
P
os
te
d
on

A
u
th
or
ea

15
S
ep

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
66
32
59
45
.5
72
06
79
8/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

INVERSE PROBLEMS FOR A BOUSSINESQ SYSTEM FOR

INCOMPRESSIBLE VISCOELASTIC FLUIDS

Khonatbek Khompysh1 and Stanilslav Antontsev2

1Al-Farabi Kazakh National University
2Universidade de Lisboa Faculdade de Ciencias

September 15, 2022

Abstract

In this paper, we study two inverse problems for the nonlinear Boussinesq system for incompressible viscoelastic non-isothermal

Kelvin-Voigt fluids. The studying inverse problems consist of determining an intensities of density of external forces and heat

source under given integral overdetermination conditions. Two types of boundary conditions for the velocity v are considered:

sticking and sliding conditions on boundary. In both cases of these boundary conditions, the local and global in time existence

and uniqueness of weak and strong solutions are established under suitable assumptions on the data. The large time behavior

of weak solutions is also studied.
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1. Introduction

Let Ω be a bounded domain in Rd, d = 2, 3, with a smooth boundary ∂Ω, and QT = Ω×(0, T )
be a cylinder with a lateral ΓT = ∂Ω× [0, T ]. In QT , we consider the following inverse source
problem of the Boussinesq system for an incompressible viscoelastic non-isothermal Kelvin-
Voigt fluids

vt + (v · ∇) v− κ∆vt − ν∆v + ∇π = g(x, t)θ(x, t) + f(t)h(x, t), (x, t) ∈ QT , (1.1)
div v(x, t) = 0, (x, t) ∈ QT , (1.2)

θt + (v · ∇) θ − λ∆θ = j(t)φ(x, t), (x, t) ∈ QT , (1.3)
which is supplemented with the initial conditions

v(x, 0) = v0 (x) , θ(x, 0) = θ0(x), x ∈ Ω, (1.4)
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the dirichlet boundary condition for θ(x, t)
θ(x, t) = 0, (x, t) ∈ ΓT , (1.5)

and the sticking-boundary condition for v

v(x, t) = 0, (x, t) ∈ ΓT , (1.6)
and with the integral overdetermination conditionsˆ

Ω

vσ(x)dx = e(t),
ˆ

Ω

θη(x)dx = δ(t), t ≥ 0,where σ(x) = ω(x)− κ∆ω(x). (1.7)

Instead of (1.6), the sliding-boundary condition (see [20], [23, 24])
vn(x, t) = v · n = 0, (D(v) · n) v× n = 0, (x, t) ∈ ΓT (1.8)

also will be considered. Thus, in this paper we will deal with the two inverse problems:
the first inverse problem, which we will denote by PI for simplicity, consists of determining
unknown functions v(x, t), π(x, t), θ(x, t), f(t), and j(t) from (1.1)-(1.7); the second inverse
problem consists of determining the unknown functions v(x, t), π(x, t), θ(x, t), f(t), j(t)
from (1.1)-(1.5), (1.8), and (1.7), and we will denote it by PII.

In (1.1)-(1.3), v(x, t), π(x, t), and θ(x, t) are respectively a velocity field, a pressure and a
temperature, and κ, ν, λ are given constants and v0(x), θ0(x), g(x, t), h(x, t), φ(x, t), e(t),
δ(t), σ(x), and η(x) are given functions. In specifically, ν, κ, and λ > 0 are coefficients of
the kinematic viscosity, relaxation and heat conductivity of the fluids, respectively, g(x, t)
is the acceleration due to gravity. The vector-functions F(x, t) := f(t)h(x, t) and G(x, t) :=
j(t)φ(x, t) are the density of external forces and the heat source with unknown intensities
f(t) and j(t), respectively. The scalar-valued functions e(t) and δ(t) are the average value of
the velocity and temperature over the entire area Ω by observing functions σ(x) and η(x),
respectively. In (1.8), D is the strain tensor, given by

D(v) = 1
2(∇v +∇vT ),

vn is the normal component of v(x, t) on ∂Ω, and n denotes the unit outward normal vector
to ∂Ω.

Note (see [18,23,24]) that the condition (1.8) is equivalent to
vn(x, t) = v · n = 0, rot v× n = 0, (x, t) ∈ ΓT (1.9)

in the case d = 3, and

vn(x, t) = v · n = 0, rot v ≡ ∂v2

∂x1
− ∂v1

∂x2
= 0, (x1, x2, t) ∈ ΓT (1.10)

in the case d = 2.

The system of equations (1.1)-(1.2) is called the Kelvin-Voigt system and it models the
motion of a viscoelastic incompressible Kelvin-Voigt fluids, i.e. fluids with the properties of
elasticity and viscosity, see e.g. [6], [29], [22], [27].

The Boussinesq system of hydrodynamics equations arises from a zero order approximation
to the coupling between the momentum equations and the thermodynamic equation. For
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a detailed discussion on the Boussinesq approximation, see e.g. Joseph [14], Rajagopal et
al. [25] and the references cited therein.

The existence and uniqueness of weak solutions to the direct problems (when the right-hand
sides F (x, t) and G(x, t) are given) for the Boussinesq system (1.1)-(1.3) were established
by Oskolkov [22] and Sukacheva [26] with the sticking-boundary condition (1.6), and by
Khompysh [17] with the sliding-boundary condition (1.8).

In the study of direct problems, it is important know a significant amount of information of
the physical parameters affecting to the processes such as the coefficients ν, κ, and λ, and
the external forces F (x, t) and G(x, t), and et al. However, there are problems requiring in
addition to a solution of a direct problem, to determine some of such parameters, which are
unknown or located in an unacceptable places for direct measurement, such as underground
or in a high temperature media. Such problems are inverse problems, which the statements
of them have to be supplemented with some additional information on the solutions due to
the additional unknowns.

The investigating inverse problems here concerned to such type problems since they are
consist of determining in addition to the velocity, the pressure, and the temperature, the
unknown intensities of the density of external forces and heat source under given additional
information (1.7).

On the other hand, if κ = 0, the system (1.1)-(1.3) becomes a classical Boussinesq system
which is connected to the Navier-Stokes equations. An inverse problems for this Boussi-
nesq system have not been studied a lot, for instant, in [1], [8], [10], the results of existence
and uniqueness of solutions of such inverse problems have been established in two dimen-
sional case, by different methods. But, there are many works on inverse source problems of
hydrodynamics, in particulary for Navier-Stokes system, we refer to [28], [7], [9], [11] and
references there in. To our best knowledge, an inverse source problem for heat convection
for Kelvin-Voigt system has not been studied, however there are several inverse problems for
Kelvin-Voigt equations, which one can find in [5], [12], [15, 16], [21].

The aim of the present paper is to establish the local and global in time existence and
uniqueness of a weak and also strong solutions to the inverse problems PI and PII.

The outline of the paper is the following. In Section 2, we introduce the functional spaces and
some auxiliary materials related to the boundary conditions (1.6) and (1.8), and the main
notation used throughout this paper. In Section 3, we define the weak and strong solutions to
the inverse problems PI and PII and reduce them to an equivalent direct problems, which
we handle further. The local in time existence of weak solutions of the equivalent direct
problems corresponding to the inverse problems PI and PII is established in Section 4 and
5, respectively. Here, the Galerkin approximation method was used to prove the existence
of solutions. Then a priori estimates and the convergence of the corresponding Galerkin
approximations were obtained.

The Section 6 devoted to prove the existence of strong solutions of both inverse problems. In
section 7, the uniqueness of weak and strong solutions of both PI and PII inverse problems
is proved. The global in time existence and uniqueness of solutions for some modifications
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of the inverse problems PI and PII were established in Section 3. Finally, in Section 9, the
asymptotic properties of the solutions of these inverse problems are proved.

2. Preliminaries

In this section, we introduce the main functional spaces and some useful inequalities related
to the boundary conditions (1.6) and (1.8) from [18,23].

We distinguish vectors from scalars by using boldface letters. For functions and function
spaces we will use this distinction as well. The symbol C will denote a generic constant –
generally a positive one, whose value will not be specified; it can change from one inequality
to another.

We denote by L2(Ω) the usual Lebesgue space of square integrable vector-valued functions
on Ω, and by Wm,2(Ω) the Sobolev space of functions in L2(Ω) whose weak derivatives of
order not greater than m are in L2(Ω).

Let us introduce the following functional spaces:
V(Ω) := {v ∈ C∞0 (Ω) : div v = 0},
H(Ω) := closure of V in the norm of L2(Ω), and
H1(Ω) := closure of V in the norm of W1,2(Ω), in the case (1.6);
Hn(Ω) := closure of V in the norm of L2(Ω), and
H1

n(Ω) := closure of V in the norm of W1,2(Ω), in the case (1.9) or (1.10);
H2(Ω) := {v : v ∈W2,2(Ω), div v = 0 and v = 0 on ∂Ω};
H2

n(Ω) := {v : v ∈W2,2(Ω), div v = 0 and vn = 0 and rot v× n = 0 on ∂Ω};
and for the simplicity, we use the following common notation for both cases

Hi :=
{

Hi(Ω), in the case (1.6);
Hi

n(Ω), in the case (1.9) or (1.10), i = 0, 1, 2, (2.1)

where H0 ≡ H. According to [20], [18,23] and the references cited in them (see for example
[2,13]), for any function v ∈ H1

n(Ω) (for H(Ω) is well known from Navier-Stokes theory), the
following inequalities are hold:
Poincare’s inequality

‖v‖2,Ω ≤ C1(Ω) ‖∇v‖2,Ω , v ∈ H1
n(Ω); (2.2)

N1(Ω) ‖v‖W1,2(Ω) ≤ ‖rot v‖2,Ω ≤ N2(Ω) ‖v‖W1,2(Ω) , ∀v ∈ Hn(Ω); (2.3)
N3(Ω) ‖v‖W2,2(Ω) ≤ ‖∆v‖2,Ω = ‖rotrot v‖2,Ω ≤ N4(Ω) ‖v‖W2,2(Ω) , ∀v ∈ H2

n(Ω); (2.4)
Ladyzhenskaya’s inequalities [19,20]

‖v‖4
4,Ω ≤ 2 ‖v‖2

2,Ω ‖∇v‖2
2,Ω ; (2.5)

in case d = 2, and
‖v‖4

4,Ω ≤ (4/3)
3
2 ‖v‖2,Ω ‖∇v‖3

2,Ω ; (2.6)
in case d = 3, and

‖v‖6,Ω ≤ (48)
1
6 ‖∇v‖2,Ω , d = 3 (2.7)
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Let us introduce now the bilinear and continuous form a on H1, associated with the operator
−∆:

a(v,u) = (∇v,∇u)2,Ω , ∀v,u ∈ H1(Ω) (2.8)
in the case (1.6), and

a(v,u) = (rot v, rot u)2,Ω , ∀v,u ∈ H1
n(Ω) (2.9)

in the case (1.8) ((1.9) or (1.10)). It is clear that a(v,v) is a norm on H1(Ω), which is
equivalent to W1,2(Ω)-norm. In particular, due to (2.2), in H1

n the norm ‖ rot v‖2,Ω is
equivalent to the norm ‖v‖W1,2(Ω), and therefore equivalent to the norm ‖∇v‖2,Ω.

Thus, a defines an isomorphism A from H1(Ω) to H−1(Ω),
〈Av,u〉 ≡ a(v,u), ∀v,u ∈ H1(Ω), (2.10)

where 〈·, ·〉 denotes the pairing of H1 and H−1. There hold the following continuous inclusions
H1(Ω) ↪→ L2(Ω) ↪→ H−1(Ω), (2.11)

where each of the first two spaces is dense in the next one.

It follows from (2.4) also that in H2
n the norm ‖∆v‖2,Ω = ‖rotrot v‖2,Ω is equivalent to the

norm ‖v‖W2,2(Ω).

