The Section 6 devoted to prove the existence of strong solutions of both inverse problems. In
section 7, the uniqueness of weak and strong solutions of both PI and PII inverse problems
is proved. The global in time existence and uniqueness of solutions for some modifications
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of the inverse problems PI and PII were established in Section 3. Finally, in Section 9, the
asymptotic properties of the solutions of these inverse problems are proved.

2. PRELIMINARIES

In this section, we introduce the main functional spaces and some useful inequalities related
to the boundary conditions (1.6) and (1.8) from [18,23].

We distinguish vectors from scalars by using boldface letters. For functions and function
spaces we will use this distinction as well. The symbol C will denote a generic constant —
generally a positive one, whose value will not be specified; it can change from one inequality
to another.

We denote by L?(Q2) the usual Lebesgue space of square integrable vector-valued functions
on €, and by W™?2(Q) the Sobolev space of functions in L?(2) whose weak derivatives of
order not greater than m are in L*(Q).
Let us introduce the following functional spaces:

V(Q) :={v e Cyr ) :divv =0},

H(Q) := closure of V in the norm of L?(Q2), and

H'(Q) := closure of V in the norm of W2(Q), in the case (1.6);

H,(Q2) := closure of V in the norm of L?(Q), and

H! (Q) := closure of V in the norm of W2(Q), in the case (1.9) or (1.10);
H?*(Q) := {v:v e W**(Q), divv =0 and v = 0 on 9Q};

H2(Q) = {v:ve W?**Q), divv=0and v, = 0 and rotv x n =0 on 9Q};
and for the simplicity, we use the following common notation for both cases

- H!(2), in the case (1.6); 2.1)
] HL(Q), in the case (1.9) or (1.10), i =0,1,2, '

where H® = H. According to [20], [18,23] and the references cited in them (see for example
2,13]), for any function v € HJ, (Q) (for H(Q) is well known from Navier-Stokes theory), the
following inequalities are hold:

Poincare’s inequality

IVl,0 < CUO) [VV,q, v € HLy(Q);
Ni() VIl 20y < lIrot vl o < No(Q) [[Viiwroi)» Vv € Ha(); (2.3)
N3(Q) [IVIlwea) < [AV],q = [rotrot vy o < No(Q) [IVlweaq), ¥V € H(Q);  (2.4)
Ladyzhenskaya’s inequalities [19, 20]

Vlls0 < 20vl50 IVVI50; (2.5)

in case d = 2, and
IVliia < 4/3)% IVllba IV VI3 (2.6)

in case d = 3, and
IVlso < 48)% [VVllyq, d=3 (2.7)
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Let us introduce now the bilinear and continuous form a on H', associated with the operator
—A:
a(v,u) = (Vv,Vu),,, Vv,ue H'(Q) (2.8)
in the case (1.6), and
a(v,u) = (rotv,rotu), o, Vv,ue H.(Q) (2.9)
in the case (1.8) ((1.9) or (1.10)). It is clear that a(v,v) is a norm on H'(Q), which is

equivalent to W'%(Q)-norm. In particular, due to (2.2), in H. the norm | rotvl|sq is
equivalent to the norm ||v||w12(q), and therefore equivalent to the norm [|[Vv/|zq.

Thus, a defines an isomorphism A from H(Q2) to H™1(),

(Av,u) = a(v,u), Vv,uec H (), (2.10)
where (-, -) denotes the pairing of H and H™!. There hold the following continuous inclusions
H'(Q) — L*(Q) — H Y(Q), (2.11)

where each of the first two spaces is dense in the next one.

It follows from (2.4) also that in H} the norm [|Av]|,, = |[rotrot v||,  is equivalent to the
norm ||v|jw2z2(q)-

Regarding to the sliding condition (1.8), we have the following Green formulas (see [20]
and [18,23]:

(—Av,u),, = —(Vdivv,u),, + (rot2 v, u) = —/ divv-u, dS+
’ ’ 2,02 00

(2.12)
(divv,divu), g —l—/ u - (rot v x n) dS + (rot v,rotu), , = (rot v,rot u), g,
o)
in the case d = 3, and
(—Av,u),, = (divv,divu),, + (rot(rot v),u), o =
(2.13)

/89 (rot v x n)udS + (rot v,rot u), , = (rot v,rot u), ¢,

in the case d = 2, where rotyp is the vector (¢,,, —¢s, )y for the scalar function ¢.

Lemma 1. Let Q C RY, d > 2, be a bounded domain and assume that r > 1. If the
boundary 0N is assumed to be of class C%', then there exist positive constants Cy, Co and
Cs, depending only on 2 and d, such that

ull 1= @) < C1l|VullLr Vue W&’T(Q), rt = - r<d, (2.14)
IVullr @ < Col D2l ¥ ue W2(Q) N W7 (Q), (2.15)
1 r

@HMHLT(Q) < |ID%ullir@) < CollAullpr@y ¥ ue W(Q) N W (). (2.16)

The following nonlinear version of Gronwall’s inequality will be used to establish the first
and second estimates below.
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Lemma 2. Ify: Rt — [0,00) is a continuous function such that

t
y(t) < Cl/ y'(s)ds +Cy, teRY, pu>1
0

for some positive constants C7 and Csy, then
1
(1 — 1)010571'

y(t) < Co (1= (n=1)C1C ) " for 0 <t < by i=
Proof. See e.g. [3]. o

3. WEAK FORMULATION

The weak and strong solutions to the inverse problems PI and PII are understood as the
following sense.

Definition 1. The collection of functions (v(x,t),0(x,t), f(t),7(t)) is called a weak solution
to the inverse problem PI (and PII), if:

(1) v e L>(0,T; HY) N L0, T; HY), v, € L*(0,T;H'), f(t) € L*[0,T];
(2) 6 € L>(0,T; L*) N L*0,T; W, ?), 6, € L*(Qr), j(t) € L?[0,T];

(3) v(0) = vo and 0(0) = 6y a.e. in Q;

(4) (1.7) holds for all t € [0,T);

(5) For every ¢ € H'(Q)

@ (v, @)y + 72 (v.0)) + (v V) 9, V)0 + va (v, 0) =

dt (3.1)
F(t) (h(x,1), )y 0 + (8(x,1)0, )5 0
holds in the distribution sense on (0,T);
(6) For every i € Wy*(Q)
d
I (0, 1/’)2(2 + A (V0, V¢)2,Q +((v- V)0, w)QQ =j(t) (o(x,1), ¢)2§2 (3.2)

holds in the distribution sense on (0,T).

Definition 2. The collection of functions (v(x,t),0(x,t), f(t),7(t)) is called a strong solu-
tion to the inverse problem PI (PII), if:

(1) v € L>(0, T; HY(Q)NH2(Q))NL2(0, T; HY(Q)NH?(Q)), v, € L0, T; H2(Q)), f(t) €
L?0,T7;

(2) 6 € L>(0,T; L*(Q) N W, (Q)) N L2(0,T; W>2(Q)), 6, € L*(Qr), j(t) € L*[0,T);

(3) and each equation of (1.1)-(1.7) holds in the distribution sense in the their corre-
sponding domain.

Remark 1. As noted in previous section, in Definition 1 and 2, we usea (v, ¢) = (Vv, V), q
and H' := H'(Q) for PI, and a(v,¢) = (rotv,rot p), o and H' := HL(Q) for PII, see
(2.8), (2.9), and (2.1).
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Remark 2. The pressure w, as usual, was not included in the definition of a weak solution.
It can be uniquely recovered from equation (1.1) by using de Rhaam’s lemma, after existence

of v, 0, f, j asin [}].

Assume that data of the problem satisfy the following conditions
vo(x) € H'(Q) and 6y(x) € WOI’Q(Q); (3.3)
ko = const : 0 < ky < 0o, and |ho(t)]| = ‘(h(x, t),w ‘ > ko >0, Vt > 0; (3.4)
Tk = const 1 0 < ky < o0, and |go(t)] = |(6(x,1),7 2Q\>/ﬁ>o Vt>0;, (3.5
h(x,t) € L=(0,T;L*(2)), é(x,t) € L=(0,T; L*(Q)); (3.6)
w(x) € HI(Q) NH*(Q), e(t) € Wy([0,T]); (3.7)

/VO codx = (vo,w)zQ +x a(vo,w) = ¢(0); (3.8)
Q

n(x) € Wy2(Q), 6(t) € Wi([0,T]), and / 6o - ndx = 6(0); (3.9)

0
g(x,t) € C(Qr) and gy = const : 0 < gy < 0o, such that max lg(x,t)| < go. (3.10)
T

Next, we will show that both inverse problems can be reduced to equivalent direct problems
but for equations (1.1),(1.5) with non-linear functionals that depend on v and 6.

