
P
os
te
d
on

A
u
th
or
ea

27
A
u
g
20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
g
h
ts

re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
66
15
83
67
.7
39
52
12
9/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

CMMSE: A low-dimensional realization algorithm for periodic

input/output behavioral systems
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Abstract

The state-space realization of linear systems is of utmost importance in linear systems theory. After the realization problem

for the time-invariant case has been solved, particular attention was paid to the case of linear periodic systems (see, e.g.

1,2,3,4,5,6,7,8). Recently, such systems have regained importance, for instance, in the context of coding theory (see9), where

periodic convolutional encoders play an important role, 10. The majority of the contributions within this area concern the

realization of transfer functions as well as impulse responses, thus excluding the case of input/output linear systems without

coprime representations. By the end of the eighties of the last century, Jan C. Willems (see11,12) suggested an approach

(nowadays known as the behavioral approach) that considers a wider class of systems and allows to overcome this drawback.

According to this approach, the central object in a system is its behavior which consists of all the signals that satisfy the system

laws (also called system trajectories). Consequently, the behavior of a system with an input/output representation that is not

coprime, contains more trajectories than the set of input/output signals defined by the system transfer function. Our work takes

this fact into account. Based on results already obtained in 13,14, we revisit the problem of the realization of linear periodic

MIMO behaviors and give further insight into this problem, which allows setting up an algorithm to compute a low-dimensional

state-space realization of a periodic behavior. The proposed algorithm is based on a chain decomposition of suitable matrices.
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The state-space realization of linear systems is of utmost importance in linear systems
theory. After the realization problem for the time-invariant case has been solved, par-
ticular attention was paid to the case of linear periodic systems (see, e.g.1,2,3,4,5,6,7,8).
Recently, such systems have regained importance, for instance, in the context of cod-
ing theory (see9), where periodic convolutional encoders play an important role,10.
The majority of the contributions within this area concern the realization of transfer
functions as well as impulse responses, thus excluding the case of input/output lin-
ear systems without coprime representations. By the end of the eighties of the last
century, Jan C. Willems (see11,12) suggested an approach (nowadays known as the
behavioral approach) that considers a wider class of systems and allows to overcome
this drawback. According to this approach, the central object in a system is its behav-
ior which consists of all the signals that satisfy the system laws (also called system
trajectories). Consequently, the behavior of a system with an input/output represen-
tation that is not coprime, contains more trajectories than the set of input/output
signals defined by the system transfer function. Our work takes this fact into account.
Based on results already obtained in13,14, we revisit the problem of the realization
of linear periodic MIMO behaviors and give further insight into this problem, which
allows setting up an algorithm to compute a low-dimensional state-space realization
of a periodic behavior. The proposed algorithm is based on a chain decomposition
of suitable matrices.
KEYWORDS:
Discrete-time systems, input/output systems, periodic behaviors, system realization

1 INTRODUCTION

The minimal realization problem for linear time-varying systems is a fundamental topic in linear systems theory that has received
several contributions as, e.g.,1,2,3,4,5,6,7,8, in the last decades. More recently this issue has been addressed in the context of the
behavioral approach where a strategy was proposed in order to achieve a state-space realization for periodic MIMO behaviors,
see14. A first step towards the questions this work addresses was initially treated in13, where we have analyzed the issue of the
state-space representation of periodic SISO behaviors only for the particular case of period equal to two. Taking this last two
works into account, as a starting point, we present some further results on the matrix chain used in14 to produce such realizations
and provide an algorithm that allows to obtain low-dimensional realizations for periodic MIMO behaviors.

0Abbreviations: SISO, Single-Input Single-Output; MIMO, Multi-Input Multi-Output
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The paper is organized as follows. Section 2 contains some background material, Section 3 is devoted to the construction of the
realizations, Section 4 is devoted to the presentation of a numerical example, and the conclusions are left to Section 5.

2 PRELIMINARIES/BACKGROUND

In the behavioral framework, see11 and12, the notion of a dynamical system Σ has the behavior as a basic concept. More
concretely, a system Σ is defined as a triple Σ = (𝕋 ,𝕎,𝔅), with 𝕋 ⊆ ℝ the time set, 𝕎 the signal space, and 𝔅 ⊆ 𝕎𝕋 ∶=
{𝑤∶ 𝕋 → 𝕎} the system behavior, i.e., the set of all “legal” trajectories according to the system laws. In this paper we consider
the discrete-time case, i.e., 𝕋 = ℤ and, moreover, assume that the signal space is 𝕎 = ℝ𝑞 , with 𝑞 ∈ ℕ.
For 𝜏 ∈ ℤ, define the 𝜏-shift as 𝜎𝜏 ∶ (ℝ𝑞)ℤ → (ℝ𝑞)ℤ, by

(𝜎𝜏𝑤) (𝑘) ∶= 𝑤 (𝑘 + 𝜏) .

The notion of time-invariance relies on the invariance of the behavior with respect to the time shifts, i.e., 𝜎𝔅 = 𝔅 (see11,12),
while periodicity relies on the property 𝜎P invariance, for a given P ∈ ℕ, defined next.
Definition 1 (15). A system Σ is said to be P-periodic, with P ∈ ℕ, if its behavior 𝔅 satisfies 𝜎P𝔅 = 𝔅, and, moreover, P is the
smallest value for which this equality holds.
Observe that, time-invariant behaviors are also periodic behaviors, with period 1. For a deeper insight into the notions of time-
invariance and periodicity in the scope of the behavioral approach, as well as into the lifting technique that will be used here, a
careful reading of works such12,16,15,17,18 is strongly encouraged.
Here we start from periodic MIMO behaviors where the system signal 𝑤 is partitioned into inputs and outputs, i.e., 𝑤 = (𝑢, 𝑦)
where the sub-vector 𝑢 contains the inputs and the sub-vector 𝑦 contains the outputs. Moreover, we assume that such behaviors
are described by input/output difference equations with time-varying periodic coefficients:

(

𝑃𝑡
(

𝜎, 𝜎−1) 𝑦
)

(𝑡 + P𝑘)=
(

𝑄𝑡
(

𝜎, 𝜎−1) 𝑢
)

(𝑡 + P𝑘) , 𝑡 = 0,… , P − 1, 𝑘 ∈ ℤ (1)
where, for each 𝑡 = 0,… , P − 1, 𝑃𝑡

(

𝜉, 𝜉−1
)

∈ ℝ∙×𝑝 [𝜉, 𝜉−1
] and 𝑄𝑡

(

𝜉, 𝜉−1
)

∈ ℝ∙×𝑚 [

𝜉, 𝜉−1
], 𝑚, 𝑝 ∈ ℕ, are matrices having as

entries Laurent polynomials in the indeterminate 𝜉.
Note that (1) can also be written as

(

𝑃
(

𝜎, 𝜎−1)𝑦
)

(P𝑘)=
(

𝑄
(

𝜎, 𝜎−1)𝑢
)

(P𝑘) , 𝑘∈ℤ, (2)
where

𝑃
(

𝜉, 𝜉−1
)

∶=

⎡

⎢

⎢

⎢

⎢

⎣

𝑃0
(

𝜉, 𝜉−1
)

𝜉𝑃1
(

𝜉, 𝜉−1
)

⋮

𝜉P−1𝑃P−1
(

𝜉, 𝜉−1
)

⎤

⎥

⎥

⎥

⎥

⎦

and 𝑄
(

𝜉, 𝜉−1
)

∶=

⎡

⎢

⎢

⎢

⎢

⎣

𝑄0
(

𝜉, 𝜉−1
)

𝜉𝑄1
(

𝜉, 𝜉−1
)

⋮

𝜉P−1𝑄P−1
(

𝜉, 𝜉−1
)

⎤

⎥

⎥

⎥

⎥

⎦

.

From now on, such systems will simply be called P-periodic MIMO behaviors.
By factoring 𝑃 and 𝑄 as, see18,

𝑃
(

𝜉, 𝜉−1
)

= 𝑃 𝐿 (𝜉P, 𝜉−P
)

ΩP,𝑝 (𝜉) , 𝑄
(

𝜉, 𝜉−1
)

= 𝑄𝐿 (𝜉P, 𝜉−P
)

ΩP,𝑚 (𝜉)

where
ΩP,𝑝 (𝜉) ∶=

[

𝐼𝑝 𝜉𝐼𝑝 ⋯ 𝜉P−1𝐼𝑝
]𝑇

, ΩP,𝑚 (𝜉) ∶=
[

𝐼𝑚 𝜉𝐼𝑚 ⋯ 𝜉P−1𝐼𝑚
]𝑇

,

we write down relation (2) as
(

𝑃 𝐿 (𝜎P, 𝜎−P)ΩP,𝑝 (𝜎) 𝑦
)

(P𝑘) =
(

𝑄𝐿 (𝜎P, 𝜎−P)ΩP,𝑚 (𝜎) 𝑢
)

(P𝑘) , 𝑘 ∈ ℤ . (3)
Define the lifted input and output trajectories

𝑢𝐿 (𝑘) ∶= (𝐿𝑢) (𝑘) ∶=

⎡

⎢

⎢

⎢

⎣

𝑢 (P𝑘)
⋮

𝑢 (P𝑘 + P − 1)

⎤

⎥

⎥

⎥

⎦

, 𝑦𝐿 (𝑘) ∶= (𝐿𝑦) (𝑘) ∶=

⎡

⎢

⎢

⎢

⎣

𝑦 (P𝑘)
⋮

𝑦 (P𝑘 + P − 1)

⎤

⎥

⎥

⎥

⎦
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see19,20,15,18, and note that 𝐿 (

𝜎P𝑣
)

= 𝜎 (𝐿𝑣). Then (3) can be written as
(

𝑃 𝐿 (𝜎, 𝜎−1) 𝑦𝐿
)

(𝑘) =
(

𝑄𝐿 (𝜎, 𝜎−1) 𝑢𝐿
)

(𝑘) , 𝑘 ∈ ℤ. (4)
The behavior 𝔅𝐿, defined by 𝐿 (𝔅) ∶= {(𝐿𝑢,𝐿𝑦) , (𝑢, 𝑦) ∈ 𝔅}, called the lifted behavior associated with 𝔅, is time-invariant,
and equals the set of trajectories

{

(

𝑢𝐿, 𝑦𝐿
)

∈
(

ℝP𝑚)ℤ ×
(

ℝP𝑝)ℤ
| (4) holds

}

,

that is,
𝔅𝐿 = ker

[

𝑃 𝐿 (𝜎, 𝜎−1) −𝑄𝐿 (𝜎, 𝜎−1)
]

.