Regarding to the sliding condition (1.8), we have the following Green formulas (see [20]
and [18,23]:

(−∆v,u)2,Ω = − (∇ div v,u)2,Ω +
(
rot2 v,u

)
2,Ω

= −
ˆ
∂Ω

div v · un dS+

(div v, div u)2,Ω +
ˆ
∂Ω

u · (rot v× n) dS + (rot v, rot u)2,Ω = (rot v, rot u)2,Ω

(2.12)

in the case d = 3, and
(−∆v,u)2,Ω = (div v, div u)2,Ω + (rot(rot v),u)2,Ω =ˆ
∂Ω

(rot v× n) u dS + (rot v, rot u)2,Ω = (rot v, rot u)2,Ω ,
(2.13)

in the case d = 2, where rotϕ is the vector (ϕx2 ,−ϕx1)2,Ω for the scalar function ϕ.

Lemma 1. Let Ω ⊂ Rd, d ≥ 2, be a bounded domain and assume that r ≥ 1. If the
boundary ∂Ω is assumed to be of class C0,1, then there exist positive constants C1, C2 and
C3, depending only on Ω and d, such that

‖u‖Lr∗ (Ω) ≤ C1‖∇u‖Lr(Ω) ∀ u ∈ W 1,r
0 (Ω), r∗ = dr

d− r
, r < d, (2.14)

‖∇u‖Lr∗ (Ω) ≤ C2‖D2u‖Lr(Ω) ∀ u ∈ W 2,r(Ω) ∩W 1,r
0 (Ω), (2.15)

1
C3
‖∆u‖Lr(Ω) ≤ ‖D2u‖Lr(Ω) ≤ C3‖∆u‖Lr(Ω) ∀ u ∈ W 2,r(Ω) ∩W 1,r

0 (Ω). (2.16)

The following nonlinear version of Gronwall’s inequality will be used to establish the first
and second estimates below.
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Lemma 2. If y : R+ −→ [0,∞) is a continuous function such that

y(t) ≤ C1

ˆ t

0
yµ(s)ds+ C2, t ∈ R+, µ > 1

for some positive constants C1 and C2, then

y(t) ≤ C2
(
1− (µ− 1)C1C

µ−1
2 t

)− 1
µ−1 for 0 ≤ t < tmax := 1

(µ− 1)C1C
µ−1
2

.

Proof. See e.g. [3]. �

3. Weak formulation

The weak and strong solutions to the inverse problems PI and PII are understood as the
following sense.

Definition 1. The collection of functions (v(x, t), θ(x, t), f(t), j(t)) is called a weak solution
to the inverse problem PI (and PII), if:

(1) v ∈ L∞(0, T ; H1) ∩ L2(0, T ; H1), vt ∈ L2(0, T ; H1), f(t) ∈ L2[0, T ];
(2) θ ∈ L∞(0, T ;L2) ∩ L2(0, T ;W 1,2

0 ), θt ∈ L2(QT ), j(t) ∈ L2[0, T ];
(3) v(0) = v0 and θ(0) = θ0 a.e. in Ω;
(4) (1.7) holds for all t ∈ [0, T ];
(5) For every ϕ ∈ H1(Ω)

d

dt

(
(v,ϕ)2,Ω + κa (v,ϕ)

)
+ ((v ·∇)ϕ,v)2,Ω + νa (v,ϕ) =

f(t) (h(x, t),ϕ)2,Ω + (g(x, t)θ,ϕ)2,Ω

(3.1)

holds in the distribution sense on (0, T );
(6) For every ψ ∈ W 1,2

0 (Ω)
d

dt
(θ, ψ)2,Ω + λ (∇θ,∇ψ)2,Ω + ((v · ∇) θ, ψ)2,Ω = j(t) (φ(x, t), ψ)2,Ω (3.2)

holds in the distribution sense on (0, T ).

Definition 2. The collection of functions (v(x, t), θ(x, t), f(t), j(t)) is called a strong solu-
tion to the inverse problem PI (PII), if:

(1) v ∈ L∞(0, T ; H1(Ω)∩H2(Ω))∩L2(0, T ; H1(Ω)∩H2(Ω)), vt ∈ L2(0, T ; H2(Ω)), f(t) ∈
L2[0, T ];

(2) θ ∈ L∞(0, T ;L2(Ω) ∩W 1,2
0 (Ω)) ∩ L2(0, T ;W 2,2(Ω)), θt ∈ L2(QT ), j(t) ∈ L2[0, T ];

(3) and each equation of (1.1)-(1.7) holds in the distribution sense in the their corre-
sponding domain.

Remark 1. As noted in previous section, in Definition 1 and 2, we use a (v,ϕ) = (∇v,∇ϕ)2,Ω
and Hi := Hi(Ω) for PI, and a (v,ϕ) = (rot v, rotϕ)2,Ω and Hi := Hi

n(Ω) for PII, see
(2.8), (2.9), and (2.1).
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Remark 2. The pressure π, as usual, was not included in the definition of a weak solution.
It can be uniquely recovered from equation (1.1) by using de Rhaam’s lemma, after existence
of v, θ, f, j as in [4].

Assume that data of the problem satisfy the following conditions
v0(x) ∈ H1(Ω) and θ0(x) ∈ W 1,2

0 (Ω); (3.3)

∃k0 = const : 0 < k0 <∞, and |h0(t)| =
∣∣∣(h(x, t),ω(x))2,Ω

∣∣∣ ≥ k0 > 0, ∀t ≥ 0; (3.4)

∃k1 = const : 0 < k1 <∞, and |φ0(t)| =
∣∣∣(φ(x, t), η(x))2,Ω

∣∣∣ ≥ k1 > 0, ∀t ≥ 0; (3.5)
h(x, t) ∈ L∞(0, T ; L2(Ω)), φ(x, t) ∈ L∞(0, T ;L2(Ω)); (3.6)

ω(x) ∈ H1(Ω) ∩H2(Ω), e(t) ∈ W 1
2 ([0, T ]); (3.7)ˆ

Ω

v0 · σdx = (v0,ω)2,Ω + κ a (v0,ω) = e(0); (3.8)

η(x) ∈ W 1,2
0 (Ω), δ(t) ∈ W 1

2 ([0, T ]), and
ˆ

Ω

θ0 · ηdx = δ(0); (3.9)

g(x, t) ∈ C(QT ) and ∃g0 = const : 0 < g0 <∞, such that max
QT
|g(x, t)| ≤ g0. (3.10)

Next, we will show that both inverse problems can be reduced to equivalent direct problems
but for equations (1.1),(1.5) with non-linear functionals that depend on v and θ.

Let us multiply the equations (1.1) and (1.3) by ω(x) and η(x), respectively, and integrate
over Ω. Integrating by parts and using the assumptions (3.4) and (3.5), we have

f(t) = 1
h0(t)

(
e′(t)− ((v ·∇)ω,v)2,Ω + νa (v,ω)− (g(x, t)θ,ω)2,Ω

)
:= Φ(v, θ), (3.11)

j(t) = 1
φ0(t)

(
δ′(t) + λ (∇θ,∇η)2,Ω − ((v · ∇) η, θ)2,Ω

)
:= J(v, θ), (3.12)

where a (v,ω) is defined at (2.8) and (2.9). Let us replace functions f(t) and j(t) in equations
(1.1)-(1.3) with functions defined by expressions (3.11), (3.12):

vt + (v · ∇) v− κ∆vt − ν∆v + ∇π = g(x, t)θ(x, t) + Φ(v, θ)h(x, t), (x, t) ∈ QT ,

div v(x, t) = 0, (x, t) ∈ QT ,
(3.13)

θt + (v · ∇) θ − λ∆θ = J(v, θ)φ(x, t), (x, t) ∈ QT . (3.14)

The following lemma is valid.

Lemma 3. Assume that the conditions (3.4)-(3.9) are fulfilled. Then an every solution
to the inverse problem PI is a weak solution to the nonlocal problem (3.13)-(3.14), (1.4)-
(1.6), which the functions Φ(v, θ) and J(v, θ) are defined by the formulas (3.11) and (3.12),
respectively, and vice versa every weak solution to the nonlocal problem (3.13)-(3.14), (1.4)-
(1.6) is a solution of inverse problem PI, i.e. it satisfies the conditions (1.7).
Moreover, the uniqueness of the solution to the problem PI implies the uniqueness of the
solutions of the problem (3.13)-(3.14), (1.4)-(1.6).
This statement is also true for inverse problem PII, i.e. an every solution of PII is a
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solution of the nonlocal problem (3.13)-(3.14), (1.4)-(1.5), (1.8), which the functions Φ(v, θ)
and J(v, θ) are defined by (3.11) and (3.12), respectively, and vice versa, an every solution
of (3.13)-(3.14), (1.4)-(1.5), (1.8) is a solution of inverse problem PII, i.e. it satisfies the
conditions (1.7).

Remark 3. The statement of Lemma 3 means that if the collection (v(x, t), θ(x, t), f(t), j(t))
is a solution to the inverse problem PI (PII), then the pair of functions (v(x, t), θ(x, t))
is a solution to the nonlocal problem (3.13)-(3.14), (1.4)-(1.6) ( (3.13)-(3.14), (1.4)-(1.5),
(1.8)), which the functions Φ(v, θ) and J(v, θ) are defined by the formulas (3.11) and (3.12),
respectively, and vice versa, if the pair (v(x, t), θ(x, t)) is a solution to the direct problem
(3.13)-(3.14), (1.4)-(1.6) ( (3.13)-(3.14), (1.4)-(1.5), (1.8)), then these functions v(x, t) and
θ(x, t) together with the functions f(t) and j(t), defined by the explicit formulas (3.11)-(3.12),
give the solution to the inverse problem PI (PII), i.e. they satisfy the condition (1.7).

Proof. 1. Let (v(x, t), θ(x, t), f(t), j(t)) be a solution to the inverse problem PI (PII).
Multiplying the equations (1.1) and (1.3) by ω(x) and η(x), and arguing as above, we derive
f(t) and j(t) by the explicit formulas (3.11)-(3.12), respectively. Then substituting them
into (1.1)-(1.3), we obtain the system (3.13)-(3.14). The conditions (1.4)-(1.6) ((1.4)-(1.5),
(1.8) for PII) are same for both inverse and direct problems.

2. Let now (v(x, t), θ(x, t)) be a weak solution to the direct problem (3.13)-(3.14), (1.4)-
(1.6) ((3.13)-(3.14), (1.4)-(1.5), (1.8)) with the right hand side Φ(v, θ)h(x, t) := f(t)h(x, t)
and J(v, θ)φ(x, t) := j(t)φ(x, t), where f(t), j(t) defined by the formulas (3.11)-(3.12). In
order to prove the collection (v(x, t), θ(x, t), f(t), j(t)) of these functions to be a solution to
the inverse problem PI (PII), it is sufficient to prove that these functions are satisfied the
overdetermination conditions in (1.7).

Let us assume that for contradiction, i.e. the overdetermination conditions (1.7) do not hold.
Suppose that

ˆ

Ω

vσdx = e1(t),
ˆ

Ω

θη(x)dx = δ1(t) t ≥ 0. (3.15)

where e1(t) , e(t) and δ1(t) , d(t) for some t ≥ 0. It follows from (3.15) that e1(t), δ1(t) ∈
W 1

2 ([0, T ]) and due to the compatibility conditions (3.7)-(3.9), we have

e1(0) =
ˆ

Ω

v0(x)σ(x)dx = e(0), δ1(0) =
ˆ

Ω

θ0(x)η(x)dx = δ(0).

Again, multiply the equation (3.13) by ω(x) and (3.14) by η(x) and integrate over Ω. Inte-
grating by parts and using (3.15), we get

e′1(t)− ((v ·∇)ω,v)2,Ω + νa (v,ω)2,Ω − (g(x, t)θ,ω)2,Ω = Φ(v, θ)h0(t) (3.16)

δ′1(t) + λ (∇θ,∇η)2,Ω − ((v · ∇) η, θ)2,Ω = J(v, θ)φ0(t) (3.17)
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Next, plugging (3.11) and (3.12) into (3.16) and (3.17) respectively, we obtain the following
Cauchy problems for E(t) = e1(t)− e(t) and D(t) = δ1(t)− δ(t){

E ′(t) = 0,
E(0) = e1(0)− e(0) = 0,

{
D′(t) = 0,
D(0) = δ1(0)− δ(0) = 0 (3.18)

which yield e1(t) ≡ e(t) and δ1(t) = δ(t) for all t > 0. �

Let (v, θ, f, j) be a unique solution of the inverse problem PI. If the corresponding direct
problem (3.13)-(3.14), (1.4)-(1.6) has two distinct solutions (v1, θ1) and (v2, θ2), then we see
that (vi, θi, fi, ji), i = 1, 2, with the functions fi(t) and ji(t), uniquely defined by formulas
(3.11) and (3.12), respectively, are two distinct solutions of PI, and it contraries to the above
assumption.
Now, let (v, θ) be a unique solution of (3.13)-(3.14), (1.4)-(1.6). Assume to the contrary
that there are two distinct solutions (v1, θ1, f1, j1) and (v2, θ2, f2, j2) of the inverse problem
PI. Then arguing as above, we see that (v1, θ1) and (v2, θ2) are two distinct solutions of the
direct problem (3.13)-(3.14), (1.4)-(1.6), however, it fails to be true.