Let us multiply the equations (1.1) and (1.3) by w(x) and n(x), respectively, and integrate
over . Integrating by parts and using the assumptions (3.4) and (3.5), we have

(€(t) = (v V) w,V)yq +va(v,w) = (g8(x,1)0,w),q) = ®(v,0), (3.11)

i = ¢01(t)

where a (v, w) is defined at (2.8) and (2.9). Let us replace functions f(¢) and j(t) in equations
(1.1)-(1.3) with functions defined by expressions (3.11), (3.12):

vi+ (v:-V)v —xAv, —vAv + V1 = g(x,t)0(x,t) + ®(v,0)h(x,1),(x,t) € Qr,

(5() + A (YO, Vn)y = (V- V)1, 0)50) == J(v,0), (3.12)

(3.13)
divv(x,t) =0, (x,t) € Qr,

O+ (v-V)0 —NAO = J(v,0)o(x,t), (z,t) € Q. (3.14)

The following lemma is valid.

Lemma 3. Assume that the conditions (3.4)-(3.9) are fulfilled. Then an every solution
to the inverse problem PI is a weak solution to the nonlocal problem (3.13)-(3.14), (1.4)-
(1.6), which the functions ®(v,0) and J(v,0) are defined by the formulas (3.11) and (3.12),
respectively, and vice versa every weak solution to the nonlocal problem (3.13)-(3.14), (1.4)-
(1.6) is a solution of inverse problem PI, i.e. it satisfies the conditions (1.7).

Moreover, the uniqueness of the solution to the problem PI implies the uniqueness of the
solutions of the problem (3.13)-(3.14), (1.4)-(1.6).

This statement is also true for inverse problem PII, i.e. an every solution of PII is a
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solution of the nonlocal problem (3.13)-(3.14), (1.4)-(1.5), (1.8), which the functions ®(v,H)
and J(v,0) are defined by (3.11) and (3.12), respectively, and vice versa, an every solution
of (3.13)-(3.14), (1.4)-(1.5), (1.8) is a solution of inverse problem PII, i.e. it salisfies the
conditions (1.7).

Remark 3. The statement of Lemma 3 means that if the collection (v(x,t),0(x,t), f(1),]
is a solution to the inverse problem PI (PII), then the pair of functions (v(x,t),

is a solution to the nonlocal problem (3.13)-(3.14), (1.4)-(1.6) ((3.13)-(3.14), (1.4)-(1.
(1.8)), which the functions ®(v,0) and J(v,0) are defined by the formulas (3.11) and (3.12),
respectively, and vice versa, if the pair (v(x,t),0(x,t)) is a solution to the direct problem
(3.13)-(3.14), (1.4)-(1.6) ((3.13)-(3.14), (1.4)-(1.5), (1.8)), then these functions v(x,t) and
0(x,t) together with the functions f(t) and j(t), defined by the explicit formulas (3.11)-(3.12),
give the solution to the inverse problem PI (PII), i.e. they satisfy the condition (1.7).

Proof. 1. Let (v(x,t),0(x,t), f(t),j(t)) be a solution to the inverse problem PI (PII).
Multiplying the equations (1.1) and (1.3) by ( ) and 7(x), and arguing as above, we derive
f(t) and j(t) by the explicit formulas (3.11)-(3.12), respectively. Then substituting them
into (1.1)-(1.3), we obtain the system (3.13)-(3.14). The conditions (1.4)-(1.6) ((1.4)-(1.5),
(1.8) for PII) are same for both inverse and direct problems.

o~

2. Let now (v(x,t),0(x,t)) be a weak solution to the direct problem (3.13)-(3.14), (1.4)-
(1.6) ((3.13)-(3.14), (1.4)-(1.5), (1.8)) with the right hand side ®(v,8)h(x,t) := f(t)h(x,t)
and J(v,0)p(x,t) = j(t)p(x,t), where f(¢),j(t) defined by the formulas (3 11)-(3.12). In
order to prove the collection ( (x,1),0(x,t), f(t),7(t)) of these functions to be a solution to
the inverse problem PI (PII), it is sufficient to prove that these functions are satisfied the
overdetermination conditions in (1.7).

Let us assume that for contradiction, i.e. the overdetermination conditions (1.7) do not hold.
Suppose that

/ vodx — ey(t). / bn(x)dx = 8,(t)¢ > 0. (3.15)

Q

where e1(t) # e(t) and §;(t) # d(t) for some ¢t > 0. It follows from (3.15) that e;(t),01(t) €
W1([0,T]) and due to the compatibility conditions (3.7)-(3.9), we have

e1(0) = / vo(x)or(x)dx = e(0), 81(0) = / 0o (x)n(x)dx = 5(0).

Q

Again, multiply the equation (3.13) by w(x) and (3.14) by n(x) and integrate over 2. Inte-
grating by parts and using (3.15), we get

ei(t) — ((v- V) W, V), o tra(v,w)y o — (8(x,1)0,w), o = P(v,0)h(t) (3.16)

5(6) + A (V8,Vn)yq — (v V) 0,6), 0, = J(v,0)0(t) (3.17)
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Next, plugging (3.11) and (3.12) into (3.16) and (3.17) respectively, we obtain the following
Cauchy problems for E(t) = e;(t) — e(t) and D(t) = 01(t) — 0(¢)

E'(t) = 0, D) — 0,
{ E((O; =¢€1(0) —e(0) =0, { D((O)) = 5,(0) — 6(0) = 0 (3.18)

which yield e;(t) = e(t) and 6,(t) = 6(¢) for all ¢ > 0. o

Let (v,0, f,j) be a unique solution of the inverse problem PI. If the corresponding direct
problem (3.13)-(3.14), (1.4)-(1.6) has two distinct solutions (vy,6;) and (vz, 63), then we see
that (vy,6;, fi,7:), ¢ = 1,2, with the functions f;(t) and j;(¢), uniquely defined by formulas
(3.11) and (3.12), respectively, are two distinct solutions of PI, and it contraries to the above
assumption.

Now, let (v,0) be a unique solution of (3.13)-(3.14), (1.4)-(1.6). Assume to the contrary
that there are two distinct solutions (vy, 61, f1,j1) and (va, 6a, fo, jo) of the inverse problem
PI. Then arguing as above, we see that (vq,60;) and (va, 0s) are two distinct solutions of the
direct problem (3.13)-(3.14), (1.4)-(1.6), however, it fails to be true.

4. EXISTENCE OF LOCAL IN TIME WEAK SOLUTIONS OF PJ

In this section we study the direct problem (3.13)-(3.14), (1.4)-(1.6), which by Lemma 3 is
equivalent to the inverse problem P/I. The direct problem associated to PI[ will be studied
in the next section.

Theorem 1. Let the conditions (3.3)-(3.10) be fulfilled. Then there exists Ty € (0,7, such
that the direct problem (3.13)-(3.14), (1.4)-(1.6) has at least a weak solution in the cylinder
Qr,, where Ty is defined at (}.22) below. Accordingly, the inverse problem PI has at least
a weak solution. Moreover, for a weak solution to the inverse problem PI the following
estimates are hold

2 2 2 2
IV ILoe 0.7 1 ) T 1Velle om0 T 1VIE20mm @) + 1 Ol 7207 < C1 < o0,

161~ (o )+ 1960, + 100y, + 12012 g + 1502y < C < oo.

where C and Cy are positive constants depending on data of the problem.

Proof. The proof of this theorem consists of the steps: constructing Galerkin’s approxima-
tions, obtain first and second energy estimates for Galerkin’s approximations and passage to
the limit. O

4.1. Galerkin’s approximations. Let us construct a solution to the problem (3.13)-(3.14),
(1.4)-(1.6) as a limit of the Galerkin approximations.

Let {¢k}rey be an orthonormal family in L*(Q2) formed by functions of H whose linear
combinations are dense in H'(§2), and {44}y be a system of eigenfunctions of the following

spectral problem for the Laplace operator such that ¥ (z) € Wy2(Q) N W?22(Q) and
— Apy() = Iy, Pp(x), x €,

(@) o = 0. (42)
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It follows from the theory of spectral problems that the family {1}, can be made orthog-
onal in Wy*(Q) and orthonormal in L?(Q).

Given n € IN, let us consider the n-dimensional spaces X" and Y™™ spanned by ¢ and ),
k = 1,...,n, respectively. For each n € IN, we search for approximate solutions to the
problem (3.13)-(3.14), (1.4)-(1.6) in the form

Vn(:L‘,t) = ch(t)soj(f% Pj € Xn)
)

(4.3)

Il
NE

0" (x, 1) dj (t);(x), € Y™,

[
Il
—

where unknown coefficients ¢} (t), dj(t), j = 1,...,n are defined as solutions of the following
system of ordinary differential equations (ODE) derived from

d
((Vn> on)Q,Q +x (anv Vsok)Q,Q) + ((Vn ) V) Pk Vn)Q,Q +v (an’ V‘P’C)Q,Q =

dt
o"(v",0") (h(x,1), Sok)Q,Q + (g(x,)6", 9016)2,(2 ) (4.4)
d
g7 0 V)20 + A VO, Vii)y o + (V- V) 0%, i)y g = T (V" 07) (6%, 1), Y0 -
for k=1, 2, ..., n, where
1 / n n n n
W 07) = o () = (7 V), ¥ 40 (V" V) (8010 0);0).
(4.5)
1 ! n n n
T 0%) = o (810 + AV, Ty = (V" V) 0.07)30) (46)
The system (4.4) of ODEs is supplemented with the following Cauchy data
v*'(0) =vy, 60"(0)=46; in S (4.7)
where
Vg - Z (V()) Soj)2,Q SOJ’ 93 = Z (90, ¢]) ¢]
=1 j=1
are sequences in L2(Q) N H'(Q) and L*(Q) N W,*(Q) respectively such that
v — vo(z) strong as n — oo in L*(Q) N HY(Q). (4.8)
07 — Oo(x) strong as n — oo in L2(Q) N W, (Q). (4.9)

According to a general theory of ordinary differential equations, the system (4.4)-(4.7) has
a solution cf(t),d}(t) in [0,]. By a priori estimates which we shall establish below, the
solution can be extended to [0,7y] C [0,7], where [0,7p] is a maximal time interval, such
that a priori estimates are hold.
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4.2. First a priori estimates.
Lemma 4. Let d < 4 be valid. Assume that

vo(z) € HY(Q), 6y(x) € L*(Q)

and the conditions (3.4)-(3.10) and (4.8), (4.9) are fulfilled. Then there exists a finite time
To € [0, T] such that the following a priori estimate is valid for all t € (0,Tp)

nj|2 n |2 n||2 n|2
IV o0 0,080 (02)) T 10" [0 (0. 7050200) F IV 20,112 ) + 1VE Hz,QTO < My < 00, (4.10)

where My and Ty are a positive constants depending only on data of the problem.