In17,18 it is shown that the lifted of the i/o P-periodic behavior keeps an i/o structure.
A P-periodic state-space system Σ (⋅)=(𝐴 (⋅) , 𝐵 (⋅) , 𝐶 (⋅) , 𝐷 (⋅))

⎧

⎪

⎨

⎪

⎩

(𝜎𝑥) (𝑘) = 𝐴 (𝑘) 𝑥 (𝑘) + 𝐵 (𝑘) 𝑢 (𝑘)
𝑘 ∈ ℤ,

𝑦 (𝑘) = 𝐶 (𝑘) 𝑥 (𝑘) +𝐷 (𝑘) 𝑢 (𝑘)
(5)

where the matrices 𝐴 (⋅) , 𝐵 (⋅) , 𝐶 (⋅) , 𝐷 (⋅) are periodic functions with period P, is said to be a (P-periodic) state-space
realization of a P-periodic input/output behavior 𝔅 if

𝔅 = {(𝑢, 𝑦) ∣ ∃𝑥 such that (𝑢, 𝑥, 𝑦) satisfies (5)} .

The definition of a (time-invariant) state-space realization Σ = (𝐴,𝐵, 𝐶,𝐷) for a time-invariant behavior is analogous, see21. A
state-space realization of a behavior is called minimal if the dimension of the state vector is the smallest among all the realizations
of the same behavior. This holds both in the time-invariant and in the periodic cases.
According to this definition, a state-space realization describes the complete system behavior rather than the input/output tra-
jectories that are obtained by the corresponding transfer function, in the time-invariant case. This is an important issue for the
realization of non-controllable behaviors,11,12.
Given a periodic 𝑛-dimensional state-space model Σ(𝑘) with period P, one can obtain a time-invariant formulation (see, e.g.22)
that preserves the state-space dimension while using the lifting technique for the input and the output signals leading to a
time-invariant (lifted) version, Σ𝐿, of Σ(𝑘). For that, let

𝑧(𝑘) = 𝑥(P𝑘) , 𝑢𝐿(𝑘) =

⎡

⎢

⎢

⎢

⎢

⎣

𝑢(P𝑘)
𝑢(P𝑘 + 1)

⋮
𝑢(P𝑘 + P − 1)

⎤

⎥

⎥

⎥

⎥

⎦

, 𝑦𝐿(𝑘) =

⎡

⎢

⎢

⎢

⎢

⎣

𝑦(P𝑘)
𝑦(P𝑘 + 1)

⋮
𝑦(P𝑘 + P − 1)

⎤

⎥

⎥

⎥

⎥

⎦

,

and, for 𝑖, 𝑗 = 1,… , P, define
𝜙𝐴(𝑖, 𝑗) ∶=

{

𝐴(𝑖 − 1)⋯𝐴(𝑗), if 𝑗 < 𝑖 − 1

𝐼𝑛, if 𝑗 = 𝑖 − 1
.

Then, the evolution of 𝑧(𝑘) and 𝑦𝐿(𝑘) driven by 𝑢𝐿(𝑘) is described by the following time-invariant 𝑛-dimensional state-space
model Σ𝐿 =(𝐹 ,𝐺,𝐻, 𝐽 ):

{

(𝜎𝑧)(𝑘) = 𝐹𝑧(𝑘) + 𝐺𝑢𝐿(𝑘)

𝑦𝐿(𝑘) = 𝐻𝑧(𝑘) + 𝐽𝑢𝐿(𝑘)
, (6)

with, for 𝑖, 𝑗 = 1,… , P,
𝐹 = 𝜙𝐴(P, 0) 𝐺 =

[

𝐺1𝐺2⋯𝐺P

]

𝐻 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐻1
𝐻2
⋮
𝐻P

⎤

⎥

⎥

⎥

⎥

⎦

𝐽 =
[

𝐽𝑖𝑗
]

,
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where
𝜙𝐴(P, 0)∶=𝐴(P − 1)⋯𝐴(0)

𝐺𝑗 ∶=𝜙𝐴(P, 𝑗)𝐵(𝑗 − 1)
𝐻𝑖 ∶=𝐶(𝑖 − 1)𝜙𝐴(𝑖 − 1, 0)

𝐽𝑖𝑗 ∶=

⎧

⎪

⎨

⎪

⎩

0𝑝×𝑚 if 𝑖<𝑗

𝐷(𝑖−1) if 𝑖=𝑗

𝐶(𝑖−1)𝜙𝐴(𝑖−1, 𝑗)𝐵(𝑗−1) if 𝑖>𝑗

. (7)

The state-space system Σ𝐿 obtained in this way from the periodic state-space system Σ(𝑘) is said to be induced by system Σ(𝑘).
If Σ(𝑘) is a periodic state-space realization of the periodic behavior 𝔅 and Σ𝐿 is induced by Σ(𝑘), then Σ𝐿 is a time-invariant
state-space realization of the lifted (time-invariant) version of 𝔅:

𝔅𝐿 ∶=
{(

𝑢𝐿, 𝑦𝐿
)

|(𝑢, 𝑦) ∈ 𝔅
}

.

3 PERIODIC STATE-SPACE REPRESENTATIONS

In the sequel, we provide constructive necessary and sufficient conditions for a time-invariant state-space system to be induced
by a periodic one with period P. However, before proceeding, we give an example where we analyze the structure of an induced
time-invariant system and show how to recover the matrices 𝐴(𝑘), 𝐵(𝑘), 𝐶(𝑘), and 𝐷(𝑘) of the original periodic system, from
the induced one. This provides a deeper insight into the general case.
Example 1. Let Σ(𝑘) = (𝐴(𝑘) , 𝐵(𝑘) , 𝐶(𝑘) , 𝐷(𝑘)) be a periodic 𝑛-dimensional state-space model with period 3. Then, taking
into account that

𝑥(3𝑘 + 1) = 𝐴(0) 𝑥(3𝑘) + 𝐵(0) 𝑢(3𝑘)
𝑥(3𝑘 + 2) = 𝐴(1) 𝑥(3𝑘 + 1) + 𝐵(1) 𝑢(3𝑘 + 1)

= 𝐴(1) [𝐴(0) 𝑥(3𝑘) + 𝐵(0) 𝑢(3𝑘)]
+ 𝐵(1) 𝑢(3𝑘 + 1)

𝑥(3𝑘 + 3) = 𝐴(2) 𝑥(3𝑘 + 2) + 𝐵(2) 𝑢(3𝑘 + 2)
= 𝐴(2) {𝐴(1) [𝐴(0) 𝑥(3𝑘) + 𝐵(0) 𝑢(3𝑘)]
+ 𝐵(1) 𝑢(3𝑘 + 1)} + 𝐵(2) 𝑢(3𝑘 + 2) ,

and
𝑦(3𝑘) = 𝐶(0) 𝑥(3𝑘) +𝐷(0) 𝑢(3𝑘)

𝑦(3𝑘 + 1) = 𝐶(1) [𝐴(0) 𝑥(3𝑘) + 𝐵(0) 𝑢(3𝑘)]
+𝐷(1) 𝑢(3𝑘 + 1)

𝑦(3𝑘 + 2) = 𝐶(2) {𝐴(1) [𝐴(0) 𝑥(3𝑘) + 𝐵(0) 𝑢(3𝑘)]
+ 𝐵(1) 𝑢(3𝑘 + 1)} +𝐷(2) 𝑢(3𝑘 + 2) ,

we can conclude that:
𝑥(3𝑘 + 3) = 𝐴(2)𝐴(1)𝐴(0) 𝑥(3𝑘)

+ 𝐴(2)𝐴(1)𝐵(0) 𝑢(3𝑘)+𝐴(2)𝐵(1) 𝑢(3𝑘+1)
+ 𝐵(2) 𝑢(3𝑘 + 2) ,

and
⎡

⎢

⎢

⎣

𝑦(3𝑘)
𝑦(3𝑘 + 1)
𝑦(3𝑘 + 2)

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐶(0)
𝐶(1)𝐴(0)

𝐶(2)𝐴(1)𝐴(0)

⎤

⎥

⎥

⎦

𝑥(3𝑘) +
⎡

⎢

⎢

⎣

𝐷(0) 0 0
𝐶(1)𝐵(0) 𝐷(1) 0

𝐶(2)𝐴(1)𝐵(0) 𝐶(2)𝐵(1) 𝐷(2)

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑢(3𝑘)
𝑢(3𝑘 + 1)
𝑢(3𝑘 + 2)

