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Abstract

The arterial vascular system exchanges blood gases using pulmonary capabilities. In humans, hemodynamic flows are subjected

to periodic velocity modulations. Fluid mechanics and transport of blood gases play an important role in understanding

how constitutive relations of the arterial system contribute to human functioning within physiological limits. Assuming the

hemodynamic system as a finite dissipative system, the nonlinear evolution equation is perused to understand dynamical

challenges under physiological conditions. The infinitesimal component of the vessel wall with concentric thickening in tunica

media is considered as a nonaxisymmetric bulge in an elastic-compliant artery. Using the Lie group of transformations method,

we discuss the implications of traveling wave solutions to describe their impact on hemodynamic flow in an elastic-compliant

artery. We find that cumulative accretion of potential energy contributes to the creation of bright soliton at the apex of the

bulge. The wave speed is maximum at the peak of the bulge and progressively retards with the antegrade flow.
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THE IMPACT OF A BULGE ON HAEMODYNAMICS IN AN ELASTIC COMPLIANT ARTERY

VISHAKHA JADAUN

Abstract. The arterial vascular system exchanges blood gases using pulmonary capabilities. In humans, hemodynamic flows

are subjected to periodic velocity modulations. Fluid mechanics and transport of blood gases play an important role in under-

standing how constitutive relations of arterial system contribute to human functioning within physiological limits. Assuming
hemodynamic system as finite dissipative system, the nonlinear evolution equation is perused to understand dynamical chal-

lenges under physiological conditions. The infinitesimal component of the vessel wall with concentric thickening in tunica media

is considered as a nonaxisymmetric bulge in an elastic-compliant artery. Using Lie group of transformations method, we discuss
the implications of traveling wave solutions to describe its impact on hemodynamic flow in an elastic-compliant artery. We find

that cumulative accretion of potential energy contributes to creation of bright soliton at the apex of bulge. The wave-speed is

maximum at the peak of the bulge and progressively retards with antegrade flow.

1. Introduction

Pulsatile flows are liable to become turbulent especially cardiovascular flows wherein the largest blood vessels are in
the transition scheme i.e. increasing and decreasing velocity gradients impact blood flow through entire vascular system.
Hemodynamic instabilities and consequent fluid structure alterations are associated with cardiovascular diseases [1–3]. Human
physiological flow characteristics such as elasticity, non-Newtonian behavior and complex three-dimensional geometry add
difficulties to assess pulsatile flows and transition from laminar to turbulent flow. Even simple scenario of transition in
pulsatile Newtonian flows is not adequately understood.
In hemodynamic flow distribution network such as cardiovascular system, the dimensionless numbers help to understand
biofluid mechanics because hemodynamic flow determined by a delicate balance between pressure gradient and various
stress through biological scaling in vascular network. The velocity fluctuations of human blood flow are implicated in
intravascular hemolysis, megakaryocyte activation/amplification, thrombin release/thrombus formation, arteriosclerosis, and
athersosclerosis [4, 5]. Noninvasive techniques to measure blood flow include phase-contrast magnetic resonance imaging.
Many errors including eddy current, nonlinear gradient, concomitant gradient, or measurement errors get incorporated into
velocity gradient. Moreover, turbulent patterns introduce signal losses and artifacts which subsequently limit quality of
measurements [6]. Thus, assessing turbulence noninvasively in vivo is challenging.
The dimensionless numbers of Womersley, Strouhal and Reynolds have been used to assess transition from laminar to
turbulent flow [7]. Earlier Reynolds number was used in hydrodynamics to assess flows in rigid pipe. It was enunciated to
study pulsatile flows in elastic compliant arteries, yet it is used to predict different fluid flow situation in biological rheology.
The increasing and decreasing velocity gradients during cardiac cycle are postulated to cause turbulence. On one hand,
steady flows in rigid pipe under transition scenario [8–11] reveal reduced threshold for turbulence with pulse frequency. On
the other hand, studies related to pulsatile flows in straight rigid pipes have contrary findings. It is found that flows can be
either linearly stable or linearly unstable [12]. For the onset of turbulence trends, the transition thresholds exhibit opposing
trends. [13,14] suggest that transition threshold increases with increment in unsteady forces over viscous forces, while [15,16]
found that transition threshold decreased when pulse amplitude increased. The transition of pulsatile biological flows is not
well understood.

Key words and phrases. Lie symmetry analysis; Solitons solutions; Nonlinear evolution equation; Nonaxisymmetric lesion; Phase parameter;
Small-but-finite amplitude wave .
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2 V. JADAUN