4. Existence of local in time weak solutions of PI

In this section we study the direct problem (3.13)-(3.14), (1.4)-(1.6), which by Lemma 3 is
equivalent to the inverse problem PI. The direct problem associated to PII will be studied
in the next section.

Theorem 1. Let the conditions (3.3)-(3.10) be fulfilled. Then there exists T0 ∈ (0, T ], such
that the direct problem (3.13)-(3.14), (1.4)-(1.6) has at least a weak solution in the cylinder
QT0, where T0 is defined at (4.22) below. Accordingly, the inverse problem PI has at least
a weak solution. Moreover, for a weak solution to the inverse problem PI the following
estimates are hold
‖v‖2

L∞(0,T0;H1(Ω)) + ‖vt‖2
L2(0,T0;H1(Ω)) + ‖v‖2

L2(0,T0;H1(Ω)) + ‖f(t)‖2
L2([0,T0]) ≤ C1 <∞,

‖θ‖2
L∞(0,T0;W 1,2

0 (Ω)) + ‖∇θ‖2
2,QT0

+ ‖θt‖2
2,QT0

+ ‖∆θ‖2
2,QT0

+ ‖j(t)‖2
L2([0,T0]) ≤ C2 <∞.

(4.1)

where C1 and C2 are positive constants depending on data of the problem.

Proof. The proof of this theorem consists of the steps: constructing Galerkin’s approxima-
tions, obtain first and second energy estimates for Galerkin’s approximations and passage to
the limit. �

4.1. Galerkin’s approximations. Let us construct a solution to the problem (3.13)-(3.14),
(1.4)-(1.6) as a limit of the Galerkin approximations.

Let {ϕk}k∈N be an orthonormal family in L2(Ω) formed by functions of H whose linear
combinations are dense in H1(Ω), and {ψk}k∈N be a system of eigenfunctions of the following
spectral problem for the Laplace operator such that ψk(x) ∈ W 1,2

0 (Ω) ∩W 2,2(Ω) and
−4ψk(x) = lk ψk(x), x ∈ Ω,
ψk(x)|∂Ω = 0. (4.2)
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It follows from the theory of spectral problems that the family {ψk}k∈N can be made orthog-
onal in W 1,2

0 (Ω) and orthonormal in L2(Ω).

Given n ∈ N, let us consider the n-dimensional spaces Xn and Y n spanned by ϕk and ψk,
k = 1, . . . , n, respectively. For each n ∈ N, we search for approximate solutions to the
problem (3.13)-(3.14), (1.4)-(1.6) in the form

vn(x, t) =
n∑
j=1

cnj (t)ϕj(x), ϕj ∈ Xn,

θn(x, t) =
n∑
j=1

dnj (t)ψj(x), ψj ∈ Y n,

(4.3)

where unknown coefficients cnj (t), dnj (t), j = 1, ..., n are defined as solutions of the following
system of ordinary differential equations (ODE) derived from

d

dt

(
(vn,ϕk)2,Ω + κ (∇vn,∇ϕk)2,Ω

)
+ ((vn ·∇)ϕk,vn)2,Ω + ν (∇vn,∇ϕk)2,Ω =

Φn(vn, θn) (h(x, t),ϕk)2,Ω + (g(x, t)θn,ϕk)2,Ω ,

d

dt
(θn, ψk)2,Ω + λ (∇θn,∇ψk)2,Ω + ((vn · ∇) θn, ψk)2,Ω = Jn(vn, θn) (φ(x, t), ψk)2,Ω .

(4.4)

for k = 1, 2, . . . , n, where

Φn(vn, θn) = 1
h0(t)

(
e′(t)− ((vn ·∇)ω,vn)2,Ω + ν (∇vn,∇ω)2,Ω − (g(x, t)θn,ω)2,Ω

)
,

(4.5)

Jn(vn, θn) = 1
φ0(t)

(
δ′(t) + λ (∇θn,∇η)2,Ω − ((vn · ∇) η, θn)2,Ω

)
, (4.6)

The system (4.4) of ODEs is supplemented with the following Cauchy data

vn(0) = vn0 , θn(0) = θn0 in Ω. (4.7)

where

vn0 =
n∑
j=1

(v0,ϕj)2,Ωϕj, θn0 =
n∑
j=1

(θ0, ψj)ψj

are sequences in L2(Ω) ∩H1(Ω) and L2(Ω) ∩W 1,2
0 (Ω) respectively such that

vn0 → v0(x) strong as n→∞ in L2(Ω) ∩H1(Ω). (4.8)

θn0 → θ0(x) strong as n→∞ in L2(Ω) ∩W 1,2
0 (Ω). (4.9)

According to a general theory of ordinary differential equations, the system (4.4)-(4.7) has
a solution cnj (t), dnj (t) in [0, t0]. By a priori estimates which we shall establish below, the
solution can be extended to [0, T0] ⊂ [0, T ], where [0, T0] is a maximal time interval, such
that a priori estimates are hold.
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4.2. First a priori estimates.

Lemma 4. Let d ≤ 4 be valid. Assume that

v0(x) ∈ H1(Ω), θ0(x) ∈ L2(Ω)

and the conditions (3.4)-(3.10) and (4.8), (4.9) are fulfilled. Then there exists a finite time
T0 ∈ [0, T ] such that the following a priori estimate is valid for all t ∈ (0, T0]

‖vn‖2
L∞(0,T0;H1(Ω)) + ‖θn‖2

L∞(0,T0;L2(Ω)) + ‖vn‖2
L2(0,T0;H1(Ω)) + ‖∇θn‖2

2,QT0
≤M0 <∞, (4.10)

where M0 and T0 are a positive constants depending only on data of the problem.

Proof. Multiply the first equation of (4.4) by cnk(t) and the second equation by dnk(t) and
summing with respect to k, from 1 to n, we have

1
2
d

dt

(
‖vn‖2

2,Ω + κ ‖∇vn‖2
2,Ω

)
+ ν ‖∇vn‖2

2,Ω = Φn(vn, θn) (h(x, t),vn)2,Ω + (g(x, t)θn,vn)2,Ω ,

(4.11)

1
2
d

dt
‖θn‖2

2,Ω + λ ‖∇θn‖2
2,Ω = Jn(vn, θn) (φ(x, t), θn)2,Ω . (4.12)

First, we apply Hölder’s and Young’s inequalities together with Ladyzhenskaya’s inequality
in the case d = 2, and the following Sobolev inequality in the case d ≤ 4

‖u‖4,Ω ≤ Cs(Ω) ‖∇u‖2,Ω , 4 ≤ 2d
d− 2 , d > 2⇔ 2 < d ≤ 4, u(x) ∈ H1(Ω) (4.13)

to (4.5) and (4.6) to obtain

|Φn(vn, θn)| ≤ 1
k0

[
|e′(t)|+ ν ‖∇vn‖2,Ω ‖∇ω‖2,Ω + g0 ‖θn‖2,Ω ‖ω‖2,Ω + ‖vn‖2

4,Ω ‖∇ω‖2,Ω

]
≤

1
k0

[
|e′(t)|+ ν ‖∇vn‖2,Ω ‖∇ω‖2,Ω + g0 ‖θn‖2,Ω ‖ω‖2,Ω + C2

s ‖∇vn‖2
2,Ω ‖∇ω‖2,Ω

]
,

(4.14)

and

|Jn(vn, θn)| ≤ 1
k1

[
|δ′(t)|+ λ ‖∇θn‖2,Ω ‖∇η‖2,Ω + ‖vn‖4,Ω ‖θ

n‖4,Ω ‖∇η‖2,Ω

]
≤

1
k1

[
|δ′(t)|+ λ ‖∇θn‖2,Ω ‖∇η‖2,Ω + C2

s ‖∇vn‖2,Ω ‖∇θ
n‖2,Ω ‖∇η‖2,Ω

]
,

(4.15)

respectively.

Next, we estimate the terms on the right-hand side of (4.11) and (4.12) by using Hölder’s
and Young’s inequalities together with (4.14), (4.15)∣∣∣(g(x, t)θn,vn)2,Ω

∣∣∣ ≤ g0 ‖θn‖2,Ω ‖v
n‖2,Ω ≤

g0

2
(
‖vn‖2

2,Ω + ‖θn‖2
2,Ω

)
, (4.16)
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∣∣∣Φn(vn, θn) (h(x, t),vn)2,Ω

∣∣∣ ≤ |Φn(vn, θn)(t)| ‖h‖2,Ω ‖v
n‖2,Ω ≤

1
k0
‖h‖2,Ω ‖v

n‖2,Ω

[
|e′(t)|+ ν ‖∇vn‖2,Ω ‖∇ω‖2,Ω + g0 ‖θn‖2,Ω ‖ω‖2,Ω + C2

s ‖∇vn‖2
2,Ω ‖∇ω‖2,Ω

]
≤

1
6 ‖v

n‖2
2,Ω + 3

2k2
0
‖h‖2

2,Ω |e
′(t)|2 + ν

2 ‖∇vn‖2
2,Ω + ν

2k2
0
‖h‖2

2,Ω ‖∇ω‖
2
2,Ω ‖v

n‖2
2,Ω +

1
6 ‖v

n‖2
2,Ω + 3g2

0
2k2

0
‖h‖2

2,Ω ‖ω‖
2
2,Ω ‖θ

n‖2
2,Ω + 1

6 ‖v
n‖2

2,Ω + 3C4
s

2k2
0
‖h‖2

2,Ω ‖∇ω‖
2
2,Ω ‖∇vn‖4

2,Ω ≤

1
2 ‖v

n‖2
2,Ω + ν

2 ‖∇vn‖2
2,Ω + 3

2k2
0
‖h‖2

2,Ω |e
′(t)|2 + 3g2

0
2k2

0
‖h‖2

2,Ω ‖ω‖
2
2,Ω ‖θ

n‖2
2,Ω +

1
2k2

0
‖h‖2

2,Ω ‖∇ω‖
2
2,Ω

(
ν ‖vn‖2

2,Ω + 3C4
s ‖∇vn‖4

2,Ω

)
(4.17)

∣∣∣Jn(vn, θn) (φ(x, t), θn)2,Ω

∣∣∣ ≤ ‖φ‖2,Ω ‖θ
n‖2,Ω ≤

1
k1
‖φ‖2,Ω ‖θ

n‖2,Ω

[
|δ′(t)|+ λ ‖∇θn‖2,Ω ‖∇η‖2,Ω + C2

s ‖∇vn‖2,Ω ‖∇θ
n‖2,Ω ‖∇η‖2,Ω

]
≤

1
2 ‖θ

n‖2
2,Ω + 1

2k2
1
‖φ‖2

2,Ω |δ
′(t)|2 + λ

4 ‖∇θ
n‖2

2,Ω + λ

k2
1
‖φ‖2

2,Ω ‖∇η‖
2
2,Ω ‖θ

n‖2
2,Ω +

λ

4 ‖∇θ
n‖2

2,Ω + C4
s

λk2
1
‖φ‖2

2,Ω ‖∇η‖
2
2,Ω ‖∇vn‖2

2,Ω ‖θ
n‖2

2,Ω ≤

1
2 ‖θ

n‖2
2,Ω + λ

2 ‖∇θ
n‖2

2,Ω + 1
2k2

1
‖φ‖2

2,Ω |δ
′(t)|2+

1
k2

1
‖φ‖2

2,Ω ‖∇η‖
2
2,Ω

[
λ ‖θn‖2

2,Ω + 1
λ
C4
s

(
‖∇vn‖2

2,Ω + ‖θn‖2
2,Ω

)2
]