Proof. Multiply the first equation of (4.4) by ¢}(¢) and the second equation by d}(t) and
summing with respect to k, from 1 to n, we have

1d n n n n(,n An n n o.n
o V' aa + %9V ) + 1 IV 50 = 2"(v",07) ((x, ), V") 0 + (806, 10", V)0
(4.11)
1d ni2 n2 ni.n an n
5 10" o0 ANV |50 = T (v, 67) (6(x,8),6"), 0 - (4.12)

First, we apply Holder’s and Young’s inequalities together with Ladyzhenskaya’s inequality
in the case d = 2, and the following Sobolev inequality in the case d < 4

2
d2, d>2e2<d<4, ulx) e H(Q) (4.13)

Jullyo < C(D) IVullg, 4< =

to (4.5) and (4.6) to obtain
n n n 1 n n n
(v 0] = o 'O+ VIV o0 IV@lla.0 + 90 167150 [@lla0 + V1156 Ve ll,0) <

1 n n n
T O]+ [V o0 V@ llp.0 + 60 167150 [[@]l50 + C2 VY30 I V@llyq)
(4.14)

and

n n n 1 n n n
W0 < = [[FO1+ AT [l + IVl 10710 [Vl 0] <
4.15)
: (
£ [9O1+ X1V 0 [Vl + C2 IVl V9 0 [Vl

respectively.

Next, we estimate the terms on the right-hand side of (4.11) and (4.12) by using Holder’s
and Young’s inequalities together with (4.14), (4.15)

n o .n n n 90 ni2 ni2
(8. 06" V") 0| < 9016120 V" 1l0 < 5 (V"0 + 16"[30) (4.16)
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[@"(v",0") (B(x, 1), V") 0| < @7 (v, 0") ()] [[B]]y 0, [V |0 <

1 n n n n |2
kio HhHQQ v H2Q []el(t)| +v | Vv HQQ ||Vw||2’9 + g0 [0 ||2Q ||"‘-’||2Q + C'52 Vv H2Q ||V""||2,Q} <

1 ni2 3 2 2 V n2 v 2 2 n2
5 IV B+ 5 Il </ + 5 IVV 0 + gz Il IVelBg IV 50+

L2 395 2 2 n2 L2 304 n

6 v ||2(2 + ng ||h||29 ||w||29 16 ||2Q + = ||V ||QQ 2 ||h||29 |[Vw ||2Q Vv ||2§2
1 n||2 n 390 2 2 n2

31V 50+ 5 19V 130+ g D00 [0 + 5 I3 el 10710+

1 2 n n
5z [Bl2a IV@lzg (v Iv°I50 + 301 VY7 [l50)
0

(4.17)
T 0m) (6(%,8),6™)5 0] < 16 ]l5.0 167150 <
1
k‘il ||¢||2(2 ||9n||29 {|5,(t)| + A ||V9n||2,9 ||V77||2,Q + 052 ||an||2,9 ||V6m||2,ﬂ ||V77||2,Q} <
1 1 Ao A .
5 1o 5.0+ BT 11150, 16" (8) 1 + 1 IV0 5.0+ 2 15,0 171156 116115, +
(4.18)

)\ n C;l n n
TIN50+ 355 1ell0 1Vallo VY 150 167150 <
1

1 ni(|2 A ni2 1 2
2 10720+ 51980+ 53 191120 18O+

1 n 1 n n 2
1B IVl q M7 3g + 5C (I9V" 0 + 167130)°]
1

Plugging the inequalities (4.16)-(4.17) into (4.11) and the inequality (4.18) into (4.12), and
adding the results, we have

d n||2 n|2 n||2 n||2 n|2
%(HV 0 +%IVV" 50 +10"150) + v IVV"l50 + AV 54 <

(4.19)
I n n ! n n 2 !
CL (1) (IV"[5.0+ 107150) + Cot) (% Vv II50 + 107150) + C4(8),

where

v 2 2 39 2\ 2 2
C6) = 1+ + o { 1 bl IVl 28 Il li + 33 1010 91 |

(3 )
=% (2 + 17 ol 10l

and

3
Cy(t) = W2 Iblq le' (P + ||¢>||m |8 (£)[*.
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Integrating last inequality by s from 0 to ¢t and doing some elementary calculations, we
obtain

t
n||2 n||2 n|2 n||2 nn2
Ve # 199 B+ 1671+ [ (0 I9V 2+ AN ds <

0
t t

1 " N 2 n n 2
4ClT+Cl/(Hv e+ 116"50) ds+02/(%l|vv 3o + 10"1l55) ds+
0 0

2 2 2 2 2
le' @3 021 + 16 @)15,0.01) + I1v0ll3.0 + % 1V Voll3.0 + 160150 <
t

n|2 n(|2 ni2 2
Co [ (M50 + % 19V 50+ 10"5) ds+ Cs

(4.20)
Cs

/N

o

where C;,i = 1,2,3,4,5 are positive finite constants depending only on the data of the

problem, i.e. C; = sup Ci(t) < 00,i = 1,2, Cy = Cy + Cy < 00, and
t€[0,T]

Cs = Cs + [Ivallsq + % [[VVoll5 0 + 160l < oo,

and due to the assumptions (3.3)-(3.10) all these constants are finite.

Omitting the integrals on the left hand side of (4.20) we arrive at the following nonlinear
integral inequality

t
y(t) < 04/ y*(s)ds + Cs
0

for y(t) = anHgﬂ + HVV”H;Q + HG”H%Q Applying the generalized Gronwall’s Lemma 2
with = 2, we obtain estimate

Cs

< ———— =K< 4.21
y()_1_0405t 00 (4.21)
for
0<t<Ty<T,:= ! (4.22)
-~ -~ 0 * C4C5. .
Thus, for all t < Ty < T, (4.21) yields
Iv'll50 + 2 IVV"l50 + 10750 < K. (4.23)

Applying the estimate (4.23) to the right hand side of (4.20) and taking the supremum by
t € [0, Ty], we obtain from (4.20) the following estimate

n||2 n||2 n |2 n|2 n|2
sup | (HV ||29 + Vv ||2Q + 10 2,9) + Vv ||L2(QTO) + Vo ||L2(QTO) < Ko < oo, (4.24)
0

te(0,T;
where Ky = K()(,u, )\,%,To,cl,CQ,Cg,C%). O
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4.3. Second energy estimate.

Lemma 5. Assume that all conditions of Lemma j are fulfilled. Then for v" the following
estimate is valid

S 19V Ia+ 1Vl gy, + 9%, < My < oo, Ve[0T, (425)
S

where Ty is defined at (4.22) and M, is positive constant depending on data of the problem.

Proof. Multiply both sides of the first equation of (4.4) by % and sum up from k£ =1 to
k = n. Integrating the result by s in [0,¢], ¢ < Tj, we have

SV B + IV Ol +# V¥ (D3, = 5 19V O30+
L (4.26)
[ 197767 (h(5).¥7(5) + (85167 (5): VE () + ((87(5) - D) ¥ (5). v ()] ds.