Large elastic arteries deliver oxygenated blood to tissues and buffer pulsatile flows. The shock absorbing capability of large
arteries significantly changes with cellular events through the shear stress. The most significant function of large elastic arteries
is to reduce impedance owing to left ventricular ejection fraction. The dynamic resistance to the oscillatory component of
the cyclic pulsatile flow is achieved by expansion of arterial lumen during cardiac systole and accumulation of blood in large
elastic arteries for run-off during cardiac diastole.
Noninvasively, it is quite difficult to accurately measure blood flow. The accurate measurement of intricate wave forms of
hemodynamic flow can not be over emphasized. Thus, it is important to study wave forms in blood flow. Since hemodynamic
flow is highly nonliner, few assumptions are ascribed such that principles of continuum mechanics become applicable. To
understand hemodynamic flow in large elastic artery, [17, 18] elaborated few assumptions viz. artery is straight, uniform,
elastic tube with undisturbed cross-section area; it has ideal visco-elastic properties; blood is homogeneous, incompressible
with constant density; viscosity is neglected (since impact of viscosity is confined to thin boundary layers on the vessel wall);
velocity profile in large elastic arteries such as aorta is flat. Aforementioned assumptions are needed as the wavelength of
initial deformation is longer than the diameter of elastic compliant artery.
The research related to small amplitude waves in elastic compliant arteries focuses on dispersive characteristics of waves while
ignoring associated nonlinear effects. [19] evaluated wave form characteristics in elastic compliant arteries based on parameter
such as pressure, age & muscular-activation and found a harmonic wave type of traveling wave solution responsible for
underlying dispersion relation. On the other hand, [20] considered nonlinear effects to evaluate adaptive response of compliant
arteries. The author used nonlinear terms related to constitutive relations of vessel wall of aorta and kinematical equations
of fluid-structure interactions. Using NLEEs, the author explained dissipation and pressure diffusion terms depending upon
the order of nonlinearity and found that unsteady hemodynamic flow exists in normal elastic compliant artery. The author
also indicated that shock formation distances vary from few millimetres to few centimetres depending upon elastic properties
of aorta. [21] assessed pulsatile flow in elastic arteries using Navier-Stokes equations and suggested an appropriate numerical
method instead of analytical approach to get insight on nonlinear response of vessel wall to a large deformation. [22] elaborated
mathematical modeling of initial lesion of aortic dissection. [23] used characteristic method to assess nonlinear equations for
one-dimensional flow and found that outflow pulses from left ventricle including diacrotic wave is generated by reflections. [24]
assessed wave propagation and shock formation in viscoelastic fluid and found an exact solution with distortionless propagation
for a Mooney-Rivlin material.
In recent literature, researchers have employed asymptotic methods to evaluate small amplitude waves. The Korteweg-de-
Vries equation and the Burgers’ equation are representative equations for dispersive media and dissipative media, respectively.
These equations exhibit a delicate balance among nonlinearity (that is responsible for steepening of the waves); dissipation
(that is responsible for attenuation of the waves); and combination of nonlinearity & dispersion (that is responsible for
broadening of waves). Depending upon characteristics of the system, balance relation between dispersion and nonlinearity
results into stable nonlinear traveling wave solutions including solitary waves. Whereas in other circumstances, balance
relation among dissipation, nonlinearity and dispersion results into the Korteweg-de Vries-Burgers (KdVB) equation.
Also, the propagation of small and finite amplitude waves in elastic complaint arteries has been evaluated. [25] evaluated
propagation of small amplitude waves in elastic compliant arteries. The author considered steady state solution of an NLEE
to explore damping & dispersion effects. The author found that when laminar elastic jumps are governed by the KdVB
equation, solution is invalid as oscillation duration approaches to infinity. [26] evaluated nonlinear pressure wave propagation
while accounting convective motion of the fluid, nonlinear strains and stress-strain relations. The author found a relation
between multi-soliton solutions and steepening phenomena. [27–29] elucidated dynamic features of pulsatile hemodynamic
flow in large elastic compliant arteries using soliton theory. They found that left ventricular ejection fraction excites formation
of soliton that aids to the formation of pulse waveform peaks. The propagation of such pulse as diacrotic wave is governed by
the KdV equation. Note that the propagation of small amplitude waves in viscoelastic compliant arteries is governed by KdV
equation, Burgers’ equation and KdVB equation. Various methods [30–38] such as the inverse scattering transformation,

Bácklund transformation, (G
′

G )-expansion method, Darboux transformation, Hirota method and Lie group of transformations
method have been proposed to solve the NLEEs.
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The primary motivation for the present work is to elucidate wave propagation in an elastic artery. The goal is to understand
the impact of a nonaxisymmetric lesion on propagation of weak nonlinear waves in an elastic compliant artery. For this
purpose, in Section 2, we model an equation for the vessel wall of an elastic compliant artery to assess waveforms of
underlying blood flow. In section 3, we undertake Lie symmetry analysis for the generalized (3+1)-dimensional NLEE to
evaluate changes in the wave speed in proximity of nonaxisymmetric lesion. In Section 4, we evaluate symmetry groups
for generalized (3+1)-dimensional NLEE. In Section 5, symmetry reduction and closed form solutions for the generalized
(3+1)-dimensional NLEE has been done. Graphical interpretation and discussion in Section 6 reveals impact of lesion on the
wave speed. Finally, in Section 7, we present concluding remarks and future scope.

2. Mathematical Formulation of Vessel Wall and Bulge

2.1. Equation of the Vessel Wall of an Elastic Compliant Artery. The pulsatile blood flow inside an elastic artery
lumen can not be observed directly. Instead, radial displacement and concomitant elastic recoil aid to assess waveforms of
blood flow. Therefore, we derive the equation of the vessel wall of an elastic compliant artery. Consider the elastic artery as
a circularly cylindrical elongated tube with radius R0. Assume that the elastic artery is a thin-walled incompressible axially
prestretched hyperelastic tube with a localized nonaxisymmetric lesion such as intramural haemotoma. This elastic artery is
subjected to initial axial stretch π and a uniform pressure inside an elastic compliant artery E0(z).
The position vector of a given point on the elastic artery is given by

r⃗0 = [r0 + f(z)]er + zez, z = π z, (2.1)

where r0 is the deformed radius, ez & er are basis vectors, z and z are the axial polar coordinate pre-deformation and
post-deformation of the elastic artery, respectively and f(z) is a function to describe the geometry of nonlinearly dilated aorta
in aortic aneurysm and dissection disorders.
After application of the initial static deformation, we superimpose only a dynamical radial displacement u(z, t) to the initial
static deformation, then the position vector r⃗ of a given point on the elastic artery is given by

r⃗ = [r0 + f(z) + u(z, t)]er + zez. (2.2)

Note that the axially prestreched artery does not undergo significant deformation after application of initial static deformation.
dSz and dSθ are arc-lengths along meridional and longitudinal curves, respectively given by

dSz =

[
1 +

(
df

dz
+
∂u

∂z

)2
] 1

2

dz, dSθ = [r0 + f+ u]dθ. (2.3)

π1 and π2 are stretch ratios in the longitudinal and circumferential directions , respectively. In the final configuration these
are presented as

π1 = πΥ, π2 =
1

R0
(r0 + f+ u), (2.4)

where Υ =
[
1 +

(
f′ + ∂u

∂z

)2] 1
2

, f′ = df
dz .