(4.18)

Plugging the inequalities (4.16)-(4.17) into (4.11) and the inequality (4.18) into (4.12), and
adding the results, we have

d

dt

(
‖vn‖2

2,Ω + κ ‖∇vn‖2
2,Ω + ‖θn‖2

2,Ω

)
+ ν ‖∇vn‖2

2,Ω + λ ‖∇θn‖2
2,Ω ≤

C ′1(t)
(
‖vn‖2

2,Ω + ‖θn‖2
2,Ω

)
+ C ′2(t)

(
κ ‖∇vn‖2

2,Ω + ‖θn‖2
2,Ω

)2
+ C ′3(t),

(4.19)

where

C ′1(t) = 1 + g0 + max
{
ν

k2
0
‖h‖2

2,Ω ‖∇ω‖
2
2,Ω ,

3g2
0

k2
0
‖h‖2

2,Ω ‖ω‖
2
2,Ω + 2λ

k2
1
‖φ‖2

2,Ω ‖∇η‖
2
2,Ω

}
,

C ′2(t) = C4
s

κ

(
3
k2

0
‖h‖2

2,Ω ‖∇ω‖
2
2,Ω + 2

λk2
1
‖φ‖2

2,Ω ‖∇η‖
2
2,Ω

)
,

and

C ′3(t) = 3
k2

0
‖h‖2

2,Ω |e
′(t)|2 + 1

k2
1
‖φ‖2

2,Ω |δ
′(t)|2.
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Integrating last inequality by s from 0 to t and doing some elementary calculations, we
obtain

‖vn‖2
2,Ω + κ ‖∇vn‖2

2,Ω + ‖θn‖2
2,Ω +

tˆ

0

(
ν ‖∇vn‖2

2,Ω + λ ‖∇θn‖2
2,Ω

)
ds ≤

1
4C1T + C1

tˆ

0

(
‖vn‖2

2,Ω + ‖θn‖2
2,Ω

)2
ds+ C2

tˆ

0

(
κ ‖∇vn‖2

2,Ω + ‖θn‖2
2,Ω

)2
ds+

C3
(
‖e′(t)‖2

2,[0,T ] + ‖δ′(t)‖2
2,[0,T ]

)
+ ‖v0‖2

2,Ω + κ ‖∇v0‖2
2,Ω + ‖θ0‖2

2,Ω ≤

C4

tˆ

0

(
‖vn‖2

2,Ω + κ ‖∇vn‖2
2,Ω + ‖θn‖2

2,Ω

)2
ds+ C5

(4.20)

where Ci, i = 1, 2, 3, 4, 5 are positive finite constants depending only on the data of the
problem, i.e. Ci = sup

t∈[0,T ]
C ′i(t) <∞, i = 1, 2, C4 = C1 + C2 <∞, and

C5 = C3 + ‖v0‖2
2,Ω + κ ‖∇v0‖2

2,Ω + ‖θ0‖2
2,Ω <∞,

and due to the assumptions (3.3)-(3.10) all these constants are finite.

Omitting the integrals on the left hand side of (4.20) we arrive at the following nonlinear
integral inequality

y(t) ≤ C4

ˆ t

0
y2(s)ds+ C5

for y(t) ≡ ‖vn‖2
2,Ω + κ ‖∇vn‖2

2,Ω + ‖θn‖2
2,Ω. Applying the generalized Gronwall’s Lemma 2

with µ = 2, we obtain estimate

y(t) ≤ C5

1− C4C5t
≡ K <∞ (4.21)

for

0 ≤ t ≤ T0 < T? := 1
C4C5

. (4.22)

Thus, for all t ≤ T0 < T?, (4.21) yields

‖vn‖2
2,Ω + κ ‖∇vn‖2

2,Ω + ‖θn‖2
2,Ω ≤ K. (4.23)

Applying the estimate (4.23) to the right hand side of (4.20) and taking the supremum by
t ∈ [0, T0], we obtain from (4.20) the following estimate

sup
t∈(0,T0]

(
‖vn‖2

2,Ω + ‖∇vn‖2
2,Ω + ‖θn‖2

2,Ω

)
+ ‖∇vn‖2

L2(QT0 ) + ‖∇θn‖2
L2(QT0 ) ≤ K0 <∞, (4.24)

where K0 = K0(µ, λ, κ, T0, C1, C2, C3, C5). �
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4.3. Second energy estimate.

Lemma 5. Assume that all conditions of Lemma 4 are fulfilled. Then for vn the following
estimate is valid

sup
t∈[0,T0]

‖∇vn‖2
2,Ω + ‖vnt ‖

2
2,QT0

+ ‖∇vnt ‖
2
2,QT0

≤M1 <∞, ∀t ∈ [0, T0], (4.25)

where T0 is defined at (4.22) and M1 is positive constant depending on data of the problem.

Proof. Multiply both sides of the first equation of (4.4) by d cnk
d t

and sum up from k = 1 to
k = n. Integrating the result by s in [0, t], t ≤ T0, we have

ν

2 ‖∇vn‖2
2,Ω + ‖vnt (t)‖2

2,Qt + κ ‖∇vnt (t)‖2
2,Qt = ν

2 ‖∇vn(0)‖2
2,Ω +

tˆ

0

[Φn(vn, θn) (h(s),vnt (s)) + (g(s)θn(s),vnt (s)) + ((vn(s) · ∇) vnt (s),vn(s))] ds.
(4.26)

Now, by using Hölder and Young inequalities together with the estimate (4.10), we estimate
each term on the right hand side of (4.26)

tˆ

0

|Φn(vn, θn)(s) (h,vnt )| ds ≤
tˆ

0

|Φn(vn, θn)(s)| ‖h‖2,Ω ‖v
n
t ‖2,Ω ds ≤

ε1

2 ‖v
n
t ‖

2
2,Qt + 1

2ε1
‖h‖2

L∞(0,T ;L2(Ω)) ‖Φ
n(vn, θn)‖2

L2([0,T0]) ≤
ε1

2 ‖v
n
t ‖

2
2,Qt + M0

2ε1
‖h‖2

L∞(0,T ;L(Ω)) ,

(4.27)

tˆ

0

|(g(s)θn(s),vnt (s)) ds| ≤ ε2

2 ‖v
n
t ‖

2
2,Qt + g2

0
2ε2

tˆ

0

‖θn(s)‖2
2,Ω ds ≤

ε2

2 ‖v
n
t ‖

2
2,Qt + g2

0
2ε2

M0T,

(4.28)

Let be d ≤ 4.

tˆ

0

|((vn · ∇) vnt ,vn)| ds ≤
tˆ

0

‖∇vnt ‖2,Ω ‖v
n‖2

4,Ω ds ≤ C(Ω)
tˆ

0

‖∇vnt ‖2,Ω ‖∇vn‖2
2,Ω ds ≤

ε3

2 ‖∇vnt ‖
2
2,Qt + C2(Ω)

2ε3

tˆ

0

‖∇vn‖4
2,Ω ds ≤

ε3

2 ‖∇vnt ‖
2
2,Qt + C2(Ω)

2ε3
M2

0T,

(4.29)

Substituting (4.27)-(4.29) into (4.26) with ε1 = ε2 = 1
2 and ε3 = κ, and taking supremum by

t ∈ [0, T0], we have
ν sup
t∈[0,T0]

‖∇vn‖2
L∞(0,T0;L2(Ω)) + ‖vnt (t)‖2

2,QT0
+ κ ‖∇vnt (t)‖2

2,QT0
≤M1 <∞, (4.30)
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where M1 = ν ‖∇v0‖2
2,Ω +M0

(
‖h‖2

L∞(0,T ;L(Ω)) + g2
0T + C2(Ω)

κ
M0T

)
. �

Lemma 6. Let be d ≤ 3. Assume that all conditions of the Lemma 4 are valid and

θ0(x) ∈ W 1,2
0 (Ω).

Then the following estimate is valid for θn

sup
t∈[0,T0]

‖∇θn‖2
2,Ω + ‖θnt ‖

2
2,QT0

+ ‖∆θn‖2
2,QT0

≤M2 <∞. (4.31)

Proof. Multiply the second equation of (4.4) by lkdnk(t) and d dnk
d t

, and sum up the resulting
equation from k = 1 till k = n. Taking in account (4.2), we obtain the following equalities,
respectively

1
2
d

dt
‖∇θn‖2

2,Ω + λ ‖∆θn‖2
2,Ω = ((vn · ∇) θn,∆θn)2,Ω + Jn(vn, θn) (φ(x, t),−∆θn)2,Ω (4.32)

and
λ

2
d

dt
‖∇θn‖2

2,Ω + ‖θnt ‖
2
2,Ω = ((vn · ∇) θn, θnt )2,Ω + Jn(vn, θn) (φ(x, t), θnt )2,Ω . (4.33)

Let us first, estimate the terms on right hand side of (4.32). Applying the Hölder inequality
together with (2.7) and (2.15)-(2.16) we get

|((vn · ∇) θn,4θn)| ≤ ‖4θn‖2,Ω ‖v
n‖6,Ω ‖∇θ

n‖3,Ω ≤

C(Ω) ‖4θn‖2,Ω ‖∇vn‖2,Ω ‖∇θ
n‖

1
2
2,Ω ‖∇θn‖

1
2
6,Ω ≤

C(Ω) ‖4θn‖2,Ω ‖∇vn‖2,Ω ‖∇θ
n‖

1
2
2,Ω ‖∇θn‖

1
2
2∗,Ω ≤

C(Ω) ‖4θn‖
3
2
2,Ω ‖∇vn‖2,Ω ‖∇θ

n‖
1
2
2,Ω , 6 ≤ 2∗ := 2d

d− 2 ⇔ d ≤ 3,

(4.34)

in the case d = 3, and with Ladyzhenskaya’s inequality (2.5) and (2.15)-(2.16)

|((vn · ∇) θn,4θn)| ≤ ‖4θn‖2,Ω ‖v
n‖4,Ω ‖∇θ

n‖4,Ω ≤

C(Ω) ‖4θn‖2,Ω ‖∇vn‖2
2,Ω ‖∇θ

n‖
1
2
2,Ω ‖θnxx‖

1
2
2,Ω ≤ C(Ω) ‖4θn‖

3
2
2,Ω ‖∇vn‖2

2,Ω ‖∇θ
n‖

1
2
2,Ω

(4.35)

in the case d = 2. Thus, in any case d = 2 or d = 3, we have

|((vn · ∇) θn,4θn)| ≤ ε4

2 ‖4θ
n‖2

2,Ω + C2(Ω)
2ε4

‖∇vn‖4
2,Ω ‖∇θ

n‖2
2,Ω . (4.36)

Likewise, we have

|Jn(vn, θn)(t) (φ(x, t),−4θn)2,Ω | ≤

|Jn(vn, θn)| ‖φ‖2,Ω ‖4θ
n‖2,Ω ≤

ε5

2 ‖4θ
n‖2

2,Ω + 1
2ε5
‖φ‖2

2,Ω |J
n(vn, θn)(t)|2.

(4.37)
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Plugging last two inequalities with ε4 = ε5 = λ
2 into (4.32), and integrating the resulting

inequality between 0 and t ∈ [0, T0], we can show that
‖∇θn‖2

2,Ω + λ ‖∆θn‖2
2,Qt ≤

‖∇θn(0)‖2
2,Ω + 2

λ

tˆ

0

[
‖φ‖2

2,Ω |J
n(vn, θn)(t)|2 + C2(Ω) ‖∇vn‖4

2,Ω ‖∇θ
n‖2

2,Ω

]
ds,

(4.38)

in which by (4.15) and (4.24), yields that
‖∇θn‖2

L∞(0,T0;L2(Ω)) + λ ‖∆θn‖2
2,QT0

≤ ‖∇θ0‖2
2,Ω +

2
λ

[
‖φ‖2

L∞(0,T0;L2(Ω)) ‖j
n(t)‖2

L2[0,T0] + C2(Ω) ‖∇vn‖4
L∞(0,T0;L2(Ω)) ‖∇θ

n‖2
2,QT0

]
≤

‖∇θ0‖2
2,Ω + 2

λ

[
‖φ‖2

L∞(0,T0;L2(Ω)) ‖J
n(vn, θn)‖2

L2[0,T0] + C2K3
0

]
:= K3 <∞.