⎤

⎥

⎥

⎦

,
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which, by putting

𝑧(𝑘) = 𝑥(3𝑘) , 𝑢𝐿(𝑘) =
⎡

⎢

⎢

⎣

𝑢(3𝑘)
𝑢(3𝑘 + 1)
𝑢(3𝑘 + 2)

⎤

⎥

⎥

⎦

, 𝑦𝐿(𝑘) =
⎡

⎢

⎢

⎣

𝑦(3𝑘)
𝑦(3𝑘 + 1)
𝑦(3𝑘 + 2)

⎤

⎥

⎥

⎦

,

leads to

𝑧(𝑘 + 1) = 𝐹𝑧(𝑘) +

𝐺
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
[

𝐺1 𝐺2 𝐺3
]

𝑢𝐿(𝑘)

𝑦𝐿(𝑘) =
⎡

⎢

⎢

⎣

𝐻1
𝐻2
𝐻3

⎤

⎥

⎥

⎦

⏟⏟⏟
𝐻

𝑧(𝑘) +
⎡

⎢

⎢

⎣

𝐽11 𝐽12 𝐽13
𝐽21 𝐽22 𝐽23
𝐽31 𝐽32 𝐽33

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐽

𝑢𝐿(𝑘) ,

with
𝐹 = 𝐴(2)𝐴(1)𝐴(0) = 𝜙𝐴(3, 0) 𝐺1 = 𝐴(2)𝐴(1)𝐵(0) = 𝜙𝐴(3, 1)𝐵(0)

𝐺2 = 𝐴(2)𝐵(1) = 𝜙𝐴(3, 2)𝐵(1)
𝐺3 = 𝐵(2) = 𝜙𝐴(3, 3)𝐵(2)

𝐻1 = 𝐶(0) = 𝐶(0)𝜙𝐴(0, 0) 𝐽12 = 𝐽13 = 𝐽23 = 0
𝐻2 = 𝐶(1)𝐴(0) = 𝐶(1)𝜙𝐴(1, 0) 𝐽11 = 𝐷(0) , 𝐽22 = 𝐷(1) , 𝐽33 = 𝐷(2)
𝐻3 = 𝐶(2)𝐴(1)𝐴(0) = 𝐶(2)𝜙𝐴(2, 0) 𝐽21 = 𝐶(1)𝐵(0) = 𝐶(1)𝜙𝐴(1, 1)𝐵(0)

𝐽31 = 𝐶(2)𝐴(1)𝐵(0) = 𝐶(2)𝜙𝐴(2, 1)𝐵(0)
𝐽32 = 𝐶(2)𝐵(1) = 𝐶(2)𝜙𝐴(2, 2)𝐵(1).

Σ𝐿 =(𝐹 ,𝐺,𝐻, 𝐽 ) is the time-invariant state-space system induced by Σ(𝑘). Note that this system has 3𝑚 inputs and 3𝑝 outputs.
Moreover, its 𝐽 matrix is a lower block triangular matrix with 𝐽𝑖𝑗 blocks of size 𝑝 × 𝑚.

Now, let us go backwards and recover the matrices of the original periodic state-space system based on the blocks of the matrices
𝐹 , 𝐺, 𝐻 , and 𝐽 of Σ𝐿. For this purpose, construct the following matrix:

1𝑀 =
⎡

⎢

⎢

⎣

𝐹
𝐻3
𝐻2

𝐺1
𝐽31
𝐽21

⎤

⎥

⎥

⎦

.

Due to the special form of these blocks,

1𝑀 =
⎡

⎢

⎢

⎣

𝐴(2)𝐴(1)𝐴(0)
𝐶(2)𝐴(1)𝐴(0)

𝐶(1)𝐴(0)

𝐴(2)𝐴(1)𝐵(0)
𝐶(2)𝐴(1)𝐵(0)

𝐶(1)𝐵(0)

⎤

⎥

⎥

⎦

can be factored as
1𝑀 =

⎡

⎢

⎢

⎢

⎣

𝐴(2)𝐴(1)
𝐶(2)𝐴(1)

𝐶(1)

⎤

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝑛 columns

[

𝐴(0) 𝐵(0)
]

(implying that it has rank less than or equal to 𝑛). Based on the factors of 1𝑀 , construct the matrices
1𝑄 ∶=

[

𝐴(2)𝐴(1)
𝐶(2)𝐴(1)

]

1𝑆 ∶= 𝐴(0)

1𝑅 ∶= 𝐶(1) 1𝑇 ∶= 𝐵(0) .

Further, define a new matrix 2𝑀 as 2𝑀 =
[2𝑀1|

2𝑀2

], with
2𝑀1 =

1𝑄, and 2𝑀2 =
[

𝐺2
𝐽32

]

,
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i.e.,
2𝑀 =

[

𝐴(2)𝐴(1)
𝐶(2)𝐴(1)

𝐴(2)𝐵(1)
𝐶(2)𝐵(1)

]

.

Clearly, 2𝑀 can be factored as
2𝑀 =

[

𝐴(2)

𝐶(2)

]

⏟⏞⏟⏞⏟
𝑛 columns

[

𝐴(1) 𝐵(1)
]

,

implying that, like 1𝑀 , this matrix also has rank less than or equal to 𝑛. Define 2𝑄 ∶= 𝐴(2), 2𝑅 ∶= 𝐶(2), 2𝑆 ∶= 𝐴(1), and
2𝑇 ∶= 𝐵(1). The matrices of the original periodic state-space system that induced Σ𝐿 are given as follows in terms of the
matrices resulting from the previous factorizations:

𝐴(0) = 1𝑆 𝐵(0) = 1𝑇 𝐶(0) = 𝐻1 𝐷(0) = 𝐽11
𝐴(1) = 2𝑆 𝐵(1) = 2𝑇 𝐶(1) = 1𝑅 𝐷(1) = 𝐽22
𝐴(2) = 2𝑄 𝐵(2) = 𝐺3 𝐶(2) = 2𝑅 𝐷(2) = 𝐽33.

In order to investigate whether a linear time-invariant state-space system Σ = (𝐹 ,𝐺,𝐻, 𝐽 ) of dimension 𝑛 with 𝑚P inputs and
𝑝P outputs is induced by a periodic state-space system with period P, consider for 𝑖, 𝑗 = 1,… , P the following partitions of 𝐺,
𝐻 and 𝐽 :

𝐺 =
[

𝐺1 𝐺2 ⋯ 𝐺P

]

, 𝐻 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐻1
𝐻2
⋮
𝐻P

⎤

⎥

⎥

⎥

⎥

⎦

, and 𝐽 =
[

𝐽𝑖𝑗
]

, (8)

with 𝐺𝑗 of size 𝑛 × 𝑚, 𝐻𝑖 of size 𝑝 × 𝑛, and 𝐽𝑖𝑗 of size 𝑝 × 𝑚.
Note that a necessary, but not sufficient, condition for Σ to be induced by a periodic state-space system of period P is that 𝐽 is
a block lower triangular matrix. This allows us to quickly discard some non-induced realizations. However, if 𝐽 is block lower
triangular, one must perform a deeper analysis. With this aim, using the previous notation, the following definition is introduced.
Definition 2 (14). Let Σ = (𝐹 ,𝐺,𝐻, 𝐽 ) be a linear time-invariant 𝑛-dimensional state-space system with 𝑚P inputs and 𝑝P
outputs, for a given positive integer P. Define an 𝑛-chain of size 𝑠 generated by Σ as a sequence of matrices 1𝑀,… , 𝑠𝑀 , each
one of rank less than or equal to 𝑛, such that:

• 1𝑀 ∶=
[1𝑀1|

1𝑀2

] with

1𝑀1 ∶=
0𝑄 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐹
𝐻P

⋮
𝐻2

⎤

⎥

⎥

⎥

⎥

⎦

, and 1𝑀2 ∶=

⎡

⎢

⎢

⎢

⎢

⎣

𝐺1
𝐽P1
⋮
𝐽21

⎤

⎥

⎥

⎥

⎥

⎦

• 𝓁+1𝑀 ∶=
[

𝓁+1𝑀1|
𝓁+1𝑀2

] with 𝓁+1𝑀1 ∶=
𝓁𝑄 where 𝓁𝑄 is a (𝑛 + (P − (𝓁 + 1)) 𝑝) × 𝑛 matrix such that ∃ 𝓁𝑅, 𝓁𝑆 , and 𝓁𝑇

satisfying

𝓁𝑀 =

[

𝓁𝑄
𝓁𝑅

]

[𝓁𝑆 𝓁𝑇
]

, and 𝓁+1𝑀2 ∶=

⎡

⎢

⎢

⎢

⎢

⎣

𝐺𝓁+1
𝐽P,𝓁+1
⋮

𝐽𝓁+2,𝓁+1

⎤

⎥

⎥

⎥

⎥

⎦

, 𝓁 = 1,… , 𝑠 − 1.

It follows from Definition 2 that each matrix 𝓁𝑀 , with 𝓁 = 1,… , 𝑠, has 𝑛 + (P − 𝓁) 𝑝 rows and 𝑛 + 𝑚 columns; the size of the
chain, 𝑠, has maximum value P − 1, and clearly, if Σ generates an 𝑛-chain of size 𝑠 it also generates an 𝑛-chain of size smaller
than 𝑠.
This latter definition, where the concept of 𝑛-chain is introduced, provides the support to establish necessary and sufficient
conditions for a linear time-invariant 𝑛-dimensional state-space system (with 𝑚P inputs and 𝑝P outputs) to be induced by a
𝑚-input and 𝑝-output periodic state-space system with the same state dimension 𝑛.
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Theorem 1 (14). Let Σ = (𝐹 ,𝐺,𝐻, 𝐽 ) be a linear time-invariant 𝑛-dimensional state-space system with 𝑚P inputs and 𝑝P
outputs, for a given positive integer P. Then, Σ is induced by a P-periodic state-space system of dimension 𝑛 if, and only if:

(i) 𝐽 is a lower block triangular matrix with P × P blocks of size 𝑝 × 𝑚;
(ii) Σ generates an 𝑛-chain of size P − 1.