Post application of static deformation, t and n are unit tangent vector and unit normal vector, respectively along the deformed
meridional curve of elastic compliant artery given by

t =

(
f′ + ∂u

∂z

)
er + ez

Υ
, n =

er −
(
f′ + ∂u

∂z

)
ez

Υ
. (2.5)

The longitudinal displacement of elastic compliant artery is relatively small because strong vascular tethering as well as
helical circumferential orientation of the elastin and collagen fibers prevents extra ordinary motion. Accordingly assumption
of material incompressibility is made about the aortic vessel wall, given by

δ =
∆

π1π2
, (2.6)
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where ∆ and δ are pre-deformation and post-deformation vessel wall thickness, receptively. The force that acts on the
infinitesimal aortic wall component placed between the planes z = A1, z + dz = A2, θ = A3 and θ + dθ = A4, where Ai,
i = 1, . . . , 4 are arbitrary constants.
The material incompressibility assumption determines the longitudinal displacement of the vessel wall, given by

F = −T2Υ

{
(r0 + f+ u)

(
f′ + ∂u

∂z

)
T1

Υ

}
+ E(r0 + f+ u)Υ, (2.7)

where E is the fluid reaction force.
T1 and T2 are tensions in the longitudinal and circumferential directions given by

T1 =
µ∆

π2

∂Ψ

∂π1
, T2 =

µ∆

π1

∂Ψ

∂π2
, (2.8)

where µ and Ψ are material shear modulus and strain energy density function of the wall material, respectively.
Finally, the equation of the radial motion of infinitesimal segment of vessel wall of the aorta is given by

µ

π

∂Ψ

∂π2
+ µR0

∂

∂z

{(
f′ + ∂u

∂z

)
Υ

∂Ψ

∂π1

}
+

E
∆
(r0 + f+ u)Υ = ρ

R0

π

∂2u

∂t2
, (2.9)

where ρ is the mass density of the tube material.
Above equation models aorta as an elastic artery that is an axially prestrechted hyperelastic tube. Note that the elastic
properties of the injured wall differs from the healthy part. We assume that the constitutive relations of the wall are
homogeneous. Thus, material shear modulus µ is constant. Now the above equation holds equivalently valid for normal
constitutive features of aorta. Further, we seek to assess the impact of mean blood pressure as pressure reaction force on
vessel wall of aorta including the tunica media. In the next subsection, we formulate a boundary value problem in this regard.

2.2. Equation of the Bulge, Nonaxisymmetric Lesion in the Vessel Wall. The propagation of pulsatile blood flow
in an elastic artery is impacted by arterial mechanics. It means that small but finite amplitude waves undergo drastic
transformations due to nonlinearity introduced by nonaxisymmetric lesion in the vessel wall of elastic compliant artery.
Assume that the elastic compliant artery is a thin walled incompressible axially prestreched hyperelastic tube with localized
nonaxisymmetric lesion. Note that such lesions are found in atypical aortic aneurysm and dissection disorders including
intramural haemotoma.
To formulate the equation for the nonaxismmetric lesion, we consider an infinitesimal component of the vessel wall of an
elastic compliant artery, wherein concentric thickening of tunica media creates a bulge into tunica intima. Since the bulge
(l(t)) is hyperbolic secant type, it is mathematically expressed as

l(t) = c sech2(Kt). (2.10)

Note that l(t) characterizes the bulge, K and c are constants, where c is positive.
From clinical perspective, order parameters emerge from symmetry-breaking. Such symmetry-breaking transitions occur
across boundaries in a phase transition system. At a particular critical point, the order parameter susceptibility usually
diverge. To say, wave propagation in an elastic compliant artery is a homeostatic process. With emergence of bulge, the
symmetry of wave propagation is broken and the next critical point is not same. Thus, phase parameter characterizes
continuous phase transitions, wherein wave speed is affected by the bulge. The equation of phase parameter ϑ has the
following form

ϑ =

√
a0
12

exp

(
−2t

3

){
θ − a0

4

[
1− exp

(
−4t

3

)]
+

c

K
tanh(Kt)

}
, (2.11)
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where t is a space variable, a0 is a constant characterizing the amplitude of the traveling wave at the center of the bulge.
The wave speed is defined as

v =
1

β − c sech2(Kt)
, β =

a0
3

exp

(
−4t

3

)
, (2.12)

where 1
β is wave speed when cross sectional diameter is constant along the tube axis.

3. Method of Lie group symmetries for (3 + 1)−dimensional NLEE

The prevalence and the catastrophic complications of intramural haematoma motivates us to study the impact of presence
of axially asymmetric hump like lesion with convex projection in the lumen of an elastic compliant artery, where it interact
with pulsatile blood flow. We model and analyze the (3+1)-dimensional nonlinear evolution equation with perturbation term,
dissipation term and pressure term including linear and nonlinear terms.
In the current work, we aim to study (3+1)-dimensional Kadomstev-Petviashvili-Boussinesq equation, given as

∆ := wrrrs + 3wrwrs + 3wswrr + wtt + wrt + wst − wqq = 0. (*)

It is to be noted that KdV equation and the KP equation are integrable nonlinear evolution equations represented by a
first-order partial differential equation (PDE) in time, while Kadomstev-Petviashvili-Boussinesq equation is represented by
second-order nonlinear PDE in time. Moreover, it models both (right and left)-going waves.
Using Lie symmetry analysis similarity reductions of the NLEE is derived as given in [36, 37]. Consider the one parameter
Lie group of infinitesimal transformation