Now, by using Holder and Young inequalities together with the estimate (4.10), we estimate
each term on the right hand side of (4.26)

/|<1>"v 0")(s) (v} |ds</|<1>"v 0) (&) bl V] .0 s <

Mo
||h||L<>° (0.T:L(Q)

2 n/,n on\|2
||Vt ||2 QT %, ||h||L<><>(0,T;L2(Q)) @7 (v", 0 )”L?([O,TO]) < “Vt ”2 @ T
(4.27)

t

t
2 2
n ne |2 €2 1 2 9
[ 1E610 ()i ) sl < Z IV, + o2 [ 1675 e ds < Z IV g, + 2 MoT.
0 0

(4.28)
Let be d < 4.
/| V)V v ds < / 1997 o V720 ds < C(9 /||szr|m 972 ds <
€3 n n n C*(Q)
2V g, + lads < 2 IVIIEq, + S5 2 MET.
(4.29)

Substituting (4.27)-(4.29) into (4.26) with & = e, = 5 and e = %, and taking supremum by
t € [0, Tp], we have

n 2 n 2
<
v Sup Vv oy + Vi @) ll5.0q, +# IVVI )15 0, < M < oo, (4.30)
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where My = v/ [Vvoll3 o + Mo (I3 o ey + 8T + SL2M,T). O
Lemma 6. Let be d < 3. Assume that all conditions of the Lemma j are valid and

fo(z) € Wy (Q).
Then the following estimate is valid for 0™

S 96" 50 + 167 1 g, + 120" 50y, < Mo < o (4.31)

Proof. Multiply the second equation of (4.4) by l.d}(t) and %, and sum up the resulting
equation from k = 1 till £ = n. Taking in account (4.2), we obtain the following equalities,
respectively

1 d n n n 3 3 n n n n
5 o V830 4 DG = (v V)87, A8, o+ J(",67) (90, 1), ~A6"), 0 (432)
and
)\ d n n n n n n n n n
9 dt Vo ||2£2+ 16} ||29 = ((v"- V)"0, )2,Q+ J(v", 0 )(¢(Xat)>9t)279' (4.33)

Let us first, estimate the terms on right hand side of (4.32). Applying the Holder inequality
together with (2.7) and (2.15)-(2.16) we get

(V" - V) 0%, 80")| < |20 [0 V" [l 0 V0[50 <
CEO A0 0 IVV o0 VO 50 (VO™ [l60 <

(

n n ny i n(ls 4.34

Q) |48y o 9V e V6120 IV (4:34)
(

20 =

n 3 n n 3 * 2d
CO) A8 30 IVV" 0 V130, 627 = = & d<3,

in the case d = 3, and with Ladyzhenskaya’s inequality (2.5) and (2.15)-(2.16)
(v - V) 0", A0")| < ([ A8, [V 40 IV (|10 < (4.35)
() 186" o V"I 0 V"3 02150 < CO) 26730 9V [0 V6”130

in the case d = 2. Thus, in any case d = 2 or d = 3, we have

02(9)

n n n 8 n n n
(" V)07, 807 < LA g+ 2 IV 3 96750 (4:36)

Likewise, we have

(v, 07)(1) (9(x, ), =D0")y | <

n/n AN n € n 1 nin An (437)
TV 0 8l 126" 0 < 2 148050 + 5— I18ll5 0 [T (v, 6") (1)
2 255
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Plugging last two inequalities with 4 = €5 = 3 into (4.32), and integrating the resulting

inequality between 0 and t € [0, Tj], we can show that
IV l50 + MIAG"I3 g, <
t
n 2 n n n n n
IV )+ [ [0l al" 00O + CA) [V L 907 3] s,
0
in which by (4.15) and (4.24), yields that
VO™ | 201052200y + ANAO 50, < V5.0 +
2
A
2 n n 3
||V00||§’Q + I {H¢||i°°(0,TO;L2(Q)) [J"(v", 0 )HiQ[O,TO] + CQKS} = K3 < oo.

(4.38)

[||¢||ioo(o,To;L2(Q)) 7 (t)HiQ[O,To] +C*HQ) [Vv ||L°<>(0,T0;L2(Q)) Ve ||§,QTO} < (4.39)

Analogically we obtain the following estimates for the terms on the right hand side

[ (v, 07) () (00, 8), 67 )g 0 | < [T (V" 0") (O | Dll0 168 1.0 <

€6 || 1 . (4.40)
5 16 Hg,sﬁgﬁ Ill50 " (v", 0™ ()|
and
(V"= V) 07,00 <1167 g0 1V" L0 IV 0 < CHQ) (167 100 IVV {50 146" <
€7 |1 gn CHD) 1 on n
T+ e 19V 0 186" .
(4.41)

Plugging the inequalities (4.27)-(4.28) with e = e7 = 3 into (4.33) and integrating the
resulting inequality between 0 and ¢ € (0, 7p),and using the estimates (4.10) and (4.39), we
have

n (|2 n|2 2
MIVO e 0,152 + 107 205, < M VO0llz0+ (4.42)
2 ni.n An\|2 n||2 |2 ‘
2 [z o,z 17" OV O 2oz + VYl 0,0i12000) 180" 2,05, = K < 0.

The estimates (4.39) and (4.42) yield the estimate (4.31) with M, = K3 + K, < oc. o

4.4. Passage to the limit as n — oo. By means of reflexivity and up to some subsequences,
the estimates (4.10), (4.25), and (4.31) imply that

v® = v weakly in L?(0,Ty; H'(Q)), asn — oo, (4.43)
g" — 0 weakly in L*(0,Tp; Wy*(Q)), as n — oo, (4.44)
v" = v weakly-* in L=(0,Ty; H'(Q)), asn — oo, (4.45)
P (v™, ") — ®(v,0) weakly in L*([0,7p]), asn — oo, (4.46)
JU V™ 0") — J(v,0) weakly in L*([0,Tp]), asn — oo, (4.47)
g" — 0 weakly -x in L®(0,Tp; W, (), asn — oo, (4.48)
vl — v, weakly in L*(0,Ty; H(Q)), asn — oo, (4.49)
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0" — 0, weakly in L*(0, Tp; L*(2)), asn — oo, (4.50)
0" — 0 weakly in L*(0, Top; W*%(Q)), as n — oo, (4.51)
where ®(v,0) and J(v,0) are the functional defined at (3.11) and (3.12), respectively.

On the other hand, due to the compact embedding Wy?(Q) << L?(Q) and the Aubin-Lions
compactness lemma, it follows that
v* —s v strongly in L*(0, Tp; L*(Q)) and a.e. Qg as n — oo (4.52)

and
0" — 6 strongly in L*(0,Ty; L*(Q)) and a.e. Qg, asn — oo. (4.53)

Let be ((t),£&(t) € C5°([0, Tp]). Multiplying the first equation of (4.4) by ((¢) and second by
&(t), integrating the resulting equations between 0 and Tp, we obtain

Vv Vi dxdt + / (v - V)v" - pr( dxdt+

/ vy - ppCdxdt + x
QT QT

QT

v Vv": Vir( dxdt = /

To
g(x,t)0"pi( dxdt + / O (v™,0™)(t) / h(x,t)pr dx dt
Q1 Qr, 0 Q

(4.54)

/ 0" - € dxdt + / (V' - )07 - € dxdt + A / VOV dxdt
Qry Qry

Qr,

. (4.55)
_ /0 T 67) (1) /Q 6 (z, £)ué dxdt
for k € {1,...,n}.

Then, fixing k, we can pass in equations (4.54) and (4.55) to the limit n — oo, by using the
convergence results (4.43)-(4.53). Then, we obtain

/ Vi - ¢ dxdt + x Vv, : V¢ dxdt + / (v V)v - ppldxdt
QT

QT QT

To
g(x,t)&cpk(dxdt+/ @(V,H)/Qh(x,t)gakgdxdt
0
(4.56)

+v Vv : Vpi(dxdt = /
Qry QT

/ 0, - pl dxdt + / (v - V)0 - € dxdt + A / VOV & dxdi
QT, QT, QT, (457)

= /T0 J(V,@)/gb(m,t)wk{dxdt
forkE{l,...,n}O. "
Here, for the convective terms, we passed to the limit by using the following convergence
(V" - V)v" — (v-V)v strongly in L'(Qr,), asn — oo, (4.58)
(V" V)" — (v- V)0 strongly in L'(Qg), asn — oo, (4.59)
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which can be proved under (4.10), (4.25), and (4.31). In fact, writing the corresponding
integrals in (4.58) as

/QTO (V" V)V" — (v - V)v] dxdt = /

v" —v) - V|v"dxdt — v-V)(v" —v)dxdt,
) b= [ v v

Qr,

we see that the first right-hand side integral converges to zero by application of Hoélder’s
inequality together with (4.10) and (4.52):

/Q (V" = v) - V)" dxdt <|V" = V]zzon [V [12n) <
To

VMi|[v" = v|[r2@n) — 0, asn — oo,
The second integral converges to zero, due to (4.43) and because v € L*(Qg, ).
Analogical way, the convergence (4.59) can be proved due to (4.10) and (4.31).

By linearity, the equations (4.54) and (4.55) hold for any finite linear combination of ¢4, ..., ¢,
and 1, ...,1,, respectively, and, by a continuity argument, they are still true for any
¢ € L2(0, Ty; H(Q)) and ¥¢ € L2(0, Ty; Wy (Q)) with ¢, & € C5°(0, T), respectively. More-
over, all terms in the equations (4.54) and (4.55) are absolutely continuous as functions of
t defined by integrals over [0,75]. So we obtain the following equalities which hold for a.e
t € 10,Tp] and for any ¢ € V and ¥ € WOI’Q, respectively

/ {vt(t) + (V(t) . V)V(t)} S dx + 1// Vv(t) : Vepdx —1—%/ Vv(t): Vepdx =
“ @ @ (4.60)

/Qg(X,tW(t)godx—i-(I)(v, 6’)/h(x7t)<pdx

Q
and

/Q 0,(1) - b dx + /Q (v(t) - V)O(t) e dx + A /Q VOtV dx = J(v, 6) /Q b(, )0 dxc(liﬁl)

Thus, the pair of limit functions (v, #) is the weak solution to the direct problem of (3.13)-
(3.14), (1.4)-(1.6), and by Lemma 3, it together with the limit functions f(¢) = ®(v,0) and
Jj(t) = J(v,0) (see (3.11) and (3.12)) gives the weak solution to the inverse problem PI.