It has been shown in14, that a linear time-invariant system Σ = (𝐹 ,𝐺,𝐻, 𝐽 ) that generates an 𝑛-chain of size P − 1 is induced
by a P-periodic state-space system Σ(𝑘) =(𝐴(𝑘) , 𝐵(𝑘) , 𝐶(𝑘) , 𝐷(𝑘)) such that:

𝐴(0) = 1𝑆 𝐵(0) = 1𝑇 𝐶(0) = 𝐻1 𝐷(0) = 𝐽11

𝐴(1) = 2𝑆 𝐵(1) = 2𝑇 𝐶(1) = 1𝑅 𝐷(1) = 𝐽22

𝐴(2) = 3𝑆 𝐵(2) = 3𝑇 𝐶(2) = 2𝑅 𝐷(2) = 𝐽33

⋮ ⋮ ⋮ ⋮ (9)
𝐴(P − 2) = P−1𝑆 𝐵(P − 2) = P−1𝑇 𝐶(P − 2) = P−2𝑅 𝐷(P − 2) = 𝐽P−1,P−1

𝐴(P − 1) = P−1𝑄 𝐵(P − 1) = 𝐺P 𝐶(P − 1) = P−1𝑅 𝐷(P − 1) = 𝐽PP,

where the matrices on the right-hand side are obtained from (8) and the corresponding chain decomposition.
Remark 1. Note that if Σ = (𝐹 ,𝐺,𝐻, 𝐽 ) is induced by a P-periodic state-space system, then so are all its algebraic equivalent
realizations Σ𝑆 =

(

𝑆𝐹𝑆−1, 𝑆𝐺,𝐻𝑆−1, 𝐽
), where 𝑆 is an invertible matrix.

Since an 𝑛-dimensional periodic realization Σ (𝑘) of 𝔅 induces an invariant realization Σ of 𝔅𝐿 also with dimension 𝑛, the mini-
mal state-space dimension of the realizations Σ𝐿 of 𝔅𝐿 does not exceed the minimal state dimension of the periodic realizations
Σ (𝑘) of 𝔅. Assume now that Σ is a minimal 𝑛-dimensional realization of 𝔅𝐿 which is not induced by any P-periodic realization
of 𝔅 with dimension 𝑛. Then, taking into account Remark 1 together with the fact that the minimal realizations of time-invariant
behaviors are all algebraically equivalent, one can conclude that, if periodic realizations of 𝔅 exist at all, the minimal ones have
a state-space dimension greater than 𝑛.
In order to give some insight into how this issue appears and may be treated, consider the following example.
Example 2. Let 𝔅 be a SISO 3-periodic behavior and consider the corresponding lifted behavior 𝔅𝐿. Let further Σ =
(𝐹 ,𝐺,𝐻, 𝐽 ) of dimension 𝑛, with 3 inputs and 3 outputs, be a linear time-invariant state-space realization of 𝔅𝐿. Assume that
Σ is not induced by a SISO linear 3-periodic state-space system of dimension 𝑛, due to the failure of the rank condition on the
matrix 1𝑀 (cf. Definition 2), meaning that

rank 1𝑀 = 𝑛 + 1,
since 1𝑀 is a(𝑛 + 2)×(𝑛 + 1) matrix.

Define a new time-invariant state-space system 1Σ =
(

1𝐹, 1𝐺, 1𝐻, 1𝐽
) of dimension 𝑛 + 1, where

1𝐹 ∶=

[

01×1 01×𝑛

0𝑛×1 𝐹

]

1𝐺 ∶=

[

01×3

𝐺

]

=

[

01×1

𝐺1

01×1

𝐺2

01×1

𝐺3

]

=∶
[

1𝐺1 1𝐺2 1𝐺3
]

1𝐻 ∶=
[

03×1 𝐻
]

=

⎡

⎢

⎢

⎢

⎢

⎣

01×1 𝐻1

01×1 𝐻2

01×1 𝐻3

⎤

⎥

⎥

⎥

⎥

⎦

=∶

⎡

⎢

⎢

⎢

⎢

⎣

1𝐻1

1𝐻2

1𝐻3

⎤

⎥

⎥

⎥

⎥

⎦

1𝐽 =
[

1𝐽𝑖𝑗
]

∶=
[

𝐽𝑖𝑗
]

= 𝐽 , 𝑖, 𝑗 = 1, 2, 3.

Note that 1Σ has the same input/output behavior as Σ, since the introduction of the zero rows and columns corresponds to adding
a new state variable which does not influence the dynamics of Σ. Therefore, 1Σ is also a realization of 𝔅𝐿.
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Now, for this new system 1Σ, construct the matrix

1
1𝑀 =

⎡

⎢

⎢

⎣

1𝐹
1𝐻3

1𝐻2

1𝐺1

1𝐽31
1𝐽21

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

01×1 01×𝑛 01×1

0(𝑛+2)×1
𝐹
𝐻3
𝐻2

𝐺1
𝐽31
𝐽21

⎤

⎥

⎥

⎥

⎥

⎦

=

[

01×1 01×(𝑛+1)

0(𝑛+2)×1 1𝑀

]

. (10)

Clearly rank 1
1𝑀 = rank 1𝑀 = 𝑛 + 1, and hence 1

1𝑀 can be factored as
1
1𝑀 =

[ 1
1𝑄
1
1𝑅

]

⏟⏟⏟
𝑛+1 columns

[ 1
1𝑆

1
1𝑇

]

, (11)

where 1
1𝑅 has 1 row whereas 1

1𝑆 is a square matrix of size 𝑛+ 1. Similarly to what was done in Example 1, define a new matrix
2
1𝑀 as

2
1𝑀 =

[2
1𝑀1|

2
1𝑀2

]

, (12)
with

2
1𝑀1 =

1
1𝑄, and 2

1𝑀2 =
[

1𝐺2

1𝐽32

]

, (13)
i.e.,

2
1𝑀 =

[

1
1𝑄

1𝐺2

1𝐽32

]

=
⎡

⎢

⎢

⎣

1
1𝑄

01×1
𝐺2
𝐽32

⎤

⎥

⎥

⎦

,

which is a square matrix of size 𝑛 + 2.

If rank 2
1𝑀 ⩽ 𝑛 + 1, then 2

1𝑀 can be also factored similarly to 1
1𝑀 , namely:

2
1𝑀 =

[ 2
1𝑄
2
1𝑅

]

⏟⏟⏟
𝑛+1 columns

[ 2
1𝑆

2
1𝑇

]

, (14)

where 2
1𝑅 has 1 row whereas 2

1𝑆 and 2
1𝑄 are both square matrices of size 𝑛 + 1. Now, defining

𝐴(0) = 1
1𝑆 𝐵(0) = 1

1𝑇 𝐶(0) = 1𝐻1 𝐷(0) = 1𝐽11
𝐴(1) = 2

1𝑆 𝐵(1) = 2
1𝑇 𝐶(1) = 1

1𝑅 𝐷(1) = 1𝐽22
𝐴(2) = 2

1𝑄 𝐵(2) = 1𝐺3 𝐶(2) = 2
1𝑅 𝐷(2) = 1𝐽33

it follows that 1Σ(𝑘) = (𝐴(𝑘) , 𝐵(𝑘) , 𝐶(𝑘) , 𝐷(𝑘)) is a 3-periodic state-space system of dimension 𝑛 + 1 that induces the time-
invariant system 1Σ. Because 1Σ is a realization of 𝔅𝐿, it turns out that 1Σ(𝑘) is a (𝑛 + 1)-dimensional 3-periodic state-space
realization of the 3-periodic behavior 𝔅.
Suppose now that matrix 2

1𝑀 is full rank, i.e., rank 2
1𝑀 = 𝑛+2, thus not allowing the decomposition made in (14). In this case,

define a new state-space system 2Σ =
(

2𝐹, 2𝐺, 2𝐻, 2𝐽
) of dimension 𝑛+2, where the matrices 2𝐹, 2𝐺, 2𝐻, and 2𝐽 are obtained

from 1𝐹, 1𝐺, 1𝐻, and 1𝐽 similarly as 1𝐹, 1𝐺, 1𝐻, and 1𝐽 were obtained from 𝐹 , 𝐺, 𝐻 , and 𝐽 , i.e.,

2𝐹 ∶=

[

01×1 01×(𝑛+1)

0(𝑛+1)×1 1𝐹

]

=

[

02×2 02×𝑛

0𝑛×2 𝐹

]

2𝐺 ∶=

[

01×3

1𝐺

]

=

[

02×3

𝐺

]

=

[

02×1

𝐺1

02×1

𝐺2

02×1

𝐺3

]

2𝐻 ∶=
[

03×1 1𝐻
]

=
[

03×2 𝐻
]

=∶
[

2𝐺1 2𝐺2 2𝐺3
]

=

⎡

⎢

⎢

⎢

⎢

⎣

01×2 𝐻1

01×2 𝐻2

01×2 𝐻3

⎤

⎥

⎥

⎥

⎥

⎦

=∶

⎡

⎢

⎢

⎢

⎢

⎣

2𝐻1

2𝐻2

2𝐻3

⎤

⎥

⎥

⎥

⎥

⎦

and 2𝐽 =
[

2𝐽𝑖𝑗
]

∶=
[

1𝐽𝑖𝑗
]

= 1𝐽 = 𝐽 , 𝑖, 𝑗 = 1, 2, 3.
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Note that, 2Σ is again a realization of 𝔅𝐿, but with dimension 𝑛 + 2. As previously, based on 2Σ, construct the matrix

1
2𝑀 =

⎡

⎢

⎢

⎣

2𝐹
2𝐻3

2𝐻2

2𝐺1

2𝐽31
2𝐽21

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

01×1 01×(𝑛+1) 01×1

0(𝑛+3)×1
1𝐹
1𝐻3

1𝐻2

1𝐺1

1𝐽31
1𝐽21

⎤

⎥

⎥

⎥

⎥

⎦

=

[

01×1 01×(𝑛+2)

0(𝑛+3)×1 1
1𝑀

]

,

which, taking (10) into account, is also given by

1
2𝑀 =

⎡

⎢

⎢

⎢

⎢

⎣

02×2 02×𝑛 02×1

0(𝑛+2)×2
𝐹
𝐻3
𝐻2

𝐺1
𝐽31
𝐽21

⎤

⎥

⎥

⎥

⎥

⎦

=

[

02×2 02×(𝑛+1)

0(𝑛+2)×2 1𝑀

]

.