�r = r + ςξ1(r, s, q, t, w) +O(ς2)



�s = s+ ςξ2(r, s, q, t, w) +O(ς2)



�q = q + ςξ3(r, s, q, t, w) +O(ς2)



�t = t+ ςτ(r, s, q, t, w) +O(ς2)



�w = w + ςη(r, s, q, t, w) +O(ς2),

(3.1)

where ς is group parameter and ξ1, ξ2, ξ3, τ are the generators of Lie group transformations for independent variables while
η for dependent variable. The associated vector field is represented by

X = ξ1(r, s, q, t, w)∂x + ξ2(r, s, q, t, w)∂y + ξ3(r, s, q, t, w)∂z + τ(r, s, q, t, w)∂t + η(r, s, q, t, w)∂w.

The infinitesimal criteria for the invariance of the Eq. (*) is

ηrrrs + 3ηrwrs + 3wrηrs + 3ηswrr + 3ηrrws + ηtt + ηrt + ηst − ηqq = 0. (3.2)

It is obtained from the invariance condition, Pr(4)X(∆) = 0 whenever ∆ = 0. Applying the fourth prolongation Pr(4)X of X
to Eq. (3.2), we obtain determining equations which are constituted of overdetermined system of coupled partial differential
equations

ξ1t = ξ1r =
ξ3q
3
, ξ1w = 0, ξ1s = 0, ξ1q =

ξ3t
2

= 0

ξ2t = ξ2q = ξ2w = 0, ξ2s = ξ3q , ξ
2
q =

ξ3t
2

ξ3w = ξ3r = ξ3s = ξ3tt = ξ3tq = ξ3qq = 0

τt = ξ3q , τr = τw = τs = 0, τq = ξ3t

ηw = −
ξ3q
3
, ηr =

ξ3q
9

= ηs, ηtt = ηqq.

(3.3)
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Solving determining Eqs. (3.3) yield infinitesimal generators

ξ1 =
c1
2
q +

c2
3
(r + t) + c6

ξ2 = 2c4s+
a

c
c3t+ c6

ξ3 =
c1
2
q + c2s+ c3

τ = c1t+ c2q + c3

η =φ(t− q) + ψ(t+ q) +
c2)

9
(r + s− 3w)

(3.4)

where ci, i = 1, . . . , 6 and φ(t−q) & ψ(t+q) are arbitrary constants and arbitrary functions, respectively. Assume φ(t−z) = c7,
following vector fields span the Lie algebra of infinitesimal symmetries of the Eq. (*)

X1 =
q

2

∂

∂r
+
q

2

∂

∂s
+ t

∂

∂r
+ q

∂

∂t

X2 =
(r + t)

3

∂

∂r
+ s

∂

∂s
+ q

∂

∂r
+ t

∂

∂t
+

(r + s− 3w)

9

∂

∂w

X3 =
∂

∂q
, X4 =

∂

∂t
, X5 =

∂

∂s
, X6 =

∂

∂r
, X7 =

∂

∂w
.

(3.5)

It is simple to exhibit the commutation relation of a Lie algebra through its Lie bracket table having (i, j)th entry is
[Xi, Xj ] = Xi ∗Xj = Xi ·Xj −Xj ·Xi . The commutator table is skew-symmetric since [Xα, Xβ ] = −[Xβ , Xα].
Given commutator table is formed for the vector fields (3.5)

Table 1. Commutator table of Lie algebra

∗ X1 X2 X3 X4 X5 X6 X7

X1 0 0 X5−X6

2 +X4 −X3 0 0
X2 0 0 −X3

−X6

3 −X4 −X5 − X7

9 −X6

3 − X7

9
X7

3

X3
−X5+X6

2 −X4 X3 0 0 0 0 0
X4 X3

X6

3 +X4 0 0 0 0 0
X5 0 X5 +

X7

9 0 0 0 0 0
X6 0 X6

3 + X7

9 0 0 0 0 0
X7 0 −X7

3 0 0 0 0 0

As reflected in the table above, the generalized (3+1)-dimensional NLEE contains a continuous group of transformations
which is generated by the infinite-dimensional Lie algebra spanned by vector fields (3.5). Since the infinite number of
subalgebras for this Lie algebra are constituted from linear combinations of generators, in our case Xi, i = 1, 2, . . . , 7.

4. Symmetry Groups for (3 + 1)−dimensional NLEE

Using vector fields Xi for i = 1, 2, . . . , 7, we obtain the group transformations, Gi : (r, s, q, t, w) → (
�r, 
�s, 
�q, 
�t, 

�w), and solve

the following system of ordinary differential equations (ODEs)

d(
�r, 
�s, 
�q, 
�t, 

�w)

dς
= (ξ1, ξ2, ξ3, τ, η),

(
�r, 
�s, 
�q, 
�t, 

�w)|ς=0 = (r, s, q, t, w).
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The one parameter groups Gi spanned by Xi are given by

G1 : (r, s, q, t, w) →
(
r + ς

q

2
, s+ ς

q

2
, q + ςt, t+ ςq, w

)
G2 : (r, s, q, t, w) →

(
r + ς

r + t

3
, s+ ςs, q + ςq, t+ ςt, w + ς

r + s− 3w

9

)
G3 : (r, s, q, t, w) → (r, s, q + ς, t, w)

G4 : (r, s, q, t, w) → (r, s, q, t+ ς, w)

G5 : (r, s, q, t, w) → (r, s+ ς, q, t, w)

G6 : (r, s, q, t, w) → (r + ς, s, q, t, w)

G7 : (r, s, q, t, w) → (r, s, q, t, w + ς) .