(4.39)

Analogically we obtain the following estimates for the terms on the right hand side
|Jn(vn, θn)(t) (φ(x, t), θnt )2,Ω | ≤ |J

n(vn, θn)(t)| ‖φ‖2,Ω ‖θ
n
t ‖2,Ω ≤

ε6

2 ‖θ
n
t ‖

2
2,Ω + 1

2ε6
‖φ‖2

2,Ω |J
n(vn, θn)(t)|2

(4.40)

and
|((vn · ∇) θn, θnt )| ≤ ‖θnt ‖2,Ω ‖v

n‖4,Ω ‖∇θ
n‖4,Ω ≤ C2(Ω) ‖θnt ‖2,Ω ‖∇vn‖2,Ω ‖4θ

n‖2,Ω ≤
ε7

2 ‖θ
n
t ‖

2
2,Ω + C4(Ω)

2ε7
‖∇vn‖2

2,Ω ‖4θ
n‖2

2,Ω .

(4.41)

Plugging the inequalities (4.27)-(4.28) with ε6 = ε7 = 1
2 into (4.33) and integrating the

resulting inequality between 0 and t ∈ (0, T0),and using the estimates (4.10) and (4.39), we
have
λ ‖∇θn‖2

L∞(0,T0;L2(Ω)) + ‖θnt ‖
2
2,QT0

≤ λ ‖∇θ0‖2
2,Ω +

2 ‖φ‖2
L∞(0,T0;L2(Ω)) ‖J

n(vn, θn)‖2
L2[0,T0] + ‖∇vn‖2

L∞(0,T0;L2(Ω)) ‖4θ
n‖2

2,QT0
= K4 <∞.

(4.42)

The estimates (4.39) and (4.42) yield the estimate (4.31) with M2 = K3 +K4 <∞. �

4.4. Passage to the limit as n→∞. By means of reflexivity and up to some subsequences,
the estimates (4.10), (4.25), and (4.31) imply that

vn ⇀ v weakly in L2(0, T0; H1(Ω)), as n→∞, (4.43)
θn ⇀ θ weakly in L2(0, T0;W 1,2

0 (Ω)), as n→∞, (4.44)
vn ⇀ v weakly-∗ in L∞(0, T0; H1(Ω)), as n→∞, (4.45)
Φn(vn, θn) ⇀ Φ(v, θ) weakly in L2([0, T0]), as n→∞, (4.46)
Jn(vn, θn) ⇀ J(v, θ) weakly in L2([0, T0]), as n→∞, (4.47)
θn ⇀ θ weakly -∗ in L∞(0, T0;W 1,2

0 (Ω)), as n→∞, (4.48)
vnt ⇀ vt weakly in L2(0, T0; H1(Ω)), as n→∞, (4.49)
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θnt ⇀ θt weakly in L2(0, T0;L2(Ω)), as n→∞, (4.50)
θn ⇀ θ weakly in L2(0, T0;W 2,2(Ω)), as n→∞, (4.51)

where Φ(v, θ) and J(v, θ) are the functional defined at (3.11) and (3.12), respectively.

On the other hand, due to the compact embedding W1,2
0 (Ω) ↪→↪→ L2(Ω) and the Aubin-Lions

compactness lemma, it follows that
vn −→ v strongly in L2(0, T0; L2(Ω)) and a.e. QT0 as n→∞ (4.52)

and
θn −→ θ strongly in L2(0, T0;L2(Ω)) and a.e. QT0 as n→∞. (4.53)

Let be ζ(t), ξ(t) ∈ C∞0 ([0, T0]). Multiplying the first equation of (4.4) by ζ(t) and second by
ξ(t), integrating the resulting equations between 0 and T0, we obtain

ˆ
QT0

vnt ·ϕkζ dxdt+ κ
ˆ
QT0

∇vnt : ∇ϕkζ dxdt+
ˆ
QT0

(vn ·∇)vn ·ϕkζ dxdt+

ν

ˆ
QT0

∇vn : ∇ϕkζ dxdt =
ˆ
QT0

g(x, t)θnϕkζ dxdt+
ˆ T0

0
Φn(vn, θn)(t)

ˆ
Ω

h(x, t)ϕkζ dx dt

(4.54)ˆ
QT0

θnt · ψkξ dxdt+
ˆ
QT0

(vn ·∇)θn · ψkξ dxdt+ λ

ˆ
QT0

∇θn∇ψkξ dxdt

=
ˆ T0

0
Jn(vn, θn)(t)

ˆ
Ω
φ(x, t)ψkξ dxdt

(4.55)

for k ∈ {1, . . . , n}.

Then, fixing k, we can pass in equations (4.54) and (4.55) to the limit n→∞, by using the
convergence results (4.43)-(4.53). Then, we obtainˆ

QT0

vt ·ϕkζ dxdt+ κ
ˆ
QT0

∇vt : ∇ϕkζ dxdt+
ˆ
QT0

(v ·∇)v ·ϕkζ dxdt

+ ν

ˆ
QT0

∇v : ∇ϕkζ dxdt =
ˆ
QT0

g(x, t)θϕkζ dxdt+
ˆ T0

0
Φ(v, θ)

ˆ
Ω

h(x, t)ϕkζ dx dt

(4.56)ˆ
QT0

θt · ψkξ dxdt+
ˆ
QT0

(v ·∇)θ · ψkξ dxdt+ λ

ˆ
QT0

∇θ∇ψkξ dxdt

=
ˆ T0

0
J(v, θ)

ˆ
Ω
φ(x, t)ψkξ dxdt

(4.57)

for k ∈ {1, . . . , n}.

Here, for the convective terms, we passed to the limit by using the following convergence
(vn ·∇)vn −→ (v ·∇)v strongly in L1(QT0), as n→∞, (4.58)
(vn · ∇)θn −→ (v · ∇)θ strongly in L1(QT0), as n→∞, (4.59)
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which can be proved under (4.10), (4.25), and (4.31). In fact, writing the corresponding
integrals in (4.58) asˆ
QT0

[(vn ·∇)vn − (v ·∇)v] dxdt =
ˆ
QT0

[(vn − v) ·∇] vn dxdt−
ˆ
QT0

(v ·∇)(vn − v) dxdt,

we see that the first right-hand side integral converges to zero by application of Hölder’s
inequality together with (4.10) and (4.52):ˆ

QT0

[(vn − v) ·∇] vn dxdt ≤‖vn − v‖L2(QT )‖∇vn‖L2(QT0 ) ≤√
M1‖vn − v‖L2(QT0 ) −→ 0, as n→∞,

The second integral converges to zero, due to (4.43) and because v ∈ L2(QT0).

Analogical way, the convergence (4.59) can be proved due to (4.10) and (4.31).

By linearity, the equations (4.54) and (4.55) hold for any finite linear combination ofϕ1, . . . ,ϕn
and ψ1, . . . , ψn, respectively, and, by a continuity argument, they are still true for any
ϕζ ∈ L2(0, T0; H1(Ω)) and ψξ ∈ L2(0, T0;W 1,2

0 (Ω)) with ζ, ξ ∈ C∞0 (0, T ), respectively. More-
over, all terms in the equations (4.54) and (4.55) are absolutely continuous as functions of
t defined by integrals over [0, T0]. So we obtain the following equalities which hold for a.e
t ∈ [0, T0] and for any ϕ ∈ V and ψ ∈ W 1,2

0 , respectivelyˆ
Ω

[
vt(t) +

(
v(t) ·∇

)
v(t)

]
·ψ dx + ν

ˆ
Ω

∇v(t) : ∇ϕ dx + κ
ˆ

Ω
∇vt(t) : ∇ϕ dx =

ˆ
Ω

g(x, t)θ(t)ϕdx + Φ(v, θ)
ˆ

Ω
h(x, t)ϕ dx

(4.60)

andˆ
Ω
θt(t) · ψ dx +

ˆ
Ω

(v(t) ·∇)θ(t)ψ dx + λ

ˆ
Ω

∇θ(t)∇ψ dx = J(v, θ)
ˆ

Ω
φ(x, t)ψ dxdt.

(4.61)

Thus, the pair of limit functions (v, θ) is the weak solution to the direct problem of (3.13)-
(3.14), (1.4)-(1.6), and by Lemma 3, it together with the limit functions f(t) = Φ(v, θ) and
j(t) = J(v, θ) (see (3.11) and (3.12)) gives the weak solution to the inverse problem PI.

Furthermore, due to the weakly lower semicontinuity of norms, we obtain the following
estimate from (4.10), (4.25), and (4.31)

‖v‖2
L∞(0,T0;H1(Ω)) + ‖θ‖2

L∞(0,T0;W 1,2
0 (Ω)) + ‖v‖2

L2(0,T0;H1(Ω)) + ‖∇θ‖2
2,QT0

+

‖vt‖2
L2(0,T0;H1(Ω)) + ‖θt‖2

2,QT0
+ ‖∆θ‖2

2,QT0
≤ C <∞.

(4.62)

and from (4.14) and (4.15)

‖f(t)‖2
L2([0,T0]) = ‖Φ(v, θ)‖2

L2([0,T0]) =
T0ˆ

0

|f(t)|2 dt ≤ 3
k2

0

[
‖e′(t)‖2

L2([0,T0]) +

(ν + C2
s )2 ‖v‖2

L2(0,T ;H1(Ω)) ‖∇ω‖
2
2,Ω + g0T ‖θ‖2

L∞(0,T0;L(Ω)) ‖ω‖
2
2,Ω

]
= K1 <∞

(4.63)
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and

‖j(t)‖2
L2([0,T0]) = ‖J(v, θ)‖2

L2([0,T0]) =
T0ˆ

0

|j(t)|2 dt ≤ 3
k2

1

[
‖δ′(t)‖2

L2([0,T0]) +

(
λ2 + C4

s ‖vn‖
2
L∞(0,T0;H1(Ω))

)
‖∇η‖2

2,Ω ‖∇θ‖
2
2,QT0

]
= K2 <∞

(4.64)

respectively. The set of estimates (4.62)-(4.64) gives (4.1).

5. Existence of local in time weak solutions of PII

In this section, we study the inverse problem PII, associated to the sliding condition (1.8),
and therefore, by Lemma 3, the corresponding equivalent direct problem (3.13)-(3.14), (1.4)-
(1.5), (1.8). For this problem the following is hold.
Theorem 2. Let the conditions (3.3)-(3.10) be fulfilled. Then there exists T1 ∈ (0, T ],
such that the direct problem (3.13)-(3.14), (1.4)-(1.5), (1.8) has at least a weak solution
(v(x, t), θ(x, t)) in the cylinder QT1. Accordingly, the inverse problem PII has at least a weak
solution (v(x, t), θ(x, t), f(t), j(t)) in QT1, and for a weak solution to the inverse problem PII
the estimate (4.1) is hold for all t ∈ (0, T1], where T1 is defined at (5.6) below.

Proof. In order to prove this theorem, it is enough to prove an alternative estimates of (4.10)
and (4.25). Due to the equivalencies of norms ‖ rot v‖2,Ω and ‖v‖W1,2(Ω) or ‖∇v‖2,Ω in H1

n,
many techniques are similar as in previous section, for instance, the estimate (4.31) is still
true. Therefore, we will omit some details of proof.

Thus, in the case (1.8), due to the Green’s formulas (2.12)-(2.13), the equalities (4.11) and
(4.26) have the following form, respectively

1
2
d

dt

(
‖vn‖2

2,Ω + κ ‖rot vn‖2
2,Ω

)
+ν ‖rot vn‖2

2,Ω = Φn(vn, θn)(t) (h,vn)2,Ω +(gθn,vn)2,Ω , (5.1)
ν

2 ‖rot vn‖2
2,Ω + ‖vnt (t)‖2

2,Qt + κ ‖rot vnt (t)‖2
2,Qt = ν

2 ‖rot vn(0)‖2
2,Ω +

tˆ

0

[Φn(vn, θn)(s) (h(s),vnt (s)) + (γg(s)θn(s),vnt (s)) + ((vn(s) · ∇) vnt (s),vn(s))] ds,
(5.2)

where

Φn(vn, θn)(t) = 1
h0(t)

(
e′(t)− ((vn ·∇)ω,vn)2,Ω + ν (rot vn, rotω)2,Ω − (g(x, t)θn,ω)2,Ω

)
.