Taking (11) into account:

1
2𝑀 =

⎡

⎢

⎢

⎢

⎣

01×1 01×(𝑛+2)

0(𝑛+3)×1

[

1
1𝑄
1
1𝑅

]

[1
1𝑆

1
1𝑇

]

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

01×1 01×(𝑛+1)

0(𝑛+2)×1 1
1𝑄

01×1 1
1𝑅

⎤

⎥

⎥

⎥

⎥

⎦

×

[

01×1 01×(𝑛+1)

0(𝑛+1)×1 1
1𝑆

01×1
1
1𝑇

]

=∶
⎡

⎢

⎢

⎣

1
2𝑄

1
2𝑅

⎤

⎥

⎥

⎦

[ 1
2𝑆

1
2𝑇

]

.

Define the matrix 2
2𝑀 as 2

2𝑀 =
[2
2𝑀1|

2
2𝑀2

], with
2
2𝑀1 =

1
2𝑄, and 2

2𝑀2 =
[

2𝐺2

2𝐽32

]

,

i.e.,

2
2𝑀 =

[

1
2𝑄

2𝐺2

2𝐽32

]

=
⎡

⎢

⎢

⎣

1
2𝑄

01×1
1𝐺2

1𝐽32

⎤

⎥

⎥

⎦

=

[

01×1 01×(𝑛+1)

0(𝑛+2)×1 1
1𝑄

01×1
2
1𝑀2

]

(cf. (12),(13))
=

[

01×1 01×(𝑛+2)

0(𝑛+2)×1 2
1𝑀

]

, (15)

then
rank 2

2𝑀 = rank 2
1𝑀 = 𝑛 + 2,

and, consequently, 2
2𝑀 can be factored as:

2
2𝑀 =

[ 2
2𝑄
2
2𝑅

]

⏟⏟⏟
𝑛+2 columns

[ 2
2𝑆

2
2𝑇

]

,

where 2
2𝑅 has 1 row whereas 2

2𝑆 and 2
2𝑄 are both square of size 𝑛 + 2. Now, defining

𝐴(0) = 1
2𝑆 𝐵(0) = 1

2𝑇 𝐶(0) = 2𝐻1 𝐷(0) = 2𝐽11
𝐴(1) = 2

2𝑆 𝐵(1) = 2
2𝑇 𝐶(1) = 1

2𝑅 𝐷(1) = 2𝐽22
𝐴(2) = 2

2𝑄 𝐵(2) = 2𝐺3 𝐶(2) = 2
2𝑅 𝐷(2) = 2𝐽33

it follows that 2Σ(𝑘) = (𝐴(𝑘) , 𝐵(𝑘) , 𝐶(𝑘) , 𝐷(𝑘)) is a 3-periodic state-space system of dimension 𝑛 + 2 that induces the time-
invariant system 2Σ. Because 2Σ is a realization of 𝔅𝐿, it turns out that 2Σ(𝑘) is a (𝑛 + 2)-dimensional 3-periodic state-space
realization of the 3-periodic behavior 𝔅.
In the first part of the previous example, we have seen that, in case the 𝑛-dimensional time-invariant state-space system Σ
(obtained as a realization of the lifted behavior 𝔅𝐿) does not generate an 𝑛-chain of size P−1 (= 2), but allows the construction
of a suitable sequence of P − 1 matrices of rank less than or equal to 𝑛 + 1. In this case it is possible to construct a P-periodic
state-space system 1Σ(𝑘) of dimension 𝑛 + 1 that is a(𝑛 + 1)-dimensional periodic state-space realization of 𝔅.
On the other hand, if Σ allows the construction of a suitable sequence of P − 1 matrices of rank less than or equal to 𝑛 + 2,
then it is possible to construct a P-periodic state-space system 2Σ(𝑘) of dimension 𝑛 + 2 that is a (𝑛 + 2)-dimensional periodic
state-space realization of 𝔅.
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Thus, the possibility of defining suitable sequences of matrices of a certain dimension and the length of such sequences seems to
play an important role in obtaining periodic state-space realizations for a periodic behavior𝔅 starting from a invariant state-space
realization of the corresponding lifted behavior 𝔅𝐿.
This suggests the introduction of the following definition.
Definition 3. Let Σ =(𝐹 ,𝐺,𝐻, 𝐽 ) be a linear time-invariant 𝑛-dimensional state-space system with 𝑚P inputs and 𝑝P outputs,
for a given positive integer P. For 𝑡 = 0,… , 𝑡, where 𝑡 ∶= max {(P − 1) 𝑝, 𝑚}, define an (𝑛, 𝑡)-chain of size 𝑠𝑡 generated by Σ as
a sequence of matrices 1

𝑡𝑀,… , 𝑠𝑡𝑡𝑀 , each one of rank less than or equal to 𝑛 + 𝑡, such that:
• 1

𝑡𝑀 ∶=
[1
𝑡𝑀1|

1
𝑡𝑀2

] with

1
𝑡𝑀1 ∶=

0
𝑡𝑄 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0𝑡×𝑡 0𝑡×𝑛

0(𝑛+(P−1)𝑝)×𝑡

𝐹
𝐻P

⋮
𝐻2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

[

0𝑡×𝑡 0𝑡×𝑛

0(𝑛+(P−1)𝑝)×𝑡 1𝑀1

]

, (16)

1
𝑡𝑀2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0𝑡×𝑚

𝐺1
𝐽P1
⋮
𝐽21

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

[

0𝑡×𝑚
1𝑀2

]

(17)

and
• 𝓁+1

𝑡𝑀 ∶=
[

𝓁+1
𝑡𝑀1|

𝓁+1
𝑡𝑀2

] with 𝓁+1
𝑡𝑀1 ∶=

𝓁
𝑡𝑄 where 𝓁

𝑡𝑄 is a (𝑛 + (P − (𝓁 + 1)) 𝑝 + 𝑡)×(𝑛 + 𝑡) matrix such that ∃ 𝓁
𝑡𝑅, 𝓁𝑡𝑆 ,

and 𝓁
𝑡𝑇 satisfying

𝓁
𝑡𝑀 =

[

𝓁
𝑡𝑄
𝓁
𝑡𝑅

]

[

𝓁
𝑡𝑆

𝓁
𝑡𝑇

]

, (18)

𝓁+1
𝑡𝑀2 ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0𝑡×𝑚

𝐺𝓁+1
𝐽P,𝓁+1
⋮

𝐽𝓁+2,𝓁+1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝓁 = 1,… , 𝑠𝑡 − 1.

It is straightforward to see that Definition 2 is a particular case of Definition 3, for 𝑡 = 0. We shall call 𝑡 the offset of the
(𝑛, 𝑡)-chain. For the sake of simplicity, whenever the offset 𝑡 is 0, we drop the 𝑡.
Note that, if there exists an (𝑛, 𝑡)-chain of size 𝑠𝑡 < P − 1, then there exists an (

𝑛, 𝑡⋆
)-chain of size 𝑠𝑡⋆ > 𝑠𝑡, for some 𝑡⋆ > 𝑡. In

the particular case where 𝑚 = 𝑝 = 1, there exists an (𝑛, 𝑡 + 1)-chain of size 𝑠𝑡+1 ⩾ 𝑠𝑡 + 1. In this case, for P = 2, the existence
of a chain of size 𝑠𝑡+1 = 𝑠𝑡 + 1 follows from a procedure similar to the one introduced in13.
Remark 2. From equations eqs. (16) and (17), it immediately follows that, for 𝑡 = 1,… , 𝑡,

1
𝑡𝑀 =

[

0𝑡×𝑡 0𝑡×(𝑛+𝑚)

0(𝑛+(P−1)𝑝)×𝑡 1𝑀

]

= ⋯ =

[

01×1 01×(𝑛+𝑚+𝑡−1)

0(𝑛+(P−1)𝑝+𝑡−1)×1 1
𝑡−1𝑀

]

, (19)
and

𝓁+1
𝑡𝑀2 =

[

0𝑡×𝑚
𝓁+1𝑀2

]

= ⋯ =

[

01×𝑚
𝓁+1
𝑡−1𝑀2

]

, 𝓁 = 1,… , 𝑠𝑡 − 1, (20)

allowing us to conclude that
rank 1𝑀 = ⋯ = rank 1

𝑡𝑀.
Furthermore, if, for some value of 𝑡, rank 1

𝑡𝑀 ⩽ 𝑛 + 𝑡, then
rank 1

𝑖𝑀 < 𝑛 + 𝑖, for 𝑖 = 𝑡 + 1,… , 𝑡 . (21)
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Proposition 1. If rank 𝓁
𝑡−1𝑀 ⩽ 𝑛 + 𝑡 − 1, with 𝑡 = 1,… , 𝑡, then

𝓁+1
𝑡𝑀 =

[

01×1 01×(𝑛+𝑚+𝑡−1)

0(𝑛+(P−(𝓁+1))𝑝+𝑡−1)×1 𝓁+1
𝑡−1𝑀

]

, 𝓁 = 1,… , 𝑠𝑡 − 1.