(4.1)

The resultant transformed points, exp(r, s, q, t, w) = (
�r, 
�s, 
�q, 
�t, 

�w), generated by above groupsGi(i = 1, 2, . . . , 7) yield invariant

solutions wi(i = 1, 2, . . . , 7) of Eq. (*) as follows

w1 = f
(
r − ς

q

2
, s− ς

q

2
, q − ς, t− ς

)
w2 =

r + s

3
− 1

3
f

(
3r − t

ς
,

s

1 + ς
,

q

1 + ς
,

t

1 + ς

)
w3 = f (r, s− ς, q, t)

w5 = f (r, s− ς, q, t)

w6 = f (r − ς, s, q, t)

w7 = −ς + f (r, s, q, t) .

(4.2)

5. Symmetry Reduction and Graphical Representation of Solutions

In this section, we perused reduction equations for group invariant solutions for Eq.(*). Since invariant functions are the
constant of integration of the characteristic equations, we solve Lagrange’s system of characteristic equations given by

dr

ξ1(r, s, q, t, w)
=

ds

ξ2(r, s, q, t, w)
=

dq

ξ3(r, s, q, t, w)
=

dt

τ(r, s, q, t, w)
=

dw

η(r, s, q, t, w)
. (5.1)

Invariance is remarkable property of Lie group of transformations method. The solutions obtained under one parameter Lie
group of transformations are invariant. The Lagrange system of characteristic equations allows group invariant solution to
construct differential equation with one-less independent variable, resulting into a ordinary differential equation (ODE). The
solution of ODE is back substituted to yield solution of primary differential equation.

5.1. Vector field X1.

X1 =
q

2

∂

∂r
+
q

2

∂

∂s
+ t

∂

∂r
+ q

∂

∂t
. (5.2)

The Eqs. (5.2) and (5.1) are being used to find associated Lagrange’s system

dr
q
2

=
ds
q
2

=
dq

t
=
dt

q
=
dw

0
.

The invariant functions and invariant solution for the Eq. (*) are

w(r, s, q, t) = f(R,S,Q), where R = 2r − t, S = 2s− t and Q = q2 − t2. (5.3)
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From Eqs. (5.3) and (*), we get following PDE

− fQ − 4QfQQ − fSS − 2fRS − fRR + 24fRfRS + 24fSfRR + 16fRRRS = 0. (5.4)

Using similarity transformation method (STM), the new set of infinitesimal generators for Eq. (5.4) is

ξR =
a1
4
R+ a3

ξS =
a1
2
S + a2

ξQ = a1Q (5.5)

ηf = a5 logQ+
a1
48

(R+ S) + a4,

where ξR, ξS , ξQ are the generators of infinitesimal transformations for independent variables R, S, Q, respectively while
ηf for dependent variable f ; ai, i = 1, . . . , 5 are arbitrary constants.
A set of vector fields for generators of infinitesimal transformation (5.5) is given by

π1 =
R

4

∂

∂R
+
S

2

∂

∂S
+Q

∂

∂Q
+
R+ S

48

∂

∂f
,

π2 =
∂

∂S
, π3 =

∂

∂R
, π4 =

∂

∂f
, π5 = logQ

∂

∂f
.

(5.6)

5.1.1. Vector field π2.

π2 =
∂

∂S
.

Lagrange’s characteristic for vector field π2 are

dR

0
=
dS

1
=
dQ

0
=
df

0
.

Further, we write the function f in following similarity form

f(R,S,Q) = H(x, y) and x = R, y = Q, (5.7)

where x and y are similarity variables. We reduce Eq. (5.4) into following PDE

Hy + 4Hyy +Hxx = 0. (5.8)

Using back substitution, the solution of the Eq. (5.8) provides the solution of primary equation (*) given by

w(r, s, q, t) =
(q2 − t2)

3
8

(
C2

1 exp(C1(2r − t)2) + C2

) [
BesselJ( 34 ,

√
−C1(q2 − t2))C3 +BesselY( 34 ,

√
−C1(q2 − t2))C4

]
exp(

√
C1(2r − t))

,

(5.9)

where Ci, i = 1, . . . , 4 are arbitrary constants.

5.1.2. Vector field π3. Lagrange’s characteristic equations for vector field π3 are

dR

1
=
dS

0
=
dQ

0
=
df

0
.

Further, we write the function f in following similarity form

f(R,S,Q) = H(x, y) and x = S, y = Q, (5.10)

where x and y are similarity variables. We reduce Eq. (5.4) into following PDE

Hy + 4Hyy +Hxx = 0. (5.11)
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Using back substitution, the solution of the Eq. (5.11) provide solution of primary Eq. (*) is

w(r, s, q, t) =
(q2 − t2)

3
8

(
C2

1 exp(C1(2s− t)2) + C2

) [
BesselJ( 34 ,

√
−C1(q2 − t2))C3 +BesselY( 34 ,

√
−C1(q2 − t2))C4

]
exp(

√
C1(2s− t))

,

(5.12)

where Ci, i = 1, . . . , 4 are arbitrary constants.

5.2. Vector field X3.

X3 =
∂

∂q
.