Furthermore, due to the weakly lower semicontinuity of norms, we obtain the following
estimate from (4.10), (4.25), and (4.31)

2 2 2 2
[Vl (0,788 (02)) T HQHLOO(D,TO;WOI’Q(Q)) + IVIlLe i @) + VO, +

) ) ) (4.62)
HVtHL?(o,To;Hl(Q)) + ”9t||2,QTO + ||A9||2,QTO < C < oo.
and from (4.14) and (4.15)
Ty .
2 2 2 2
”f(t)HL?([O,TO]) = [|®(v, Q)HL?([O,TO]) = / |F(&)]"dt < ?g {Hel(t)”B([o,To}) + (4.63)

0

2 2 2 2
(v+C2)? IVIIT20rm @) IV@llza + 90T (1017 0,710 ||w||29} =K <o0
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and
To

. . 3 2
13O0z = 17V 0) 2 g0y = / P e < 2 1800z +
1
0

n||2 2 2
(X + C IV o, an) 1Vl V015 o, | = Kz < 00
respectively. The set of estimates (4.62)-(4.64) gives (4.1).

(4.64)

5. EXISTENCE OF LOCAL IN TIME WEAK SOLUTIONS OF PI]

In this section, we study the inverse problem P11, associated to the sliding condition (1.8),
and therefore, by Lemma 3, the corresponding equivalent direct problem (3.13)-(3.14), (1.4)-
(1.5), (1.8). For this problem the following is hold.

Theorem 2. Let the conditions (3.3)-(3.10) be fulfilled. Then there exists Ty € (0,71,
such that the direct problem (3.13)-(3.14), (1.4)-(1.5), (1.8) has at least a weak solution
(v(x,1),0(x,t)) in the cylinder Qr,. Accordingly, the inverse problem PII has at least a weak
solution (v(x,t),0(x,t), f(t),j(t)) in Qr,, and for a weak solution to the inverse problem PII
the estimate (4.1) is hold for all t € (0,T1], where Ty is defined at (5.6) below.

Proof. In order to prove this theorem, it is enough to prove an alternative estimates of (4.10)
and (4.25). Due to the equivalencies of norms || rot v|o,0 and ||[v|lwiz@) or [|[Vv|sq in HY,
many techniques are similar as in previous section, for instance, the estimate (4.31) is still
true. Therefore, we will omit some details of proof.

Thus, in the case (1.8), due to the Green’s formulas (2.12)-(2.13), the equalities (4.11) and
(4.26) have the following form, respectively

;jt (“Vn”;(z + % [|rot Vn”gg) +v [|rot VanQ = Q" (v",0")(1) (havn)2,9+(g9nyvn)2,ﬂ , (5.1)
5 ot v o + VP () g, + 7 lrot v (1) 30, = 5 lrot v ()5 +
: (5.2)
/ ["(v",6%)(s) (B(s), vi'(s)) + (79 (s)8" (s), vi'(5)) + ((v"(s) - V) Vi (s), v"(5))] ds,
Wh?ere
ni.,n An o 1 / n n n n
(VO = 5 (¢(t) = (V" V) w,v")yq + v (1ot V", ot w), o — ((%, 1)0", w), ) -

(5.3)

Estimating the terms on right-hand side of (5.1) and (4.12) as (4.16)-(4.18), and using the
equivalence norms |[rot v|jsq and ||[Vv]j2,q ((2.3)-(2.4)), we obtain from (5.1) and (4.12)

d n|2 n |2 (|2 n||2 n12
7 (V"2 + 2 rot v 50 + 116"[50) + v lrot VI3 + AlIVE[l50 < )

2
C() (V5.0 + 10"15.0) + C5(t) (¢ lrot VI3 + 16"][3)~ + C(®)-
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Integrating (5.4) by s from 0 to ¢ and using Holder inequality, we get
t

n|2 n |2 ni2 n|2 ni2
N+ ot + 107 g+ [ (v ot v g+ X907 ) ds <

0
t t

1 n||2 n2 \2 n||2 n2 \2
1 C6T + Cs / (IV"l50 +16"150) " ds + Cs / (% lrot v" |15, + [10"]15.0) " ds+ 55)
0 0 ’
2 2 2 2 2
Cs <||el<t)||2,[0,T] + ||5/(t)||2,[0,T}> + ||V0||2,Q + 2 [|rot V0||2,Q + ||90||2,Q <
t
C "2 "2+ 1073 ) ds + C
o [ (IN"1I30 + % l[rot V' |3 + 107]13.0) " ds + Cio,
0
where C;,1 = 6, ..., 10 are positive constants independent of n.

Analogical as we got (4.24) from (4.20), it follows from (5.5) that there exists a finite time
T
1 Ty < Ty = !
LT GGy’

such that for all 0 < ¢t < Tj the following estimate is hold

(5.6)

n||2 n|2 n |2 ni2 n(12
s (191 ot + 1871g) + ot v gy, + AIVE gy < M (57
S s 41

which is an analog of the estimate (4.10) with a constant M, := M| < co.

Next, estimate the right-hand side of (5.2) by using Holder, Young inequalities together with
(2.3) and (5.7) as in (4.27)-(4.29). Then, we get

n||2 n 2 n 2
tes[loll;] [rot v HLOO(O,TI;LQ(Q)) + [Ivi (t)HQ,QTl + [[rot v (t)HQ,QTl < Mj < oo. (5.8)
41

O

6. EXISTENCE OF LOCAL IN TIME STRONG SOLUTIONS OF Pl AND PII

In this section, we establish the existence of the strong solution of PI and PII, defined in
Definition 2.

Theorem 3. Let the conditions (3.3)-(3.10) and (4.8), (4.9) be fulfilled. Assume that also
vo € H'(Q) N H?(Q). (6.1)

Then there exists Ty € (0,T], such that the direct problem problems (3.13)-(3.14), (1.4)-
(1.6) and (3.13)-(3.14), (1.4)-(1.5), (1.8) have at least a weak solution (v(x,t),0(x,t)) in the
cylinder Qr,. Therefore, corresponding inverse problems PI and PII have a strong solutions
and for them the following estimates are hold

2 2 2
IV ILo 0.1 mm2()) + Vel mmamzq) + 1 O z20m) +

2 2 2 . 2
HGHLOO(O,TQ;WOLQ(Q)) + ||0||LQ(O,TQ;W&‘Q(Q)QWZ?(Q)) + HetHQ,QT2 + HJ(t)Hm([o,TQ]) < Mj < oo.
(6.2)
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where Ty = Ty in the case (1.6) and T3 = T in the case (1.8), and Mz is positive constant
depending on data of the problem.

Proof. To prove the existence of a strong solutions to these problems, we use the special
basis, associated to the eigenfunctions of the spectral problem

A = Apr() = e pil), pi(e) € H'(Q) NH (), (6.3)
in the case (1.6) and
Asip = —Api(x) = e pi(x), i € Hy(Q) NHL(Q) (6.4)

in the case (1.8). The latter is due to the fact (see [20])
(A, V) =0 for any ¢ € Hy NHA(Q), 7 € W'?(Q), and L*(Q) = H,(Q) ® G(Q).
In (6.3), A = —PAg, and P : L2(Q) — H(Q) is the Leray projector.

It is known from [19] and [20], that the system {¢y},.,, of eigenfunctions of both spectral
problems (6.3) and (6.4) are orthogonal in H and an orthonormal basis in the space H'(Q)N
W22(Q) and H} () N H2(Q), respectively.

Let us first consider the PI, the problem PII is similar. In this case, all first and second
estimates are true for strong solution. Thus, in order to complete the proof this theorem, it
is sufficient to get more strong estimates, i.e. estimate Av"™ and Av}. Let us multiply the
first equation of (4.4) by —urci(t) and —puy dcgt(t), and sum with respect to k, from 1 to n.
Taking in account equality (6.3), we have

1d 2 < nll2 < nl2
3t (1l 2|8, ) o [5v - -
" (v",0")(t) (h(x, 1), —Avn)m + (g(x, 1)0", —Av”)lQ + (v V) v, —Avt),
d |~ N
i |39 [ e+ 3 - o0

" (v",0")(t) (h(x, 1), _Avg)m + (g(x, )", —Avg)m + (v V) v, —Avy) .