Proof. We first prove that, for 𝑡 = 1,… , 𝑡,
2
𝑡𝑀 =

[

01×1 01×(𝑛+𝑚+𝑡−1)

0(𝑛+(P−2)𝑝+𝑡−1)×1 2
𝑡−1𝑀

]

if rank 1
𝑡−1𝑀 ⩽ 𝑛 + 𝑡 − 1. From (21), we conclude that if rank 1

𝑡−1𝑀 ⩽ 𝑛 + 𝑡 − 1, then rank 1
𝑡𝑀 < 𝑛 + 𝑡 allowing us to rewrite

(19) as

1
𝑡𝑀 =

[

1
𝑡𝑄
1
𝑡𝑅

]

[1
𝑡𝑆

1
𝑡𝑇

]

=

⎡

⎢

⎢

⎢

⎣

01×1 01×(𝑛+𝑚+𝑡−1)

0(𝑛+(P−1)𝑝+𝑡−1)×1

[

1
𝑡−1𝑄

1
𝑡−1𝑅

]

[ 1
𝑡−1𝑆

1
𝑡−1𝑇

]

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

01×1 01×(𝑛+𝑡−1)

0(𝑛+(P−2)𝑝+𝑡−1)×1 1
𝑡−1𝑄

0𝑝×1 1
𝑡−1𝑅

⎤

⎥

⎥

⎥

⎥

⎦

×

[

01×1 01×(𝑛+𝑡−1)

0(𝑛+𝑡−1)×1 1
𝑡−1𝑆

01×𝑚
1

𝑡−1𝑇

]

.

Taking (20) into account, we obtain
2
𝑡𝑀 =

[ 1
𝑡𝑄

2
𝑡𝑀2

]

=

[

01×1 01×(𝑛+𝑡−1)

0(𝑛+(P−2)𝑝+𝑡−1)×1 1
𝑡−1𝑄

01×𝑚
2

𝑡−1𝑀2

]

=

[

01×1 01×(𝑛+𝑚+𝑡−1)

0(𝑛+(P−2)𝑝+𝑡−1)×1 2
𝑡−1𝑀

]

and, therefore, rank 2
𝑡𝑀 = rank 2

𝑡−1𝑀 . If, moreover, rank 2
𝑡−1𝑀 ⩽ 𝑛 + 𝑡 − 1, then rank 2

𝑡𝑀 < 𝑛 + 𝑡.

This reasoning can be repeated for any value of 𝓁 = 2,… , 𝑠𝑡 − 1 allowing us to conclude that if, for some 𝑡 = 1,… , 𝑡,
rank 𝓁

𝑡−1𝑀 ⩽ 𝑛 + 𝑡 − 1 (which in turn, by definition, implies that rank 𝓁⋆

𝑡−1𝑀 ⩽ 𝑛 + 𝑡 − 1, for all 𝓁⋆ = 1,… ,𝓁 − 1 and,
consequently, rank 𝓁⋆

𝑡𝑀 = rank 𝓁⋆

𝑡−1𝑀 ), then rank 𝓁
𝑡𝑀 < 𝑛 + 𝑡. Thus, the matrix 𝓁

𝑡𝑀 can be written as

𝓁
𝑡𝑀 =

[

01×1 01×(𝑛+𝑚+𝑡−1)

0(𝑛+(P−𝓁)𝑝+𝑡−1)×1 𝓁
𝑡−1𝑀

]

,

and decomposed as:

𝓁
𝑡𝑀 =

[

𝓁
𝑡𝑄
𝓁
𝑡𝑅

]

[𝓁
𝑡𝑆

𝓁
𝑡𝑇

]

=

⎡

⎢

⎢

⎢

⎣

01×1 01×(𝑛+𝑚+𝑡−1)

0(𝑛+(P−𝓁)𝑝+𝑡−1)×1

[

𝓁
𝑡−1𝑄
𝓁

𝑡−1𝑅

]

[

𝓁
𝑡−1𝑆

𝓁
𝑡−1𝑇

]

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

01×1 01×(𝑛+𝑡−1)

0(𝑛+(P−(𝓁+1))𝑝+𝑡−1)×1 𝓁
𝑡−1𝑄

0𝑝×1 𝓁
𝑡−1𝑅

⎤

⎥

⎥

⎥

⎥

⎦

×

[

01×1 01×(𝑛+𝑡−1)

0(𝑛+𝑡−1)×1 𝓁
𝑡−1𝑆

01×𝑚
𝓁

𝑡−1𝑇

]

.

Therefore, taking (20) into account, we obtain
𝓁+1

𝑡𝑀 =
[𝓁
𝑡𝑄|

𝓁+1
𝑡𝑀2

]

=

[

01×1 01×(𝑛+𝑡−1)

0(𝑛+(P−(𝓁+1))𝑝+𝑡−1)×1 𝓁
𝑡−1𝑄

01×𝑚
𝓁+1
𝑡−1𝑀2

]

=

[

01×1 01×(𝑛+𝑚+𝑡−1)

0(𝑛+(P−(𝓁+1))𝑝+𝑡−1)×1 𝓁+1
𝑡−1𝑀

]

.
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Note that, if rank 𝓁
𝑡−1𝑀 ⩽ 𝑛 + 𝑡 − 1, with 𝑡 = 1,… , 𝑡, then it follows, from Proposition 1, that, for 𝓁 = 1,… , 𝑠𝑡,

𝓁
𝑡𝑄 =

[

01×1 01×(𝑛+𝑡−1)

0(𝑛+(P−(𝓁+1))𝑝+𝑡−1)×1 𝓁
𝑡−1𝑄

]

𝓁
𝑡𝑆 =

[

01×1 01×(𝑛+𝑡−1)

0(𝑛+𝑡−1)×1 𝓁
𝑡−1𝑆

]

𝓁
𝑡𝑅 =

[

0𝑝×1 𝓁
𝑡−1𝑅

] 𝓁
𝑡𝑇 =

[

01×𝑚
𝓁

𝑡−1𝑇

]

.

Remark 3. An immediate consequence of Proposition 1 is that rank 𝓁+1
𝑡𝑀 = rank 𝓁+1

𝑡−1𝑀 , if rank 𝓁
𝑡−1𝑀 ⩽ 𝑛+𝑡−1. Furthermore,

if rank 𝓁+1
𝑡−1𝑀 ⩽ 𝑛 + 𝑡 − 1, then rank 𝓁+1

𝑡𝑀 < 𝑛 + 𝑡.
Given a matrix 𝓁

𝑡𝑀 , for some 𝓁 and 𝑡, and defining the offset gap 𝛿⋆ as the minimum value of 𝛿 ⩾ 1, for which it holds that
rank 𝓁

𝑡𝑀 > 𝑛 + 𝑡 and rank 𝓁
𝑡+𝛿𝑀 ⩽ 𝑛 + 𝑡 + 𝛿,

it follows that 𝛿⋆ = 1 for SISO systems. In order to see that, define 𝑡 ∶= min {(P − 1) 𝑝, 𝑚} and observe that 𝑡 = 1 in SISO
systems. Thus, since a matrix 𝓁

𝑡𝑀 has 𝑛+(P − 𝓁) 𝑝+ 𝑡 rows and 𝑛+𝑚+ 𝑡 columns, if rank 𝓁
𝑡𝑀 > 𝑛+ 𝑡, then rank 𝓁

𝑡𝑀 = 𝑛+ 𝑡+1.
By definition, the premise that the matrix 𝓁

𝑡𝑀 exists requires that rank 𝓁−1
𝑡𝑀 ⩽ 𝑛+ 𝑡 which, in turn, implies (by Proposition 1)

that rank 𝓁
𝑡+1𝑀 = 𝑛 + 𝑡 + 1.

Example 3. Now, recall Example 2. In this particular case, 𝑡 = max {(3 − 1) × 1, 1} = 2, meaning that Σ possibly generates
an (𝑛, 0)-chain (or only 𝑛-chain, for the sake of simplicity), an (𝑛, 1)-chain, and/or an (𝑛, 2)-chain, of size P − 1 (= 2). Since
𝑡 = min {(3 − 1) × 1, 1} = 1 and, by hypothesis, rank 1𝑀 = 𝑛 + 1, it follows that rank 1

1𝑀 ⩽ 𝑛 + 1, which means that Σ
may only generate an(𝑛, 1)-chain and/or an(𝑛, 2)-chain, both of size equal to 2, depending on the rank condition of matrix 2

1𝑀 .
Taking the result stated in Proposition 1 into account, regardless of the rank of matrix 2

1𝑀 , observe that matrix 2
2𝑀 can always

be expressed as in equation (15), i.e.,
2
2𝑀 =

[

01×1 01×(𝑛+2)

0(𝑛+2)×1 2
1𝑀

]

.