The corresponding Lagrange’s characteristic equations is found using Eq. (5.1)

dr

0
=
ds

0
=
dq

1
=
dt

0
=
dw

0
. (5.13)

The similarity reduction of Eq. (*) is

w(r, s, q, t) = f(R,S, T ), and R = r, S = s, T = t, (5.14)

where R, S and T are invariant variables.
From the Eqs. (5.14) and (*), we get following PDE

fRRRS + 3fRfRY + 3fSfRR + fRT + fST + fTT = 0. (5.15)

We find traveling wave solution of Eq. (5.15) are

f(R,S, T ) = 2C2 tanh

(
C2R+ C3S +

(
−C2 + C3

2
− 1

2

√
−16C3

2C3 + C2
2 + 2C2C3 + C2

3

)
T + C1

)
+ C5, (5.16)

f(R,S, T ) = 2C2 tanh

(
C2R+ C3S +

(
−C2 + C3

2
+

1

2

√
−16C3

2C3 + C2
2 + 2C2C3 + C2

3

)
T + C1

)
+ C5. (5.17)

Now, we obtain following traveling wave solutions of Eq. (*)

w(r, s, q, t) = 2C2 tanh

(
C2r + C3s+

(
−C2 + C3

2
− 1

2

√
−16C3

2C3 + C2
2 + 2C2C3 + C2

3

)
t+ C1

)
+ C5, (5.18)

w(r, s, q, t) = 2C2 tanh

(
C2r + C3s+

(
−C2 + C3

2
+

1

2

√
−16C3

2C3 + C2
2 + 2C2C3 + C2

3

)
t+ C1

)
+ C5, (5.19)

where Ci, i = 1, . . . , 5 are arbitrary constants.
To obtain variety of the solutions, now we use Lie group of transformations method to obtain a set of infinitesimal generator
for Eq. (5.15)

ξR =
a1
3
(R+ T ) + a4,

ξS = a1S + a3,

τT = a1T + a2,

ηf =
a1
9
(R+ S − 3f) + a5T + a6,
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where ai, i = 1, . . . , 6 are arbitrary constants.
Vector fields associated to aforementioned infinitesimal generators are given by

π1 =
R+ T

3

∂

∂R
+ S

∂

∂S
+ T

∂

∂T
+
R+ S − 3f

9

∂

∂f
,

π2 =
∂

∂T
, π3 =

∂

∂S
, π4 =

∂

∂R
, π5 = T

∂

∂f
, π6 =

∂

∂f
.

(5.20)

5.2.1. Vector field π2.

π2 =
∂

∂T
.

The Lagrange’s characteristic equations for Eq. (5.15) are given by

dR

0
=
dS

0
=
dT

1
=
df

0
.

By solving these equations, we write f in the terms of H(x, y), an invariant function

f(R,S, T ) = H(x, y), where x = R and y = S are similarity variables. (5.21)

Further, the Eq. (5.15) is reduced into following PDE

3HxHxy + 3HyHxx +Hxxxy = 0. (5.22)

Apply Lie group of transformations method on Eq. (5.22) to obtain infinitesimal generators

ξx = b1x+ b2,

ξy = P (y),

ηH = −b1H + b3,

where b1 and b2 are arbitrary constants.
Assuming P (y) = 0, the invariant solution H(x, y) is written as

H(x, y) =
G(ζ)

x+ b2
with invariant variable ζ = y. (5.23)

Using above invariant function, Eq. (5.22) is reduced into following ODE

6G(ζ)G′(ζ)− 6G′(ζ) + 3G′2(ζ) = 0. (5.24)

We back substitute the solutions of Eq. (5.24) to obtain solutions of Eq. (*)

w(r, s, q, t) =
1 + C1 exp(−2s)

r + C2
+ C3, (5.25)

w(r, s, q, t) =
C1

r + C2
+ C3, (5.26)

where C1, C2 and C3 are arbitrary constants.



THE IMPACT OF A BULGE ON HAEMODYNAMICS 11

5.2.2. Vector field π3.

π3 =
∂

∂S
.

Lagrange’s characteristic equations for vector field π3 are

dR

0
=
dS

1
=
dT

0
=
df

0
.

By solving these equations, we write f in the terms of H(x, y), an invariant function

f(R,S, T ) = H(x, y), where x = R and y = T are similarity variables. (5.27)

Further, the Eq. (5.15) is reduced into following PDE

Hyy +Hxy = 0. (5.28)

The solutions of Eq. (*) are

w(r, s, q, t) = C7 tanh
3(C3(t− r)− C1) + C5 tanh(C3(t− r)− C1) + C4, (5.29)

w(r, s, q, t) = C7 tanh
3(C3(t− r)− C1) + C6 tanh

2(C3(t− r)− C1) + C5 tanh(C3(t− r)− C1) + C4, (5.30)

where Ci, i = 1, . . . , 7 are arbitrary constants.

5.2.3. Vector field π4.

π4 =
∂

∂R
.

Lagrange’s characteristic equations are calculated as follows

dR

1
=
dS

0
=
dT

0
=
df

0
.

By solving these equations, we write the function f in the terms of invariant function H(x, y)

f(R,S, T ) = H(x, y), where x = S and y = T are similarity variables. (5.31)

Using above invariant function, the reduced PDE from the Eq. (5.15) is

Hyy +Hxy = 0. (5.32)

The solutions of Eq. (*) are

w(r, s, q, t) = C7 tanh
3(C3(t− s)− C1) + C5 tanh(C3(t− s)− C1) + C4, (5.33)

w(r, s, q, t) = C7 tanh
3(C3(t− s)− C1) + C6 tanh

2(C3(t− s)− C1) + C5 tanh(C3(t− s)− C1) + C4. (5.34)

5.3. Vector field X4.

X4 =
∂

∂t
.

The associated Lagrange’s characteristic equations are as follows,

dr

0
=
ds

0
=
dq

0
=
dt

1
=
dw

0
.