Estimating the terms on right hand side by using Holder and Cauchy inequalities together
with first energy estimates, we obtain the following inequalities

‘CI)”(V", o) (h(x, t), —AV”)ZQ - (g(x, t)o", _AVH)ZQ + ((V" -V)v", —Av”) <

" (v ) B o [AV"], , + 90 16" o | AV, o + 1V ag - 19V llag [ A7, <

VX onl? 3 ni.n An\|2 2 392 n |2 3 ni(2 ni2

5 1AV, 5 12" O D) a0 + T 1671120 + 5, CO V" lirs () - 1V y2q0
(6.7)

Likewise,

" (v, 0") (h(x, t), —AV?) + ((V” -V)v", —Av’;)

<

+ (g(x, t)o", —Avf)

2,0 2,0

2
e R A N [ R v ) M N e
Fllo 2 ’ 20 T 9y 207" 9, H!(Q) W22(Q)

2
(6.8)
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Plugging (6.7) and (6.8) into (6.5) and (6.6), respectively, and integrating by 7 from 0 to
t € 0, Tp], we derive

t t
X HAV"HzQ + V/ HAVn(S)HzQ ds < ||V0||§—11(Q) +x HAVOHEQ + 2?;93 / ||9n(5>”§g ds+
0 0

t t
3 n n n 3 n n
3y \Ih(t)llioow,t;p(m)/@ (v*, 0 )(8)\2d8+2VC(Q)/HV (8)llgn (0 - V" () w22 s,
0 0

(6.9)
t 3 9 t
Xonl|? A <1 2 A 2 g n
oAy [ AV s < vAvill, + 52 [l qdst
0 0
t t
. I (t)]7 D™ (v", 0™)(s)[* ds + EC(Q) V" () 150 (@ - V" ()1 ds
5 L=(0,412(0) ) o HI(0) w22(0)
0 0
(6.10)

Adding (6.9) and (6.10), and applying the already obtained estimates for f(t), #, and Vv",
and using

V" w20y < C(Q) HAV"HM, Yu € H'(Q) N W22(Q) (and H'(Q) N V2(1)),

see (2.4) and Lemma 1, we obtain

t t t
&V, + / |Avi@)[ ds + / |Avi@f s < G+ / |avi@ ds. 11)
0 0 0

where
Ce = C(v,x) (HVVOH;Q + ||AV0||§,Q +3Mo ”h(t)Hiw(O,t;L?(Q)) + 393M1) = const < o0,
C7 = C(v,%)3C(Q)C, ||Vn||i°°(0,TO;H1(Q)) =3C(v,%)C(Q)CsMy = const < 0.
By standard techniques, it follows from (6.11) that

2 2 2
”AVHLoo(o,Tz;L?(Q)) + HAVHL2(QT2) + HAVtHL2(QT2) < Cs < . (6.12)

Thus, the estimates (4.10), (4.25) (or (5.7), (5.8)) and (4.31) together (6.12) give (4.1).

The passing to the limit for a strong solution can be proved by using arguments similar to
above, thus we omit the details of the corresponding proof. O

7. UNIQUENESS OF WEAK SOLUTIONS OF PI AND PI]

In this section, we study the uniqueness of weak and strong solutions of the above inverse
problems. In order to establish these, by Remark 3 and Lemma 3, it is enough to prove
the the uniqueness of solutions of the corresponding an equivalent direct problems.
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Theorem 4. Let the assumptions (3.3)-(3.10) be fulfilled. Then the weak solution, fortiori
a strong solution of the direct problems (3.13)-(3.14), (1.4)-(1.6) and (3.13)-(3.14), (1.4)-
(1.5), (1.8) is unique in Qr,,,,, where Ty, is a mazimal time such that the solutions of
corresponding problems are exist.

Proof. We prove for (3.13)-(3.14), (1.4)-(1.6), and (3.13)-(3.14), (1.4)-(1.5), (1.8) is a similar.
Let (v;,0;), with i = 1, 2, be two different weak solutions of (3.13)-(3.14), (1.4)-(1.6), and
set us v := vy — vy, 0 = 0; — 5. Then, arguing as proof of Lemma 3, we obtain the following
equivalent nonlocal problem

Vi —2#Av, —VAV+Vp+ (v- V) v+ (vy - V) v = g(x,t)0(x,t) + O(v,0)h(x,t), Qr, (7.1)

divv(x,t) =0, (z,t) € Qr, (7.2)
O+ (v-V)0+ (vo- V)0 — NAO = J(v,0)p(x,t), (z,t) € Qr, (7.3)
v(x,0) =0, 0(x,0)=0, x€Q, (7.4)
0(x,t) =0, (x,t) € I'p. (7.5)
and
v(x,t) =0 or vu(x,t)=0, (D(v)-n)vxn=0 (x,t) €'y (7.6)

in the case (1.6) or (1.8), respectively, where

B(.0) = 1o [1a (v.0) = (V- V) Vi) = (V2 V)0 V) = (B0.0)y0] (1)
T0.0) = S V0T = (v D)0y = (w2 DI Oyg] - (78)

Multiplying (7.1) and (7.3) by v and 6, respectively, and integrating the result over 2, we
obtain

1d
5 3 VOl + 2V Dl 0)) + VIVl @) = 79)
(g(X> t)07 V)Q,Q + (I)<V7 9) (h7 V)2,Q - ((V ) v) Vi, V)Q,Q )

1d 9 9

5%”9(75)”L2(Q) + VOO 12 = J(v,0) (9, 0)gq — (V- V)01, 0), - (7.10)

Now, we estimate the terms on the right-hand side by using Holder and Young inequalities
together with the Ladyzhenskaya inequalities:

g
(80,08, V)a0| < 90 16,0 IVD)ll0 < T (161120 + 1V(D)Ilz0) - (7.11)
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1
2(v.0) (b, V)0 < [0V O Bl V(1) 0 < 1 [ ¥ s ) I sy +
HVlHHl(Q) “wHHl(Q) HVHH1(Q) + HV2HHI(Q) HwHHl(Q) H"Hﬂl(m +
90 11011 Hwnm} Iy V()0 < (7.12)
v 9 1 2 2 2 2
*HVHH1 o (v + IVl gy + V2l ) 0l IhI50 V50 +
o 1l ol (18150 + 1¥150)
= (v V) v1, V)| < UVVIlg V50 < CO IVl V). (713)
J(v,0) (@, 0)5.0 <17V, 0 [ll5.0 [10E) 15,0, < 1[Auveuz,guwuw+
C(Q) V1]l V5l V1 ) + C2) [¥allir g 1V0ll.0 V01,.0] 161150 1)l <

A v
1 IVOl5q + 1 V1150 (0 + @0 (6) 10050,
(7.14)

where

1 /2 1 2
wolt) = 13 (5 + 5 C@ IVl + 5O Ivaline) ) 199150 90

= (- V)01, 0)y0] <NV [V]l40 101140 <
(7.15)

1
XOQ(Q) ||V01||§,Q ”VHiIl(Q)

Plugging (7.11)-(7.13) into (7.9) and (7.14)-(7.15) into (7.10), and adding the results we get

A
C) [VOilloo Vllen ) IVOl0 = 5 IV6ll3.q, +

d
pr (VO30 + % IVO @ + 10050) + VIVE @) + MVO@50 <

(7.16)
ar () (IV®) B o + %[V (1) [ @) + 10)]30)

where
a(t) = max{az(t), as (1), ia4(t), }

and

1 2 2 9 9
a(t) = go (1+,%||h||2,9 ||w||m) i (v + Ivilli ) + Vol ) el [Bll3q

oaft) = 9o (1+ - g [l ) +2a0(t)

1
ay(t) = C(Q) [villgi o) + XCQ(Q) N

Due to the conditions (3.4)-(3.10) and the first and second a priori estimates (4.10) and
(4.31), a;(t) € LY0,Thas), @ = 0,1,2,3,4 and then by Gronwall’s lemma, it follows from
(7.16) that

IV, + V() [0y + 10|20 =0 for all ¢ € [0, T,
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which yields vi = vy and 0; = 6, for all t € [0, T},4.], i.e. the weak and strong solution of
(3.13)-(3.14), (1.4)-(1.6) is unique, where Ty,0r = To (Tnae = 11 for (3.13)-(3.14), (1.4)-(1.5),
(1.8)). O

8. MODIFICATIONS OF INVERSE PROBLEMS Pl AND PI] ALLOWING GLOBAL IN TIME
SOLUTIONS.

In this section we consider the questions of global in time existence and uniqueness of a
weak solutions to the inverse problems Pl and PII. The main difficulty in proving
the existence of global in time solutions to the inverse problems PI and PII is associated
with obtaining the first a priori estimate (4.1). This difficulty arises from the presence of a
nonlinear convective member (v - V) v in the functional ®(v, ) defined by (3.11). However,
the global solvability can be established under some additional restrictions on given functions
or when the convective term is neglected.