(5.3)

Estimating the terms on right-hand side of (5.1) and (4.12) as (4.16)-(4.18), and using the
equivalence norms ‖ rot v‖2,Ω and ‖∇v‖2,Ω ((2.3)-(2.4)), we obtain from (5.1) and (4.12)

d

dt

(
‖vn‖2

2,Ω + κ ‖rot vn‖2
2,Ω + ‖θn‖2

2,Ω

)
+ ν ‖rot vn‖2

2,Ω + λ ‖∇θn‖2
2,Ω ≤

C ′6(t)
(
‖vn‖2

2,Ω + ‖θn‖2
2,Ω

)
+ C ′7(t)

(
κ ‖rot vn‖2

2,Ω + ‖θn‖2
2,Ω

)2
+ C ′8(t).

(5.4)
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Integrating (5.4) by s from 0 to t and using Hölder inequality, we get

‖vn‖2
2,Ω + κ ‖rot vn‖2

2,Ω + ‖θn‖2
2,Ω +

tˆ

0

(
ν ‖rot vn‖2

2,Ω + λ ‖∇θn‖2
2,Ω

)
ds ≤

1
4C6T + C6

tˆ

0

(
‖vn‖2

2,Ω + ‖θn‖2
2,Ω

)2
ds+ C7

tˆ

0

(
κ ‖rot vn‖2

2,Ω + ‖θn‖2
2,Ω

)2
ds+

C8
(
‖e′(t)‖2

2,[0,T ] + ‖δ′(t)‖2
2,[0,T ]

)
+ ‖v0‖2

2,Ω + κ ‖rot v0‖2
2,Ω + ‖θ0‖2

2,Ω ≤

C9

tˆ

0

(
‖vn‖2

2,Ω + κ ‖rot vn‖2
2,Ω + ‖θn‖2

2,Ω

)2
ds+ C10,

(5.5)

where Ci, i = 6, ..., 10 are positive constants independent of n.

Analogical as we got (4.24) from (4.20), it follows from (5.5) that there exists a finite time
T1

T1 < T∗∗ := 1
C9C10

, (5.6)

such that for all 0 < t ≤ T1 the following estimate is hold
sup

t∈[0,T1]

(
‖vn‖2

2,Ω + κ ‖rot vn‖2
2,Ω + ‖θn‖2

2,Ω

)
+ ν ‖rot vn‖2

L2(QT1 ) + λ ‖∇θn‖2
L2(QT1 ) ≤M ′

1, (5.7)

which is an analog of the estimate (4.10) with a constant M0 := M ′
1 <∞.

Next, estimate the right-hand side of (5.2) by using Hölder, Young inequalities together with
(2.3) and (5.7) as in (4.27)-(4.29). Then, we get

sup
t∈[0,T1]

‖rot vn‖2
L∞(0,T1;L2(Ω)) + ‖vnt (t)‖2

2,QT1
+ ‖rot vnt (t)‖2

2,QT1
≤M ′

2 <∞. (5.8)

�

6. Existence of local in time strong solutions of PI and PII

In this section, we establish the existence of the strong solution of PI and PII, defined in
Definition 2.

Theorem 3. Let the conditions (3.3)-(3.10) and (4.8), (4.9) be fulfilled. Assume that also
v0 ∈ H1(Ω) ∩H2(Ω). (6.1)

Then there exists T2 ∈ (0, T ], such that the direct problem problems (3.13)-(3.14), (1.4)-
(1.6) and (3.13)-(3.14), (1.4)-(1.5), (1.8) have at least a weak solution (v(x, t), θ(x, t)) in the
cylinder QT3. Therefore, corresponding inverse problems PI and PII have a strong solutions
and for them the following estimates are hold
‖v‖2

L∞(0,T2;H1∩H2(Ω)) + ‖vt‖2
L2(0,T2;H1∩H2(Ω)) + ‖f(t)‖2

L2([0,T2]) +

‖θ‖2
L∞(0,T2;W 1,2

0 (Ω)) + ‖θ‖2
L2(0,T2;W 1,2

0 (Ω)∩W 2,2(Ω)) + ‖θt‖2
2,QT2

+ ‖j(t)‖2
L2([0,T2]) ≤M3 <∞.

(6.2)
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where T3 = T0 in the case (1.6) and T3 = T1 in the case (1.8), and M3 is positive constant
depending on data of the problem.

Proof. To prove the existence of a strong solutions to these problems, we use the special
basis, associated to the eigenfunctions of the spectral problem

A1ϕ := ∆̃ϕk(x) = µk ϕk(x), ϕk(x) ∈ H1(Ω) ∩H2(Ω), (6.3)
in the case (1.6) and

A2ϕ := −∆ϕk(x) = µk ϕk(x), ϕk ∈ H1
n(Ω) ∩H2

n(Ω) (6.4)
in the case (1.8). The latter is due to the fact (see [20])

(∆ϕ,∇π) = 0 for any ϕ ∈ H1
n ∩H2

n(Ω), π ∈ W 1,2(Ω), and L2(Ω) = Hn(Ω)⊕G(Ω).
In (6.3), ∆̃ϕ = −P∆ϕ, and P : L2(Ω)→ H(Ω) is the Leray projector.

It is known from [19] and [20], that the system {ϕk}k∈∞ of eigenfunctions of both spectral
problems (6.3) and (6.4) are orthogonal in H and an orthonormal basis in the space H1(Ω)∩
W2,2(Ω) and H1

n(Ω) ∩H2
n(Ω), respectively.

Let us first consider the PI, the problem PII is similar. In this case, all first and second
estimates are true for strong solution. Thus, in order to complete the proof this theorem, it
is sufficient to get more strong estimates, i.e. estimate ∆vn and ∆vnt . Let us multiply the
first equation of (4.4) by −µkcnk(t) and −µk dc

n
k (t)
dt

, and sum with respect to k, from 1 to n.
Taking in account equality (6.3), we have

1
2
d

dt

(
‖vn‖2

H1(Ω) + κ
∥∥∥∆̃vn

∥∥∥2

2,Ω

)
+ ν

∥∥∥∆̃vn
∥∥∥2

2,Ω
=

Φn(vn, θn)(t)
(
h(x, t),−∆̃vn

)
2,Ω

+
(
g(x, t)θn,−∆̃vn

)
2,Ω

+
(
(vn · ∇) vn,−∆̃vn

)
,

(6.5)

ν

2
d

dt

∥∥∥∆̃vn
∥∥∥2

2,Ω
+ ‖vnt ‖

2
H1(Ω) + κ

∥∥∥∆̃vnt
∥∥∥2

2,Ω
=

Φn(vn, θn)(t)
(
h(x, t),−∆̃vnt

)
2,Ω

+
(
g(x, t)θn,−∆̃vnt

)
2,Ω

+
(
(vn · ∇) vn,−∆̃vnt

)
.

(6.6)

Estimating the terms on right hand side by using Hölder and Cauchy inequalities together
with first energy estimates, we obtain the following inequalities∣∣∣∣Φn(vn, θn)

(
h(x, t),−∆̃vn

)
2,Ω

+
(
g(x, t)θn,−∆̃vn

)
2,Ω

+
(
(vn · ∇) vn,−∆̃vn

)∣∣∣∣ ≤
|Φn(vn, θn)| ‖h(t)‖2,Ω

∥∥∥∆̃vn
∥∥∥

2,Ω
+ g0 ‖θn‖2,Ω

∥∥∥∆̃vn
∥∥∥

2,Ω
+ ‖vn‖4,Ω · ‖∇vn‖4,Ω

∥∥∥∆̃vn
∥∥∥

2,Ω
≤

ν

2
∥∥∥∆̃vn

∥∥∥2

2,Ω
+ 3

2ν |Φ
n(vn, θn)|2 ‖h(t)‖2

2,Ω + 3g2
0

2ν ‖θ
n‖2

2,Ω + 3
2νC(Ω) ‖vn‖2

H1(Ω) · ‖v
n‖2

W2,2(Ω)

(6.7)
Likewise,∣∣∣∣Φn(vn, θn)

(
h(x, t),−∆̃vnt

)
2,Ω

+
(
g(x, t)θn,−∆̃vnt

)
2,Ω

+
(
(vn · ∇) vn,−∆̃vnt

)∣∣∣∣ ≤
κ

2
∥∥∥∆̃vnt

∥∥∥2

2,Ω
+ 3

2κ |Φ
n(vn, θn)|2 ‖h(t)‖2

2,Ω + 3g2
0

2κ ‖θ
n‖2

2,Ω + 3
2κC(Ω) ‖vn‖2

H1(Ω) · ‖v
n‖2

W2,2(Ω)

(6.8)
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Plugging (6.7) and (6.8) into (6.5) and (6.6), respectively, and integrating by τ from 0 to
t ∈ [0, T0], we derive

κ
∥∥∥∆̃vn

∥∥∥2

2,Ω
+ ν

tˆ

0

∥∥∥∆̃vn(s)
∥∥∥2

2,Ω
ds ≤ ‖v0‖2

H1(Ω) + κ
∥∥∥∆̃v0

∥∥∥2

2,Ω
+ 3

2ν g
2
0

tˆ

0

‖θn(s)‖2
2,Ω ds+

3
2ν ‖h(t)‖2

L∞(0,t;L2(Ω))

tˆ

0

|Φn(vn, θn)(s)|2 ds+ 3
2νC(Ω)

tˆ

0

‖vn(s)‖2
H1(Ω) · ‖v

n(s)‖2
W2,2(Ω) ds,

(6.9)

ν
∥∥∥∆̃vn

∥∥∥2

2,Ω
+ κ

tˆ

0

∥∥∥∆̃vnt (s)
∥∥∥2

2,Ω
ds ≤ ν

∥∥∥∆̃v0

∥∥∥2

2,Ω
+ 3g2

0
2κ

tˆ

0

‖θn(s)‖2
2,Ω ds+

3
2κ ‖h(t)‖2

L∞(0,t;L2(Ω))

tˆ

0

|Φn(vn, θn)(s)|2 ds+ 3
2κC(Ω)

tˆ

0

‖vn(s)‖2
H1(Ω) · ‖v

n(s)‖2
W2,2(Ω) ds

(6.10)
Adding (6.9) and (6.10), and applying the already obtained estimates for f(t), θ, and ∇vn,
and using

‖vn‖W2,2(Ω) ≤ C(Ω)
∥∥∥∆̃vn

∥∥∥
2,Ω
, ∀u ∈ H1(Ω) ∩W2,2(Ω) (and H1(Ω) ∩V2

n(Ω)),

see (2.4) and Lemma 1, we obtain

∥∥∥∆̃vn
∥∥∥2

2,Ω
+

tˆ

0

∥∥∥∆̃vn(s)
∥∥∥2

2,Ω
ds+

tˆ

0

∥∥∥∆̃vnt (s)
∥∥∥2

2,Ω
ds ≤ C6 + C7

tˆ

0

∥∥∥∆̃vn(s)
∥∥∥2

2,Ω
ds, (6.11)

where
C6 = C(ν, κ)

(
‖∇v0‖2

2,Ω + ‖∆v0‖2
2,Ω + 3M0 ‖h(t)‖2

L∞(0,t;L2(Ω)) + 3g2
0M1

)
= const <∞,

C7 = C(ν, κ)3C(Ω)Cs ‖vn‖2
L∞(0,T0;H1(Ω)) = 3C(ν, κ)C(Ω)CsM0 = const <∞.

By standard techniques, it follows from (6.11) that

‖∆v‖2
L∞(0,T2;L2(Ω)) + ‖∆v‖2

L2(QT2) + ‖∆vt‖2
L2(QT2) ≤ C8 <∞. (6.12)

Thus, the estimates (4.10), (4.25) (or (5.7), (5.8)) and (4.31) together (6.12) give (4.1).