The Eq. (*) is written in the form of invariant function f(R,S,Q)

w(r, s, q, t) = f(R,S,Q), where R = r, S = s and Q = q. (5.35)

From Eqs. (5.35) and (*), the primary equation with one-less independent variable is written as

3fRfRS + 3fY fRR + fRRRS − fQQ = 0. (5.36)
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The traveling wave solutions of Eq. (5.36) are

f(R,S,Q) = 2C2 tanh(C2R+ C3S − 2
√
C3

2C3 Q+ C1) + C5, (5.37)

f(R,S,Q) = 2C2 tanh(C2R+ C3S + 2
√
C3

2C3 Q+ C1) + C5. (5.38)

(5.39)

Therefore, solutions of main Eq. (*) can be written as

w(r, s, q, t) = 2C2 tanh(C2r + C3s− 2
√
C3

2C3 q + C1) + C5, (5.40)

w(r, s, q, t) = 2C2 tanh(C2r + C3s+ 2
√
C3

2C3 q + C1) + C5. (5.41)

(5.42)

Now the new set of infinitesimal generators for (5.36) by applying similarity transformations method (STM) is

ξR =
1

3
(2a1 − a3)R+ a5,

ξS = a3S + a4,

ξQ = a1Q+ a2,

ηf = −1

3
(2a1 − a3)f + a6Q+ a7,

where ξR, ξS , ξQ and ηf are infinitesimal generators; ai, i = 1, . . . , 7 are arbitrary constants.
The vector fields associated to these infinitesimal generators are

π1 =
2R

3

∂

∂R
+Q

∂

∂Q
− 2f

3

∂

∂f
,

π2 =
∂

∂Q
, π3 = −R

3

∂

∂R
+ S

∂

∂S
+
f

3

∂

∂f
,

π4 =
∂

∂S
, π5 =

∂

∂R
, π6 = Q

∂

∂f
, π7 =

∂

∂f
.

(5.43)

5.3.1. Vector field π2.

4π2 =
∂

∂Q
.

The similarity reduction of Eq. (5.36) is given by

f(R,S,Q) = H(x, y), where x = R and y = S. (5.44)

The Eq. (5.36) is reduced in a PDE with two independent variables

3HxHxy + 3HyHxx +Hxxxy = 0. (5.45)

Lie group analysis method gives the following infinitesimals when it applies on Eq. (5.45).

ξx = b1x+ b2,

ξy = P (y),

ηH = −b1H + b3,
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where b1 and b2 are arbitrary constants.
Assuming P (y) = 0, the function H(x, y) is written in the form of invariant function G(ζ)

H(x, y) =
G(ζ)

x+ b2
, where ζ = y. (5.46)

Using above invariant function, Eq. (5.45) is reduced into a first order ODE

6G(ζ)G′(ζ)− 6G′(ζ) + 3G′2(ζ) = 0. (5.47)

To find solutions of the Eq. (*), we back substitute the solutions of Eq. (5.47)

w(r, s, q, t) =
1 + C1 exp(−2s)

r + C2
+ C3, (5.48)

w(r, s, q, t) =
C1

r + C2
+ C3, (5.49)

where C1, C2 and C3 are arbitrary constants.

5.3.2. Vector field π4.

π4 =
∂

∂S
.

The vector field π4 provide similarity reduction of Eq. (5.36) as follows

f(R,S,Q) = H(x, y), where x = R and y = Q. (5.50)

By using Eq. (5.50), reduction of Eq. (5.36) is

Hyy = 0. (5.51)

Hence, solution of the Eq. (*) in this case is

w(r, s, q, t) = α(r)q + β(r), (5.52)

where α(r) and β(r) are arbirary functions of r.

5.3.3. Vector field π5.

π4 =
∂

∂R

The vector field π4 provide similarity reduction of Eq. (5.36) as follows

f(R,S,Q) = H(x, y), where x = S and y = Q (5.53)

By using Eq. (5.53), reduction of Eq. (5.36) is

Hyy = 0. (5.54)

Hence, solution of Eq. (*) in this case is

w(r, s, q, t) = α(s)q + β(s). (5.55)

where α(s) and β(s) are arbirary functions of s.
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5.4. Vector field X5.

X5 =
∂

∂s
. (5.56)

Using Eqs. (5.56) and (5.1), we find following Lagrange’s characteristic equations

dr

0
=
ds

1
=
dq

0
=
dt

0
=
dw

0

The reduce form of Eq. (*) in invariant function f(S,Q, T ) is

w(r, s, q, t) = f(S,Q, T ), where R = r, Q = q and T = t. (5.57)

From Eqs. (5.57) and (*), following PDE is obtained

fRT + fTT − fQQ = 0. (5.58)

By solving Eq. (5.58), we obtain following travelling wave solutions of the primary equation (*)

w(r, s, q, t) = C8 tanh
3
(
C3t− C2

3−C2
4

C3
r + C4q + C1

)
+ C6 tanh

(
C3t− C2

3−C2
4

C3
r + C4q + C1

)
+ C5, (5.59)

w(r, s, q, t) = C8 tanh
3
(
C3t− C2

3−C2
4

C3
r + C4q + C1

)
+ C7 tanh

2
(
C3t− C2

3−C2
4

C3
r + C4q + C1

)
+C6 tanh

(
C3t− C2

3−C2
4

C3
r + C4q + C1

)
+ C4, (5.60)

where Ci, i = 1, . . . , 8 are arbitrary constants.

5.5. Vector field X6.

X6 =
∂

∂r
. (5.61)

Using Eqs. (5.61) and (5.1), we find following Lagrange’s characteristic equations

dr

1
=
ds

0
=
dq

0
=
dt

0
=
dw

0
.