The ideas pointed out in Example 3 give us insight into how we can overcome the possible nonexistence of an 𝑛-chain of size
P− 1 (generated by a linear time-invariant state-space system of dimension 𝑛). A conservative solution consists in noticing that
an (

𝑛, 𝑡
)-chain of size P − 1 is always generated.

Theorem 2 (14). Let 𝔅 be a linear P-periodic i/o behavior with 𝑚 inputs and 𝑝 outputs described by equations (1). Let 𝔅𝐿 be
the corresponding time-invariant lifted behavior with minimal 𝑛-dimensional state-space realization Σ =(𝐹 ,𝐺,𝐻, 𝐽 ). Assume
that the direct feedthrough matrix 𝐽 in the realizations of 𝔅𝐿 is a lower block triangular matrix with P× P blocks of size 𝑝×𝑚.
Then 𝔅 has a P-periodic realization of dimension 𝑛 + 𝑡, where 𝑡 ∶= max {(P − 1) 𝑝, 𝑚}.
Proof. Assume that Σ =(𝐹 ,𝐺,𝐻, 𝐽 ) is a time-invariant state-space linear system, of dimension 𝑛 that does not generate an 𝑛-
chain of size P − 1. Taking a worst-case scenario approach, suppose that this is due to the fact that the rank condition of matrix
1𝑀 does not hold, i.e.,

rank 1𝑀 > 𝑛.
In this scenario, at least one matrix 1

𝑡𝑀 verifies the rank condition rank 1
𝑡𝑀 ⩽ 𝑛 + 𝑡. In particular this happens for 1

𝑡𝑀 , i.e.,
rank 1

𝑡𝑀 ⩽ 𝑛 + 𝑡,

with 𝑡 = min {(P − 1) 𝑝, 𝑚}.
Furthermore, from Remark 2, we conclude that

rank 1
𝑡𝑀 ⩽ 𝑛 + 𝑡, 𝑡 = 𝑡,… , 𝑡. (22)

Thus, by Remark 3, we conclude that
rank 2

𝑡𝑀 = rank 2
𝑡+1𝑀 = ⋯ = rank 2

𝑡
𝑀.

Now, analogously, suppose that the rank condition of matrix 2
𝑡𝑀 fails, meaning that

rank 2
𝑡𝑀 > 𝑛 + 𝑡.
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Since the matrix 2
𝑡𝑀 has size (

𝑛 + (P − 2) 𝑝 + 𝑡
)

×
(

𝑛 + 𝑚 + 𝑡
) and 𝑡 > min {(P − 2) 𝑝, 𝑚}, we may state that

rank 2
𝑡𝑀 ⩽ 𝑛 + 𝑡, 𝑡 = 𝑡 + 𝑡,… , 𝑡. (23)

This reasoning can be repeated until we have
rank P−1

𝑡⋆𝑀 = ⋯ = rank P−1
𝑡
𝑀,

with

𝑡⋆ ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(⌊

𝑡
𝑡

⌋

− 1
)

𝑡 if
⌊

𝑡
𝑡

⌋

𝑡 = 𝑡

⌊

𝑡
𝑡

⌋

𝑡 if
⌊

𝑡
𝑡

⌋

𝑡 < 𝑡

,

allowing us to conclude that
rank P−1

𝑡
𝑀 ⩽ 𝑛 + 𝑡. (24)

Therefore, from the relations in eqs. (22) to (24), we conclude that
rank 1

𝑡
𝑀 ⩽ 𝑛 + 𝑡, rank 2

𝑡
𝑀 ⩽ 𝑛 + 𝑡,… , rank P−1

𝑡
𝑀 ⩽ 𝑛 + 𝑡,

i.e., the sequence of matrices 1
𝑡
𝑀,… , 𝑠𝑡

𝑡
𝑀 has size 𝑠𝑡 = P − 1, meaning that Σ =(𝐹 ,𝐺,𝐻, 𝐽 ) does generate an (

𝑛, 𝑡
)-chain of

size P − 1.
Thus, there exist matrices 1

𝑡
𝑄, 1

𝑡
𝑅, 1

𝑡
𝑆 , and 1

𝑡
𝑇 such that

1
𝑡
𝑀 =

[

1
𝑡
𝑀

1
|

1
𝑡
𝑀

2

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0𝑡×𝑡 0𝑡×𝑛

0𝑛×𝑡 𝐹
0𝑝×𝑡 𝐻P

⋮ ⋮
0𝑝×𝑡 𝐻2

0𝑡×𝑚

𝐺1
𝐽P1
⋮
𝐽21

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

[

0𝑡×𝑡 0𝑡×(𝑛+𝑚)

0(𝑛+(P−1)𝑝)×𝑡 1𝑀

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=1𝑀

=
⎡

⎢

⎢

⎣

1
𝑡
𝑄

1
𝑡
𝑅

⎤

⎥

⎥

⎦

⏟⏟⏟
𝑛+𝑡 columns

[

1
𝑡
𝑆 1

𝑡
𝑇

]

,

where 1
𝑡
𝑅 has 𝑝 rows whereas 1

𝑡
𝑆 has 𝑛 + 𝑡 columns. Analogously, there exist matrices 2

𝑡
𝑄, 2

𝑡
𝑅, 2

𝑡
𝑆 , and 2

𝑡
𝑇 such that

2
𝑡
𝑀 =

[

1
𝑡
𝑄|

2
𝑡
𝑀

2

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1
𝑡
𝑄

0𝑡×𝑚
𝐺2
𝐽P2
⋮
𝐽32

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

2
𝑡
𝑄

2
𝑡
𝑅

⎤

⎥

⎥

⎦

⏟⏟⏟
𝑛+𝑡 columns

[

2
𝑡
𝑆 2

𝑡
𝑇

]

,

where 2
𝑡
𝑅 has 𝑝 rows whereas 2

𝑡
𝑆 has 𝑛+ 𝑡 columns. Since Σ generates an (

𝑛, 𝑡
)-chain of size P−1 this procedure can be repeated

until we obtain the decomposition of matrix P−1
𝑡
𝑀 :

P−1
𝑡
𝑀 =

[

P−2
𝑡
𝑄|

P−1
𝑡
𝑀

2

]

=
⎡

⎢

⎢

⎣

P−2
𝑡
𝑄

0𝑡×𝑚
𝐺P−1
𝐽P,P−1

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

P−1
𝑡
𝑄

P−1
𝑡
𝑅

⎤

⎥

⎥

⎦

⏟⏞⏟⏞⏟
𝑛+𝑡 columns

[

P−1
𝑡
𝑆 P−1

𝑡
𝑇

]

,

where again P−1
𝑡
𝑅 has 𝑝 rows whereas P−1

𝑡
𝑆 has 𝑛 + 𝑡 columns. Now, defining

𝐴(0) = 1
𝑡
𝑆 𝐵(0) = 1

𝑡
𝑇 𝐶(0) = 𝐻1 𝐷(0) = 𝐽11

𝐴(1) = 2
𝑡
𝑆 𝐵(1) = 2

𝑡
𝑇 𝐶(1) = 1

𝑡
𝑅 𝐷(1) = 𝐽22

𝐴(2) = 3
𝑡
𝑆 𝐵(2) = 3

𝑡
𝑇 𝐶(2) = 2

𝑡
𝑅 𝐷(2) = 𝐽33

⋮ ⋮ ⋮ ⋮

𝐴(P − 2) = P−1
𝑡
𝑆 𝐵(P − 2) = P−1

𝑡
𝑇 𝐶(P − 2) = P−2

𝑡
𝑅 𝐷(P − 2) = 𝐽P−1,P−1

𝐴(P − 1) = P−1
𝑡
𝑄 𝐵(P − 1) = 𝐺P 𝐶(P − 1) = P−1

𝑡
𝑅 𝐷(P − 1) = 𝐽PP
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it follows that Σ(𝑘) =
(

𝐴 (𝑘) , 𝐵(𝑘) , 𝐶(𝑘) , 𝐷(𝑘)
)

, of dimension 𝑛 + 𝑡, is a P-periodic state-space system that induces a linear
time-invariant system Σ

𝐿
=
(

𝐹 ,𝐺,𝐻, 𝐽
)

, with 𝑚P inputs, 𝑝P outputs, and dimension 𝑛 + 𝑡, with

𝐹 ∶=

[

0𝑡×𝑡 0𝑡×𝑛

0𝑛×𝑡 𝐹

]

𝐺 ∶=

[

0𝑡×𝑚

𝐺1

0𝑡×𝑚

𝐺2

⋯

⋯

0𝑡×𝑚

𝐺P

]

𝐻 ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0𝑝×𝑡 𝐻1

0𝑝×𝑡 𝐻2

⋮ ⋮

0𝑝×𝑡 𝐻P

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and 𝐽 ∶= 𝐽 .