8.1. Global existence: in the case of special source terms. Let us consider the prob-
lem PI (the inverse problem P11 is similar) with the special right-hand sides h(z,t) := o(x)
and ¢(x) := n(x), i.e. with the same functions o (x) = w(x) — *Aw(x) and 7(x) included
in the integral overdetermination conditions (1.7):

vi+ (v-V)v —xAv, —vAv + V7 = g(x,t)0(z,t) + f(t)o(x), (z,t) € Qr, (8.1)
divv(x,t) =0, (z,t) € Qr, (8.2)
O+ (v- V)0 —AAO = j(t)n(x), (x,t) € Qr. (8.3)
v(x,0) =vo(x), 0(x,0) = bOy(x), x€Q, (8.4)
0(x,t) =0, v(x,t) =0, (x,t)€'r, (8.5)
0(x,t) =0, vp(x,t) =v-n=0, (D(v)-n)vxn=0, (x,t)€lr (8.6)
and

/Va(x)dx = e(t), /977(x)dx =0(t), t > 0,where o(x)=w(x)—xAw(x). (8.7)

Let us assume that in addition to (3.7)-(3.9) the following conditions are fulfilled
w#0 n(x)£0, Vxe€Q (or [lwllag +x[Awl3n # 0, nllyg # 0)- (8.8)

In this case, an equivalent direct problem corresponding to (8.1)-(8.5), (8.7): P I (or (8.1)-
(8.4), (8.6), (8.7): P II) is the following initial-boundary value problem, which need to define
a pair (v,#) from (8.4), (8.6) (or 8.4, (8.6)) and
vi+ (v V)v —xAvy —vAv + V1 = g(x,t)0(x,t) + O1(v,0)o(x), (x,t) € Qr,
(8.9)
divv(x,t) =0, (z,t) € Qr,
O+ (v-V)0 —AAO = Ji(v,0)n(x), (x,t) € Qr, (8.10)
with the nonlocal functionals

Bi(v.0) = £(t) = - ()~ (v V) w. ¥y + va (v,) — (gl w)y) . (811
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1

Ji(v,0) = (1) "

(') + A (V8. Viyg = (v V) 1,6)0) (8.12)

where wy := ||w]||* + % ||Aw]||* > 0 and 7y := |5 > 0 are strictly positive numbers.

For this problem the following assertion is hold.

Theorem 5. Assume that the conditions (3.3), (3.7)-(3.10), and (8.8) are fulfilled. Then the
inverse problem Py 1 (Py11) has global in time a unique weak solution (v(x,t),0(x,t), f(t),j(t))
in Qr, and for a weak solution the estimate (4.1) is hold for all t € (0,T].

Proof. Here we prove for the inverse problem P I, for P;I1 is a similar. As we note above,
in order to prove this, it is sufficient to establish the first a priori estimate (4.10) for any
t € (0,7] for solutions of (8.9)-(8.12) and (8.4)-(8.5). Then repeat the next steps of the
proof of Theorem 1 and 4.

In this case, the energy equalities (4.11) and (4.12) have the form

|

(V"3 + % IVv"[50) + v Vv [50 = RL(V"0")e(t) + (8(x,1)0", V' )yq,  (8.13)

N | —
Q.

t

1d

57 100 + M VO 50 = J7(v",67)4(2). (8.14)

where the functionals ®7(v™,0") and J7(v",0") are defined by (8.11) and (8.12), and for
them hold the estimates (4.14) and (4.15) with kg := wp and ki := 1o, respectively.
Next, estimate the terms on the right-hand side of (8.13) and (8.14) as (4.16)-(4.18)

@™ (v",6")e(t)] <
1 n n n
o le®)l 1O+ v VYV a0 V@0 + 90 10" |0 1o + C2 VY50 [IVwllag| <

1 v v 2
2 2 ny2 2 2 g 2 2
O+ 5—1€'®)] +5 vy ||2,Q+2T)3||Vw||2,9|6(t)| + 225 [[wllq le(®)] +

1
9 O+ 5 27

L2 1 |2

5 |0 ||2Q + 27)0052 le(?)] ||Vw||2,ﬂ Vv ||29 <

4 n2 L2 n2

5 V¥l + 5 107150 + Co) [VV* |20 + Ca(?)
1

where Cy(t) = 5—C% le(t)| [|[Vwllyq
2wo ’

1 1
Colt) = 5= (IOF +1C0F) + g O (v Vel + 5 ol o)

(8.15)
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| (v, 07)8(t)] <

1 ! 3 n n
*Ié(t)l 18O+ MV 0 [ Vnlly0 + C2IVY"llz0 V" |50 [1Vll50] <

1 ! 2 A n||2 A 2 2 A n12
2 BOF + W OF) + T IV 0 + S IVnlE0 10 + T 1V6" 50+

s 2 2 w2 A o2 2 (8.16)
2 |6(1)] ||V77||2,Q Vv ||2Q < 9 Vo ||2Q + Co(t) VvV ||29 + Cs(t),

4

&
where Co(t) = e 5(t)[° ||V77||§Qa

Cr(t) = 5= (150 + 5OF) + 5 [Vl 50

Plugging (4.16) and (8.15) into (8.13), and (8.16) into (8.14), and adding the results, we
have

d ni2 ni2 |12 n|2 n|2
IV 30+ # IV 30+ 167130) + v 9V g + A 90" 30 <

(8.17)
n|2 ni2 ni2
Cu(t) (V"5 + 2 Vv [50 + 16715.0) + Cs(0),

where 5

Cu(t) = max {go, ~(Colt) + o)}, Cs(t) = 2ACa(8) + Ci (1),
and C;(t) € L*([0,T]), i = 4,5, due to the assumptions of the Theorem 5. It follows from
(8.17) that the estimate (4.10), which is hold for any ¢ € (0, 7. mi

Theorem 6. Assume that the conditions (3.3), (3.7)-(3.10), (8.8), and (6.1) are fulfilled.
Then the inverse problem PiI (and PyI1) has a unique strong solution for all t € (0,T] and
the estimate (6.2) is valid.

8.2. Global existence: without convective term. Let us consider the problem PI (PI1)
without the convective term (v - V) v

vy —#Av, —vAV + V7 = g(x,t)0(z,t) + f(H)h(x,t), divv(x,t) =0, (z,t) € Qr, (8.18)
O+ (v- V)0 — AAO = j(t)p(x,t), (x,t) € Qr, (8.19)

v(x,0) = vq (x), 0(x, ): Oo(x), x €1, (8.20)

0(x,t) =0, v(x,t) =0, (x,t)elr (8.21)

" 0(x,t) =0, vu(x,t) =v-n=0, (D(v)-n)vxn=0, (x,t)e€ly (8.22)
/Va'(x)dx = e(t), /Hn(x)dx =0(t), t > 0,where o(x)=w(x) —xAw(x). (8.23)

We denote (8.18)-(8.21) and (8.23) by P/, and (8.18)-(8.20) and (8.22)-(8.23) by P»II. For
these problems the following analogical results are valid for any ¢ € (0, T'], which their proofs
are a very similar to the proofs of Theorems 1 - 2, and 4.

Theorem 7. Let the conditions (3.3)-(5.10) be fulfilled. Then for allt € (0,T] the inverse
problem Pyl (PoIl) has a unique weak solution and the estimate (4.1) is valid.
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Theorem 8. Assume that the conditions (3.3)-(3.10) and (6.1) are fulfilled. Then for any
t € (0,T] the inverse problem PyI (and PyII) has a unique strong solution and the estimate
(6.2) is valid.

9. LARGE TIME BEHAVIOR

In this section, we study the asymptotic behavior of weak solutions of PoI and PII. First
we prove for the problem P»I, for the problem P,I1 it is a similar.

Let us consider the energy relations (8.13) and (8.14). Repeating the estimates (8.15) and
(8.16) by using Poincare’s inequality
lulog < o) [ Vullyq, Yu e Wo™(Q),
we obtain
@7 (v", 6")e(t)] <

(o)l 1y, ' . .
[0+ 199" lq IVl + Coo 198" g [l + C2 9V 0 Vel 0] (9.1

ni2 ni2
< A|Vv HQ,Q"‘EHVH H2,Q+B’

where

) fn i 1 O] [e@®)] 2 le®ICR
A=Y B= LVl K1

2 (cE ) 9wl L S Vel + S5 il g, ve > 0
and

T 0M)3(1)] < € [ V07| + DIVl + E, 9.2)
where 5| SOIIF] A5
D="-2C! ||V7]H§,Q’ E = + ||V77||§,Qa Ve >0

2eng Mo 2eng
respectively. Next using the inequality

V22 o < Com [VV" [l

we estimate
(@ " V)0 | <1167 20 g V" 20 g 18l11 0 < O V0" i 9Vl 18l 0 <
04 (93)

ni2 em 2 ni2
e[VO" o0+ - lg®d o Vvl -

Let us introduce the energy function

ni2 n(2 ni2
V() = (V50 + % Vv [50 + 16"]30) -

Adding (8.13) and (8.14), and combining the result with (9.1), (9.2), and (9.3), we arrive at
the inequality
1dY(t) " "
S UV g + A I8 < @ (9.0

where
4

O@m n n
Q= (A4 D+ 2 a0l ) 195" 3 + 3¢ 190" g + B + 5
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First we choose € such that 6e < A. Assume that the functions
2
Ig(®)[[aq et), o(t) (9.5)

are monotonically decreasing in time and tripping to zero. Then there is a finite time 7" < oo
such that

Cgm 2
A+ D+ S vl g)| < v2
Then it follows from (9.4) that
4y (t . .
D VIV g+ M IV < 2B+ B) = (9.

where
- ') | 1 >, Chos 18] /\2|5()|
7= 2el0] (204 v + 22wl ) + 25001 (2] + X1 oz ).