The passing to the limit for a strong solution can be proved by using arguments similar to
above, thus we omit the details of the corresponding proof. �

7. Uniqueness of weak solutions of PI and PII

In this section, we study the uniqueness of weak and strong solutions of the above inverse
problems. In order to establish these, by Remark 3 and Lemma 3, it is enough to prove
the the uniqueness of solutions of the corresponding an equivalent direct problems.
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Theorem 4. Let the assumptions (3.3)-(3.10) be fulfilled. Then the weak solution, fortiori
a strong solution of the direct problems (3.13)-(3.14), (1.4)-(1.6) and (3.13)-(3.14), (1.4)-
(1.5), (1.8) is unique in QTmax, where Tmax is a maximal time such that the solutions of
corresponding problems are exist.

Proof. We prove for (3.13)-(3.14), (1.4)-(1.6), and (3.13)-(3.14), (1.4)-(1.5), (1.8) is a similar.
Let (vi, θi), with i = 1, 2, be two different weak solutions of (3.13)-(3.14), (1.4)-(1.6), and
set us v := v1−v2, θ = θ1− θ2. Then, arguing as proof of Lemma 3, we obtain the following
equivalent nonlocal problem

vt−κ∆vt− ν∆v + ∇p+ (v · ∇) v1 + (v2 · ∇) v = g(x, t)θ(x, t) + Φ(v, θ)h(x, t), QT , (7.1)

div v(x, t) = 0, (x, t) ∈ QT , (7.2)

θt + (v · ∇) θ1 + (v2 · ∇) θ − λ∆θ = J(v, θ)φ(x, t), (x, t) ∈ QT , (7.3)

v(x, 0) = 0, θ(x, 0) = 0, x ∈ Ω, (7.4)

θ(x, t) = 0, (x, t) ∈ ΓT . (7.5)

and
v(x, t) = 0 or vn(x, t) = 0, (D(v) · n) v× n = 0 (x, t) ∈ ΓT (7.6)

in the case (1.6) or (1.8), respectively, where

Φ(v, θ) = 1
h0(t)

[
νa (v,ω)− ((v ·∇)ω,v1)2,Ω − ((v2 ·∇)ω,v)2,Ω − (gθ,ω)2,Ω

]
(7.7)

J(v, θ) = 1
φ0(t)

[
λ (∇θ,∇η)2,Ω − ((v · ∇) η, θ1)2,Ω − ((v2 · ∇) η, θ)2,Ω

]
. (7.8)

Multiplying (7.1) and (7.3) by v and θ, respectively, and integrating the result over Ω, we
obtain

1
2
d

dt

(
‖v(t)‖2

L2(Ω) + κ‖v(t)‖2
H1(Ω)

)
+ ν‖v(t)‖2

H1(Ω) =

(g(x, t)θ, v)2,Ω + Φ(v, θ) (h, v)2,Ω − ((v · ∇) v1, v)2,Ω ,
(7.9)

1
2
d

dt
‖θ(t)‖2

L2(Ω) + λ‖∇θ(t)‖2
L2(Ω) = J(v, θ) (φ, θ)2,Ω − ((v · ∇) θ1, θ)2,Ω . (7.10)

Now, we estimate the terms on the right-hand side by using Hölder and Young inequalities
together with the Ladyzhenskaya inequalities:

∣∣∣(g(x, t)θ, v)2,Ω

∣∣∣ ≤ g0 ‖θ‖2,Ω ‖v(t)‖2,Ω ≤
g0

2
(
‖θ‖2

2,Ω + ‖v(t)‖2
2,Ω

)
, (7.11)
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∣∣∣ ≤ |Φ(v, θ)| ‖h‖2,Ω ‖v(t)‖2,Ω ≤
1
k0

[
ν ‖v‖H1(Ω) ‖ω‖H1(Ω) +

‖v1‖H1(Ω) ‖ω‖H1(Ω) ‖v‖H1(Ω) + ‖v2‖H1(Ω) ‖ω‖H1(Ω) ‖v‖H1(Ω) +

g0 ‖θ‖2,Ω ‖ω‖2,Ω

]
‖h‖2,Ω ‖v(t)‖2,Ω ≤

ν

4 ‖v‖
2
H1(Ω) + 1

νk2
0

(
ν + ‖v1‖H1(Ω) + ‖v2‖H1(Ω)

)2
‖ω‖2

H1(Ω) ‖h‖
2
2,Ω ‖v‖

2
2,Ω +

g0

2k0
‖h‖2,Ω ‖ω‖2,Ω

(
‖θ‖2

2,Ω + ‖v‖2
2,Ω

)
.

(7.12)

∣∣∣− ((v · ∇) v1, v)2,Ω

∣∣∣ ≤ ‖∇v1‖2,Ω ‖v‖
2
4,Ω ≤ C(Ω) ‖v1‖H1(Ω) ‖v‖

2
H1(Ω) , (7.13)∣∣∣J(v, θ) (φ, θ)2,Ω

∣∣∣ ≤ |J(v, θ)| ‖φ‖2,Ω ‖θ(t)‖2,Ω ≤
1
k1

[
λ ‖∇θ‖2,Ω ‖∇η‖2,Ω +

C(Ω) ‖∇θ1‖2,Ω ‖∇η‖2,Ω ‖v‖H1(Ω) + C(Ω) ‖v2‖H1(Ω) ‖∇η‖2,Ω ‖∇θ‖2,Ω

]
‖φ‖2,Ω ‖θ(t)‖2,Ω ≤

λ

4 ‖∇θ‖
2
2,Ω + ν

4 ‖v‖
2
H1(Ω) + a0(t) ‖θ(t)‖2

2,Ω ,

(7.14)
where

a0(t) = 1
k2

1

(2
λ

+ 1
ν
C2(Ω) ‖∇θ1‖2

2,Ω + 2
λ
C2(Ω) ‖v2‖2

H1(Ω)

)
‖∇η‖2

2,Ω ‖φ(t)‖2
2,Ω .∣∣∣− ((v · ∇) θ1, θ)2,Ω

∣∣∣ ≤ ‖∇θ1‖2,Ω ‖v‖4,Ω ‖θ‖4,Ω ≤

C(Ω) ‖∇θ1‖2,Ω ‖v‖H1(Ω) ‖∇θ‖2,Ω ≤
λ

4 ‖∇θ‖
2
2,Ω + 1

λ
C2(Ω) ‖∇θ1‖2

2,Ω ‖v‖
2
H1(Ω)

(7.15)

Plugging (7.11)-(7.13) into (7.9) and (7.14)-(7.15) into (7.10), and adding the results we get
d

dt

(
‖v(t)‖2

2,Ω + κ‖v(t)‖2
H1(Ω) + ‖θ(t)‖2

2,Ω

)
+ ν‖v(t)‖2

H1(Ω) + λ‖∇θ(t)‖2
2,Ω ≤

a1(t)
(
‖v(t)‖2

2,Ω + κ‖v(t)‖2
H1(Ω) + ‖θ(t)‖2

2,Ω

)
,

(7.16)

where
a1(t) = max

{
a2(t), a3(t), 2

κ
a4(t),

}
,

and

a2(t) = g0

(
1 + 1

k0
‖h‖2,Ω ‖ω‖2,Ω

)
+ 2
νk2

0

(
ν + ‖v1‖H1(Ω) + ‖v2‖H1(Ω)

)2
‖ω‖2

H1(Ω) ‖h‖
2
2,Ω ,

a3(t) = g0

(
1 + 1

k0
‖h‖2,Ω ‖ω‖2,Ω

)
+ 2a0(t),

a4(t) = C(Ω) ‖v1‖H1(Ω) + 1
λ
C2(Ω) ‖∇θ1‖2

2,Ω .

Due to the conditions (3.4)-(3.10) and the first and second a priori estimates (4.10) and
(4.31), ai(t) ∈ L1[0, Tmax], i = 0, 1, 2, 3, 4 and then by Grönwall’s lemma, it follows from
(7.16) that

‖v(t)‖2
2,Ω + κ‖v(t)‖2

H1(Ω) + ‖θ(t)‖2
2,Ω = 0 for all t ∈ [0, Tmax],
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which yields v1 = v2 and θ1 = θ2 for all t ∈ [0, Tmax], i.e. the weak and strong solution of
(3.13)-(3.14), (1.4)-(1.6) is unique, where Tmax = T0 (Tmax = T1 for (3.13)-(3.14), (1.4)-(1.5),
(1.8)). �

8. Modifications of inverse problems PI and PII allowing global in time
solutions.

In this section we consider the questions of global in time existence and uniqueness of a
weak solutions to the inverse problems PI and PII. The main difficulty in proving
the existence of global in time solutions to the inverse problems PI and PII is associated
with obtaining the first a priori estimate (4.1). This difficulty arises from the presence of a
nonlinear convective member (v · ∇) v in the functional Φ(v, θ) defined by (3.11). However,
the global solvability can be established under some additional restrictions on given functions
or when the convective term is neglected.

8.1. Global existence: in the case of special source terms. Let us consider the prob-
lem PI (the inverse problem PII is similar) with the special right-hand sides h(x, t) := σ(x)
and φ(x) := η(x), i.e. with the same functions σ(x) = ω(x) − κ∆ω(x) and η(x) included
in the integral overdetermination conditions (1.7):

vt + (v · ∇) v− κ∆vt − ν∆v + ∇π = g(x, t)θ(x, t) + f(t)σ(x), (x, t) ∈ QT , (8.1)
div v(x, t) = 0, (x, t) ∈ QT , (8.2)

θt + (v · ∇) θ − λ∆θ = j(t)η(x), (x, t) ∈ QT . (8.3)
v(x, 0) = v0 (x) , θ(x, 0) = θ0(x), x ∈ Ω, (8.4)
θ(x, t) = 0, v(x, t) = 0, (x, t) ∈ ΓT , (8.5)

or
θ(x, t) = 0, vn(x, t) = v · n = 0, (D(v) · n) v× n = 0, (x, t) ∈ ΓT (8.6)

and ˆ

Ω

vσ(x)dx = e(t),
ˆ

Ω

θη(x)dx = δ(t), t ≥ 0,where σ(x) = ω(x)− κ∆ω(x). (8.7)

Let us assume that in addition to (3.7)-(3.9) the following conditions are fulfilled
ω , 0 η(x) , 0, ∀x ∈ Ω (or ‖ω‖2

2,Ω + κ ‖∆ω‖2
2,Ω , 0, ‖η‖2,Ω , 0). (8.8)

In this case, an equivalent direct problem corresponding to (8.1)-(8.5), (8.7): P1I (or (8.1)-
(8.4), (8.6), (8.7): P1II) is the following initial-boundary value problem, which need to define
a pair (v, θ) from (8.4), (8.6) (or 8.4, (8.6)) and

vt + (v · ∇) v− κ∆vt − ν∆v + ∇π = g(x, t)θ(x, t) + Φ1(v, θ)σ(x), (x, t) ∈ QT ,

div v(x, t) = 0, (x, t) ∈ QT ,
(8.9)

θt + (v · ∇) θ − λ∆θ = J1(v, θ)η(x), (x, t) ∈ QT , (8.10)
with the nonlocal functionals

Φ1(v, θ) := f(t) = 1
ω0

(
e′(t)− ((v ·∇)ω,v)2,Ω + νa (v,ω)− (g(x, t)θ,ω)2,Ω

)
, (8.11)
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J1(v, θ) := j(t) = 1
η0

(
δ′(t) + λ (∇θ,∇η)2,Ω − ((v · ∇) η, θ)2,Ω

)
, (8.12)

where ω0 := ‖ω‖2 + κ ‖∆ω‖2 > 0 and η0 := ‖η‖ > 0 are strictly positive numbers.

For this problem the following assertion is hold.

Theorem 5. Assume that the conditions (3.3), (3.7)-(3.10), and (8.8) are fulfilled. Then the
inverse problem P1I (P1II) has global in time a unique weak solution (v(x, t), θ(x, t), f(t), j(t))
in QT , and for a weak solution the estimate (4.1) is hold for all t ∈ (0, T ].