The reduced form of Eq. (*) in invariant function f(S,Q, T ) is

w(r, s, q, t) = f(S,Q, T ), where S = s, Q = q and T = t. (5.62)

From Eqs. (5.62) and (*), following PDE is obtained

fST + fTT − fQQ = 0. (5.63)

By solving Eq. (5.63), we obtain following travelling wave solutions of the Eq. (*)

w(r, s, q, t) = C8 tanh
3
(
C3t− C2

3−C2
4

C3
s+ C4q + C1

)
+ C6 tanh

(
C3t− C2

3−C2
4

C3
s+ C4q + C1

)
+ C5, (5.64)

w(r, s, q, t) = C8 tanh
3
(
C3t− C2

3−C2
4

C3
s+ C4q + C1

)
+ C7 tanh

2
(
C3t− C2

3−C2
4

C3
s+ C4q + C1

)
+C6 tanh

(
C3t− C2

3−C2
4

C3
s+ C4q + C1

)
+ C4, (5.65)

where Ci, i = 1, . . . , 8 are arbitrary constants.
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6. Graphical Interpretation and Discussion

(a) (b) (c)

(d) (e) (f)

Figure 1. (A) In Eq. (5.29), C1 = 1, C3 = 3, C4 = 4, C5 = 5, C7 = 7 and −10 ≤ r, s ≤ 10 , (B) In Eq.
(5.55), α(r) = sin(r2), β(r) = sec2(r) and −10 ≤ r, q ≤ 10, (C) In Eq. (5.9), t = 10.358, C1 = 50, C2 =
2, C3 = 3, C4 = 4 and 20 ≤ r, q ≤ 30 , (D) In Eq. (5.18), r = 1.025, C1 = 11, C2 = 2, C3 = 3, C5 = 1 and
−1 ≤ s ≤ 1, −5 ≤ q ≤ 5 , (E) In Eq. (5.18), r = 0.025, C1 = 11, C2 = 2, C3 = 3, C5 = 1 and −10 ≤ s ≤
1, −10 ≤ q ≤ 5 , (F) In Eq. (5.25), C1 = 1.98, C2 = 10.105, C3 = 1.508 and −20 ≤ r ≤ 2, −1 ≤ s ≤ 10.

Fig. (A) exhibits a traveling wave solution that characterizes the pulsatile blood flow in the forward direction. Before reaching
to the bulge, blood flows in the form of traveling wave.
Fig. (B) exhibits three bright solitons with progressively decreasing solitary wave amplitude. Assuming homogeneous
stratified layers of fluid, its flow is obtunded by presence of bulges. Depending upon the height of the bulge, a peculiar
number of sheets of fluid curl upward to the peak of the bulge. The kinetic energy of each fluid sheet is partially converted
into potential energy. Cumulative accretion of potential energy availed from each homogeneous sheet till the height of the
bulge contributes to the creation of bright soliton at the apex of the bulge. The temporo-spatial localization of its energy
and narrowing of time duration contributes to increment in wave speed. It can not be further emphasized that wave speed
at the peak of the bulge is maximum. As the wave propagates further, its speed is progressively retarded because bright
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soliton vanishes after the peak of the bulge. In our case, this slower wave comes in contact with another bulge of atmost
same height, again a bright soliton emerges through the same postulated mechanism. At last, we see a bright soliton of least
height suggestive of minimum height of the bulge.
Fig.(C) and (D) exhibits a standing wave with multiple breathers. The persistent localized standing breathers are created on
the windward side of the bulge. The undulating array of breathers with opposite phases can be regarded as a standing wave.
It is further emphasize that there is no standing wave in blood flow. The assemblage of multi-breathers with opposite phases
appears as a standing wave. The initial oscillatory dynamics of multi-breathers with undulating amplitude is suggestive
of the most unstable interaction among solitons. Gradually, the wave loses coherence and chaotic regime prevails. From
physiological perspective it corresponds to phase transition from laminar to turbulent flow. Note that such multi-breathers
interactions are not perfectly elastic.
Fig.(E) shows topological defect with one-dimensional kink. The presence of atleast two discontinuous fibro-fatty plaques
(commonly present as bulges) may not be completely discrete to each other because these fibro-fatty plaques with distinct
spatial localization are connected by one-dimensional kink. In higher dimensions, multiple topological defects can be connected
by higher-dimensional kinks. It means that intra-arterial micro- and macro-transport is done through kink solitons. From
physiological perspective, cargo transport in neurons and seminal vesicles is postulated as transport through solitons. Note
that the solitary wave for intra-vascular transport is kink soliton.
Fig. (F) depicts an interaction of standing wave with bright and dark solitons. A bright soliton emerges at the peak of the
bulge. The beaming correspondence among solitons presents the phase transition line to interact with an array of multiple
breathers which appear as a standing wave. This results into propagation of nonlinear wave i.e. partially standing and
partially traveling wave with variation in amplitude. Under physiological conditions, such solutions are unstable due to
oscillatory instabilities.

7. Conclusion and Future Scope

The generalised (3+1)-dimensional NLEE is helpful to understand not only the instabilities but also the impact of the
bulge on haemodynamic flow in an elastic compliant artery. In the present work, we provide physical explanation about
physiological principles underlying blood flow in an elastic compliant artery with nonaxisymmetric bulge. To depict the role
of wave-wave interaction on haemodynamic flow, we analysed (3+1)-dimensional NLEE. To seek intriguing representative
examples of soliton, we obtained the infinitesimal generators, commutator table of Lie algebra, symmetry groups for the
(3+1)-dimensional NLEE. By using Lie group transformations method, similarity reduction is conducted to find invariant
solutions for the (3+1)-dimensional NLEE. Following features have been observed.

• Cumulative accretion of potential energy contributes to the creation of bright soliton at the apex of the bulge.

• The wave speed is maximum at the peak of the bulge and progressively retarded with antegrade flow.

• The persistent localized standing breathers are created on the windward side of the bulge.

• There is no standing wave in blood flow, rather it is the assemblage of multi-breathers with opposite phases appears
as a standing wave.

• The solitary wave for intra-vascular transport is a kink soliton.

Therefore, understanding intricate dynamics of soliton interaction is essential to evaluate impact of nonaxisymmetric bulge
on blood flow.

7.1. Future Scope. Our findings suggest that flow instabilities exist in an elastic compliant artery. To assess relationship
between constitutive features and physiological adaptive process, novel in-vitro experiments and computational simulations
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may be designed.
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