It is easy verify that

J < (le®)] +[6(1)]) K, (9.7)

where

1 Cogo o o L A2\5()|
k=2 s (2 (19004 19wl + 20 o) + o (1514 22 o

te[0,00)

On the other hand, taking into account Poincare’s inequality we derive

v Vv 50+ AIVE 50 = HVV"Hm 573 V' o + S5 107150 = 1Y (D), (98)
20 C’
with
) 72 VR \
M—mln{%,QC;%,C’g}. (99)
Finally, plugging (9.7) and (9.8) into (9.6), we get the ordinary differential inequality
dY (t
Oy () < (efo)] + 1500)) K

Integrating last inequality, we obtain
Y(t) <e (K /t e’ (le(s)] +19(s)]) ds + Y(T*)e“T*> ,t > T, (9.10)
Assume that in addition (9.5) the following condition holds
| e el + o) ds < € < oo
0

Then it follows from (9.10), that Y (¢) — 0 as t — co.

Thus, we can to formulate the following assertion.
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Theorem 9. Let the functions ||g(t)||% o, e(t), and §(t) be monotonically decreasing in time
27
and tripping to zero. Assume that also

/OOO e (e(s)| + |6(s)]) ds < oo, (9.11)

where p is defined at (9.9). Then there exits a positive constant C' such that
Y(t) < Ce ™™,

i.e. the function Y (t) is exponential decay ast — oo.

ACKNOWLEDGMENTS

The first author was supported by the Lavrenty’ev Institute of Hydrodynamics of the Siberian
Branch RAS (project no. I11.22.4.2, Analysis of mathematical models of continua with
singularities, discontinuities and intrinsic inhomogeneities), Novosibirsk, Russia and partially
by the Portuguese Foundation for Science and Technology, Portugal, under the project:
UIDB/04561/2020. Second author was fully supported by the Grants no. AP09057950 of the
Ministry of Education and Science of the Republic of Kazakhstan (MES RK), Kazakhstan.

Conflicts of interests. This work does not have any conflicts of interests.

REFERENCES

[1] U.U. Abylkairov, S.E. Aitzhanov, L.K. Zhapsarbayeva Solvability of the inverse problem for a heat
convection system with integral condition of overdetermination Applied Mathematical Sciences, (2015)
9, pp. 2403-2421 1

[2] S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial dif-
ferential equations satisfying general boundary conditions, I, II. Comm.pure appl. math. 12 (1959), pp.
627-727; 17 (1964), pp. 35-92. 2

[3] S.N. Antontsev, J.I. Diaz, and S. Shmarev, Energy Methods for Free Boundary Problems: Applica-
tions to Nonlinear PDEs and Fluid Mechanics, Progress in Nonlinear Differential Equations and their
Applications 48, Birkh&user, 2002. 2

[4] S.N. Antontsev, H.B. de Oliveira, Kh. Khompysh, The classical Kelvin-Voigt problem for nonhomo-
geneous and incompressible fluids: existence, uniqueness and regularity. Nonlinearity, 34(2021), 3083.
2

[5] S.N. Antontsev, K. Khompysh, An inverse problem for generalized Kelvin-Voigt equation with p-
Laplacian and damping term, Inverse Problems 37(2021), 085012.

[6] H.A. Barnes, A Handbook Of Elementary Rheology, University of Wales, Cambrian Printers, Aberyst-
wyth, 2000. 1

[7] A.Yu. Chebotarev, Inverse Problem for Nonlinear Evolution Equations of Navier-Stokes Type, Dif-
fer.Uravn., 31 (3), (1995), p. 517-524. 1

[8] A.Yu. Chebotarev, Determination of the right-hand side of the Navier-Stokes system of equations and
inverse problems for the thermal convection equations, Comput. Math. and Math. Phys. 51(2011),
2146-2154 . https://doi.org/10.1134/S0965542511120098 1

[9] M. Choulli, O.Yu. Imanuvilov, M. Yamamoto, Inverse Source Problem for the Navier-Stokes Equations,
Preprint UTMS, Tokyo, (2006), no. 3.9. 1

[10] J. Fan, Y. Jiang, G. Nakamura, Inverse problems for the Boussinesq system Inverse Problems,
25(8)(2009), 085007. doi:10.1088/0266-5611,/25,/8/085007 1
[11] J. Fan, M.Di Cristo, Yu. Jiang, G. Nakamura, Inverse Viscosity Problem for the Navier-Stokes Equation,

J. of Math. Anal. Appl., 2010, vol. 365, pp. 750-757. 1



INVERSE PROBLEMS FOR A BOUSSINESQ SYSTEM FOR INCOMPRESSIBLE VISCOELASTIC FLUIDSL

[12] V.E. Fedorov, N.D. Ivanova, Inverse problem for Oskolkov’s system of equations, Mathematical Methods
in the Applied Sciences, 40(17), (2017), p. 6123-6126. 1

[13] J.M. Ghidaglia, Regularite des solutions des certain problemes aux limites lineaires lies aux equations
d’Euler, Comm. Part. Diff. Equations 9 (1984), pp. 1265-1298. 2

[14] D.D. Joseph, Stability of Fluid Motions, vols. I and II, Springer Tracts Nat. Philos., vol. 28, Springer-
Verlag, Berlin, New York, 1976. 1

[15] Kh. Khompysh, Inverse problem with integral overdetermination for system of equations of Kelvin- Voight
fluids Advanced Materials Research, 705, (2013), p. 15-20. 1

[16] Kh. Khompysh, Kh. Kenzhebai, An inverse problem for Kelvin-Voigt equation perturbed
by isotropic diffusion and damping Mathematical Methods in Applied Sciences 2021,
https://doi.org/10.1002/mma.8018 1

[17]) Kh. Khompysh, Solvability of the initial-boundary value problem of heat convection with the sliding
condition for the equations of the Kelvin-Voigt fluids Bulletin of Satpayev KazNTU, Almaty, 2(78),
(2010), pp. 178-182 1

[18] A.A. Kotsiolis, A.P. Oskolkov, The initial boundary value problem with a free surface condition for the
e-approximations of the Navier-Stokes equations and some of their regularizations, Journal of Mathe-
matical Sciences, 80(3) (1996), 1773-1801. doi:10.1007/bf02362777 1, 2, 2, 2

[19] O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, —2nd ed., Nauka,
Moscow, 1970. 2, 6

[20] O.A. Ladyzhenskaya, On the global unique solvability of some two-dimensional problems for the water
solutions of polymers, J Math Sci 99, 888-897 (2000). https://doi.org/10.1007/BF02673597 1, 2, 2, 2,
6

[21] P. Kumar, K. Kinra, and M.T. Mohan, A local in time existence and uniqueness result of an inverse
problem for the Kelvin-Voigt fluids, Inverse Problems, 37(8) (2021), 085005. 1

[22] A.P. Oskolkov, Some nonstationary linear and quasilinear systems occurring in the investigation of the
motion of viscous fluids, J. Math. Sci. 10 (1978), 299-335. https://doi.org/10.1007/BF01566608 1

[28] A.P. Oskolkov, Initial boundary-value problems with a free surface condition for the modified Navier-
Stokes equations, J. Math. Sci. 84(1997), pp. 873-887. hitps://doi.org/10.1007/BF02399939; Zapiski
Nauchnykh Seminarov POMI, Vol. 2183, 1994, pp. 93-115 (in Russian). 1, 1, 2, 2, 2

[24] A.P. Oskolkov, Nonlocal problems for the equations of Kelvin-Voight fluids and their e-approximations
in classes of smooth functions, Journal of Mathematical Sciences, 91(2) (1998), 2840-2859. Translated
from Zapiski Nauchnykh Seminarov POMI, Vol. 230(1995), pp. 214-242. 1, 1

[25] K.R. Rajagopal, M. RiZicka, A.R. Srinivasa, On the Oberbeck—Boussinesq approximation, Math. Mod-
els Methods Appl. Sci. 6 (8) (1996) 1157-1167. 1

[26] T.G. Sukacheva, The thermoconvection problem for the linearizied model of the incompressible vis-
coelastic fluid, Vestnik YuUrGU. Ser. Mat. Model. Progr., 2010, 5, 83-93. 1

[27] V.A. Pavlovsky, On the theoretical description of weak water solutions of polymers, Dokl. Akad. Nauk
SSSR, 200 (1971), no. 4, pp. 809-812. 1

[28] A.IL. Prilepko, D.G. Orlovsky and I.A. Vasin, Methods for solving inverse problems in mathematical
physics, Marcel Dekker, New York, Basel, 2000 1

[29] V.G. Zvyagin, M.V. Turbin, The study of initial-boundary value problems for mathematical models of
the motion of Kelvin-Voigt fluids, J. Math. Sci. 168 (2010), pp. 157-308. 1



	1. Introduction
	2. Preliminaries
	3. Weak formulation
	4. Existence of local in time weak solutions of PI
	5. Existence of local in time weak solutions of PII
	6. Existence of local in time strong solutions of PI and PII
	7. Uniqueness of weak solutions of PI and PII
	8. Modifications of inverse problems PI  and PII allowing global in time solutions. 
	9. Large time behavior
	Acknowledgments
	References