Proof. Here we prove for the inverse problem P1I, for P1II is a similar. As we note above,
in order to prove this, it is sufficient to establish the first a priori estimate (4.10) for any
t ∈ (0, T ] for solutions of (8.9)-(8.12) and (8.4)-(8.5). Then repeat the next steps of the
proof of Theorem 1 and 4.
In this case, the energy equalities (4.11) and (4.12) have the form

1
2
d

dt

(
‖vn‖2

2,Ω + κ ‖∇vn‖2
2,Ω

)
+ ν ‖∇vn‖2

2,Ω = Φn
1 (vn, θn)e(t) + (g(x, t)θn,vn)2,Ω , (8.13)

1
2
d

dt
‖θn‖2

2,Ω + λ ‖∇θn‖2
2,Ω = Jn1 (vn, θn)δ(t). (8.14)

where the functionals Φn
1 (vn, θn) and Jn1 (vn, θn) are defined by (8.11) and (8.12), and for

them hold the estimates (4.14) and (4.15) with k0 := ω0 and k1 := η0, respectively.

Next, estimate the terms on the right-hand side of (8.13) and (8.14) as (4.16)-(4.18)

|Φn(vn, θn)e(t)| ≤
1
ω0
|e(t)|

[
|e′(t)|+ ν ‖∇vn‖2,Ω ‖∇ω‖2,Ω + g0 ‖θn‖2,Ω ‖ω‖2,Ω + C2

s ‖∇vn‖2
2,Ω ‖∇ω‖2,Ω

]
≤

1
2ω0
|e(t)|2 + 1

2ω0
|e′(t)|2 + ν

2 ‖∇vn‖2
2,Ω + ν

2ω2
0
‖∇ω‖2

2,Ω |e(t)|
2 + g2

0
2ω2

0
‖ω‖2

2,Ω |e(t)|
2 +

1
2 ‖θ

n‖2
2,Ω + 1

2ω0
C2
s |e(t)| ‖∇ω‖2,Ω ‖∇vn‖2

2,Ω ≤

ν

2 ‖∇vn‖2
2,Ω + 1

2 ‖θ
n‖2

2,Ω + C0(t) ‖∇vn‖2
2,Ω + C1(t)

where C0(t) = 1
2ω0

C2
s |e(t)| ‖∇ω‖2,Ω ,

C0(t) = 1
2ω0

(
|e(t)|2 + |e′(t)|2

)
+ 1

2ω2
0
|e(t)|2

(
ν ‖∇ω‖2

2,Ω + g2
0 ‖ω‖

2
2,Ω

)
.

(8.15)
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|Jn(vn, θn)δ(t)| ≤
1
η0
|δ(t)|

[
|δ′(t)|+ λ ‖∇θn‖2,Ω ‖∇η‖2,Ω + C2

s ‖∇vn‖2,Ω ‖∇θ
n‖2,Ω ‖∇η‖2,Ω

]
≤

1
2η0

(
|δ(t)|2 + |δ′(t)|2

)
+ λ

4 ‖∇θ
n‖2

2,Ω + λ

η2
0
‖∇η‖2

2,Ω |δ(t)|
2 + λ

4 ‖∇θ
n‖2

2,Ω +

C4
s

λη2
0
|δ(t)|2 ‖∇η‖2

2,Ω ‖∇vn‖2
2,Ω ≤

λ

2 ‖∇θ
n‖2

2,Ω + C2(t) ‖∇vn‖2
2,Ω + C3(t),

where C2(t) = C4
s

λη2
0
|δ(t)|2 ‖∇η‖2

2,Ω ,

C3(t) = 1
2η0

(
|δ(t)|2 + |δ′(t)|2

)
+ λ

η2
0
‖∇η‖2

2,Ω |δ(t)|
2

(8.16)

Plugging (4.16) and (8.15) into (8.13), and (8.16) into (8.14), and adding the results, we
have

d

dt

(
‖vn‖2

2,Ω + κ ‖∇vn‖2
2,Ω + ‖θn‖2

2,Ω

)
+ ν ‖∇vn‖2

2,Ω + λ ‖∇θn‖2
2,Ω ≤

C4(t)
(
‖vn‖2

2,Ω + κ ‖∇vn‖2
2,Ω + ‖θn‖2

2,Ω

)
+ C5(t),

(8.17)

where
C4(t) = max

{
g0,

2
κ

(C0(t) + C2(t))
}
, C5(t) = 2(C1(t) + C3(t)),

and Ci(t) ∈ L1([0, T ]), i = 4, 5, due to the assumptions of the Theorem 5. It follows from
(8.17) that the estimate (4.10), which is hold for any t ∈ (0, T ]. �

Theorem 6. Assume that the conditions (3.3), (3.7)-(3.10), (8.8), and (6.1) are fulfilled.
Then the inverse problem P1I (and P1II) has a unique strong solution for all t ∈ (0, T ] and
the estimate (6.2) is valid.

8.2. Global existence: without convective term. Let us consider the problem PI (PII)
without the convective term (v · ∇) v:
vt − κ∆vt − ν∆v + ∇π = g(x, t)θ(x, t) + f(t)h(x, t), div v(x, t) = 0, (x, t) ∈ QT , (8.18)

θt + (v · ∇) θ − λ∆θ = j(t)φ(x, t), (x, t) ∈ QT , (8.19)
v(x, 0) = v0 (x) , θ(x, 0) = θ0(x), x ∈ Ω, (8.20)
θ(x, t) = 0, v(x, t) = 0, (x, t) ∈ ΓT (8.21)

or
θ(x, t) = 0, vn(x, t) = v · n = 0, (D(v) · n) v× n = 0, (x, t) ∈ ΓT , (8.22)ˆ

Ω

vσ(x)dx = e(t),
ˆ

Ω

θη(x)dx = δ(t), t ≥ 0,where σ(x) = ω(x)− κ∆ω(x). (8.23)

We denote (8.18)-(8.21) and (8.23) by P2I, and (8.18)-(8.20) and (8.22)-(8.23) by P2II. For
these problems the following analogical results are valid for any t ∈ (0, T ], which their proofs
are a very similar to the proofs of Theorems 1 - 2, and 4.

Theorem 7. Let the conditions (3.3)-(3.10) be fulfilled. Then for all t ∈ (0, T ] the inverse
problem P2I (P2II) has a unique weak solution and the estimate (4.1) is valid.
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Theorem 8. Assume that the conditions (3.3)-(3.10) and (6.1) are fulfilled. Then for any
t ∈ (0, T ] the inverse problem P2I (and P2II) has a unique strong solution and the estimate
(6.2) is valid.

9. Large time behavior

In this section, we study the asymptotic behavior of weak solutions of P2I and P2II. First
we prove for the problem P2I, for the problem P2II it is a similar.

Let us consider the energy relations (8.13) and (8.14). Repeating the estimates (8.15) and
(8.16) by using Poincare’s inequality

‖u‖2,Ω ≤ Cp(Ω) ‖∇u‖2,Ω , ∀u ∈ W
1,2
0 (Ω),

we obtain
|Φn(vn, θn)e(t)| ≤
|e(t)|
ω0

[
|e′(t)|+ ν ‖∇vn‖2,Ω ‖∇ω‖2,Ω + Cpg0 ‖∇θn‖2,Ω ‖ω‖2,Ω + C2

s ‖∇vn‖2
2,Ω ‖∇ω‖2,Ω

]
≤ A ‖∇vn‖2

2,Ω + ε ‖∇θn‖2
2,Ω +B,

(9.1)

where

A = e(t)
ω0

(
C2
s + ν2

)
‖∇ω‖2

2,Ω , B = |e
′(t)||e(t)|
ω0

+ |e(t)|4ω0
‖∇ω‖2

2,Ω +
|e(t)|C2

pg
2
0

4εω0
‖ω‖2

2,Ω , ∀ε > 0

and
|Jn(vn, θn)δ(t)| ≤ ε ‖∇θn‖2

2,Ω +D ‖∇vn‖2,Ω + E, (9.2)
where

D = |δ(t)|2εη0
C4
s ‖∇η‖

2
2,Ω , E = |δ(t)||δ

′|
η0

+ λ2|δ(t)|2
2εη2

0
‖∇η‖2

2,Ω , ∀ε > 0

respectively. Next using the inequality
‖vn‖ 2d

d−2 ,Ω
≤ Cem ‖∇vn‖2,Ω ,

we estimate
| (g(x, t)θn,vn)2,Ω | ≤ ‖θ

n‖ 2d
d−2 ,Ω

‖vn‖ 2d
d−2 ,Ω

‖g‖ d
2 ,Ω
≤ C2

em ‖∇θn‖2,Ω ‖∇vn‖2,Ω ‖g‖ d2 ,Ω ≤

ε ‖∇θn‖2
2,Ω + C4

em

4ε ‖g(t)‖2
d
2 ,Ω
‖∇vn‖2

2,Ω .
(9.3)

Let us introduce the energy function
Y (t) =

(
‖vn‖2

2,Ω + κ ‖∇vn‖2
2,Ω + ‖θn‖2

2,Ω

)
.

Adding (8.13) and (8.14), and combining the result with (9.1), (9.2), and (9.3), we arrive at
the inequality

1
2
dY (t)
dt

+ ν ‖∇vn‖2
2,Ω + λ ‖∇θn‖2

2,Ω ≤ Q (9.4)
where

Q =
(
A+D + C4

em

4ε ‖g(t)‖2
d
2 ,Ω

)
‖∇vn‖2

2,Ω + 3ε ‖∇θn‖2
2,Ω +B + E
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First we choose ε such that 6ε ≤ λ. Assume that the functions

‖g(t)‖2
d
2 ,Ω

, e(t), δ(t) (9.5)

are monotonically decreasing in time and tripping to zero. Then there is a finite time T ∗ <∞
such that ∣∣∣∣∣

(
A+D + C2

em

4ε ‖g(t)‖2
d
2 ,Ω

)∣∣∣∣∣ ≤ ν/2.

Then it follows from (9.4) that

dY (t)
dt

+ ν ‖∇vn‖2
2,Ω + λ ‖∇θn‖2

2,Ω ≤ 2(B + E) := J, (9.6)

where

J := 2|e(t)|
(
|e′(t)|
ω0

+ 1
4ω0
‖∇ω‖2

2,Ω +
C2
pg

2
0

4εω0
‖ω‖2

2,Ω

)
+ 2|δ(t)|

(
|δ′|
η0

+ λ2|δ(t)|
2εη2

0
‖∇η‖2

2,Ω

)
.

It is easy verify that
J ≤ (|e(t)|+ |δ(t)|)K, (9.7)

where

K = 2 sup
t∈[0,∞)

(
1
ω0

(
|e′(t)|+ 1

4 ‖∇ω‖
2
2,Ω +

C2
pg

2
0

4ε ‖ω‖
2
2,Ω

)
+ 1
η0

(
|δ′|+ λ2|δ(t)|

2εη0
‖∇η‖2

2,Ω

))
.

On the other hand, taking into account Poincare’s inequality we derive

ν ‖∇vn‖2
2,Ω + λ ‖∇θn‖2

2,Ω ≥
ν

2 ‖∇vn‖2
2,Ω + ν

2C2
p

‖vn‖2
2,Ω + λ

C2
p

‖θn‖2
2,Ω ≥ µY (t), (9.8)

with

µ = min
{
ν

2κ ,
ν

2C2
p

,
λ

C2
p

}
. (9.9)

Finally, plugging (9.7) and (9.8) into (9.6), we get the ordinary differential inequality

dY (t)
dt

+ µY (t) ≤ (|e(t)|+ |δ(t)|)K.

Integrating last inequality, we obtain

Y (t) ≤ e−µt
(
K

ˆ t

T∗

eµs (|e(s)|+ |δ(s)|) ds+ Y (T∗)eµT∗
)
, t ≥ T∗ (9.10)

Assume that in addition (9.5) the following condition holdsˆ ∞
0

eµs (|e(s)|+ |δ(s)|) ds ≤ C <∞.

Then it follows from (9.10), that Y (t)→ 0 as t→∞.

Thus, we can to formulate the following assertion.
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Theorem 9. Let the functions ‖g(t)‖2
d
2 ,Ω

, e(t), and δ(t) be monotonically decreasing in time
and tripping to zero. Assume that alsoˆ ∞

0
eµs (|e(s)|+ |δ(s)|) ds <∞, (9.11)

where µ is defined at (9.9). Then there exits a positive constant C such that
Y (t) ≤ Ce−µt,

i.e. the function Y (t) is exponential decay as t→∞.
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