This system has clearly the same input/output behavior as Σ.
This shows that every periodic input/output behavior 𝔅 has a periodic state-space realization. The procedure presented here in
order to obtain such realization consists in considering the time-invariant lifted version 𝔅𝐿 of 𝔅, constructing a linear time-
invariant state-space realization Σ𝐿 of 𝔅𝐿, and, using Σ𝐿 to define a periodic state-space realization of 𝔅 as shown in the proof
of Theorem 2.
Corollary 1 (14). Let 𝔅 be a P-periodic input/output behavior, for some positive integer P. Then, 𝔅 has a P-periodic state-space
realization.
Another consequence of Theorem 2 is the establishment of bounds for the dimension of the periodic state-space realizations of
a periodic input/output behavior.
Corollary 2 (14). Let 𝔅 be a P-periodic input/output behavior for some positive integer P with 𝑚 inputs and 𝑝 outputs. Let
further 𝔅𝐿 be the corresponding lifted time-invariant behavior, and assume that the minimal dimension of the time-invariant
state-space realizations of 𝔅𝐿 is 𝑛𝔅𝐿 . Then, the minimal dimension 𝑛𝔅 of the periodic state-space realizations of 𝔅 satisfies the
inequality

𝑛𝔅𝐿 ⩽ 𝑛𝔅 ⩽ 𝑛𝔅𝐿 + 𝑡,
where 𝑡 ∶= max {(P − 1) 𝑝, 𝑚}.
Although these results answer positively to the question of existence of a periodic state-space realization of a periodic i/o
behavior, they do not answer the question of minimality. Indeed, as shown in Example 2, there may exist periodic state-space
realizations with dimension lower than 𝑛 + 𝑡.
In order to look for such realizations, we apply a step by step procedure as follows. We start with the matrix 1𝑀 and investigate
whether this matrix is associated with an 𝑛-chain of size P−1. If this is the case, the periodic state-space realization of dimension
𝑛 corresponding to this chain (according to 9) is a minimal realization of the i/o periodic behavior. In case this does not happen
we construct the matrix 1

1𝑀 according to Definition 3 and investigate whether this matrix is associated with an (𝑛, 1)-chain of
size P − 1 and proceed as before in order to see whether it is possible to obtain a periodic state-space realization of dimension
𝑛 + 1. This process is repeated until a matrix 1

𝑡⋆𝑀 is obtained which is associated with an (

𝑛, 𝑡⋆
)-chain of size P − 1. Due to

Theorem 2 this procedure stops at most for 𝑡⋆ = 𝑡 ∶= max {(P − 1) 𝑝, 𝑚}.
The (

𝑛 + 𝑡⋆
)-dimensional periodic state-space realization obtained in this way is not guaranteed to be a minimal realization

of the original periodic i/o behavior. This is due to the fact that our strategy corresponds to increasing the dimension of the
time-invariant realizations of the lifted behavior in a particular way. This leads us to non-minimal realizations, which, as is well-
known, are not necessarily algebraically equivalent. Therefore, the fact that a given non-minimal time-invariant realization is not
induced by a periodic state-space realization does not mean that the same happens for all the other time-invariant realizations
of equal dimension.
Nevertheless, in many cases, our procedure allows finding periodic state-space lower-dimensional realizations, i.e., with
dimension smaller than 𝑛 + 𝑡.
The following algorithm presents the procedure in a systematic way.
This algorithm can be synthesized in a flowchart, see Figure 1 .
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Algorithm 1 Matrix chain algorithm
Input: MIMO P-periodic behavior 𝔅
Output: Minimal P-periodic state-space representation of 𝔅 . ⊳ Σ(𝑘) =(𝐴(𝑘) , 𝐵(𝑘) , 𝐶(𝑘) , 𝐷(𝑘))
Step 1 Construct the lifted behavior 𝔅𝐿

Step 2 Compute a minimal representation Σ =(𝐹 ,𝐺,𝐻, 𝐽 ) of 𝔅𝐿 and its dimension 𝑛
Step 3 Let 𝑡 = 0 and 𝓁 = 1
Step 4 Construct matrix 𝓁

𝑡𝑀 as defined in eqs. (16) and (17)
Step 5 If rank 𝓁

𝑡𝑀 ⩽ 𝑛 + 𝑡 then
Step 5.1 Factorize 𝓁

𝑡𝑀 as in (18)
Step 5.2 If 𝓁 < 𝑃 − 1 then

Step 5.2.1 Let 𝓁 = 𝓁 + 1
Step 5.2.2 Go to Step 4
Else Define 𝑡⋆ ∶= 𝑡 and go to Step 8

Else Continue
Step 6 Let 𝑡 = 𝑡 + 1 and 𝓁 = 1
Step 7 Go to Step 4
Step 8 Define matrices 𝐴(⋅), 𝐵(⋅), 𝐶(⋅), and 𝐷(⋅) accordingly to the factorizations of matrices 1

𝑡⋆𝑀,… , 𝑃−1𝑡⋆𝑀 ⊳ The
matrices that result from the (

𝑛, 𝑡⋆
)-chain

Step 9 Stop

4 EXAMPLE

Consider the linear 3-periodic input/output behavior described by the following equations:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

((

𝜎2 + 3𝜎 − 1
)

𝑦
)

(3𝑘) =
(

(𝜎 + 19) 𝑢1
)

(3𝑘) + 𝑢2(3𝑘)
((

𝜎2 + 𝜎 + 3
)

𝑦
)

(3𝑘 + 1) =
((

−𝜎2 + 1 + 18𝜎−1) 𝑢1
)

(3𝑘 + 1) + 𝑢2(3𝑘 + 1) , 𝑘 ∈ ℤ.
((

𝜎2 + 2𝜎 + 1
)

𝑦
)

(3𝑘 + 2) =
((

𝜎 + 1 + 18𝜎−2) 𝑢1
)

(3𝑘 + 2) +
(

𝜎−1𝑢2
)

(3𝑘 + 2)

(25)

Noticing that 𝑢 =
[

𝑢1 𝑢2
]𝑇 , these equations can be written as:

⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

−1 3 1
𝜎3 3 1
2𝜎3 𝜎3 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

1
𝜎
𝜎2

⎤

⎥

⎥

⎦

𝑦
⎞

⎟

⎟

⎠

(3𝑘) =
⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

19 1 1 0 0 0
18 − 𝜎3 0 1 1 0 0
18 + 𝜎3 0 0 1 1 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝐼2
𝜎𝐼2
𝜎2𝐼2

⎤

⎥

⎥

⎦

𝑢
⎞

⎟

⎟

⎠

(3𝑘) , 𝑘 ∈ ℤ,

which, applying the lifting technique of Section 2, yields the linear time-invariant input/output behavior:
⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎣

−1 3 1
𝜎 3 1
2𝜎 𝜎 1

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝑃𝐿(𝜎,𝜎−1)

𝑦𝐿
⎞

⎟

⎟

⎟

⎠

(𝑘) =

⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎣

19 1 1 0 0 0
18 − 𝜎 1 1 0 0 0
18 + 𝜎 0 0 1 1 0

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑄𝐿(𝜎,𝜎−1)

𝑢𝐿
⎞

⎟

⎟

⎟

⎠

(𝑘) , 𝑘 ∈ ℤ. (26)

Note that 𝑃 𝐿 (𝜉, 𝜉−1
) and 𝑄𝐿 (𝜉, 𝜉−1

) are not left coprime, since the matrix:
𝑅𝐿 (𝜉, 𝜉−1

)

∶=
[

𝑃 𝐿 (𝜉, 𝜉−1
)

−𝑄𝐿 (𝜉, 𝜉−1
)]

, (27)
with normal rank 3, has a rank drop for 𝜉 = −1.

Thus, the transfer function:

𝐺𝐿 (𝜉, 𝜉−1
)

=
(

𝑃 𝐿 (𝜉, 𝜉−1
))−1(𝑄𝐿 (𝜉, 𝜉−1

))

=

⎡

⎢

⎢

⎢

⎣

−1 0 0 0 0 0
3𝜉
𝜉−3

−1
𝜉−3

−1
𝜉−3

1
𝜉−3

1
𝜉−3

0
9(𝜉−6)
𝜉−3

𝜉
𝜉−3

𝜉
𝜉−3

−3
𝜉−3

−3
𝜉−3

0

⎤

⎥

⎥

⎥

⎦
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Start

Let 𝓁 = 1 and 𝑡 = 0

Construct
matrix 𝓁

𝑡𝑀

rank 𝓁
𝑡𝑀 ⩽ 𝑛 + 𝑡 Let 𝑡 = 𝑡 + 1 and 𝓁 = 1

Factorize 𝓁
𝑡𝑀

𝓁<P − 1Let 𝓁 = 𝓁 + 1

Define 𝑡⋆ ∶= 𝑡

Consider the
sequence

1
𝑡⋆𝑀 ,. . . ,P−1𝑡⋆𝑀

Define matrices
𝐴 (⋅) , 𝐵 (⋅) , 𝐶 (⋅) , 𝐷 (⋅)

Stop

no

yes

yes

no

FIGURE 1 Periodic state-space representation flowchart

does not describe the full input/output behavior given by (26).

Therefore, rather than obtaining a state-space realization via 𝐺𝐿, we shall take the input/output equations (26) as a starting point,
and apply the realization procedure proposed in21 (for further details see23,24,25,26). For that purpose, following the reasoning of
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Algorithm 2 (cf.25, p. 1066), the state vector
𝑥 ∶= 𝑋

(

𝜎, 𝜎−1)𝑤

[

𝑥1
𝑥2

]

=
[

1 0 0 1 0 0 0 0 0
2 1 0 −1 0 0 0 0 0

]

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑤1
𝑤2
𝑤3
𝑤4
𝑤5
𝑤6
𝑤7
𝑤8
𝑤9

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where 𝑤𝑖 = 𝑦𝐿𝑖 if 𝑖 = 1, 2, 3, and 𝑤𝑖 = −𝑢𝐿𝑖 if 𝑖 = 4,… , 9, corresponds to a minimal state realization for the kernel of 𝑅𝐿 (given
by (27)). Now, considering the i/o relations (26), and the obtained state equations

𝑥1 = 𝑤1 +𝑤4

𝑥2 = 2𝑤1 +𝑤2 −𝑤4,

it is an easy task to reach to the following minimal (time-invariant) state-space realization of the lifted input/output behavior
(26):

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(𝜎𝑥)(𝑘) =

𝐹
⏞⏞⏞⏞⏞⏞⏞⏞⏞
[

−1 0
−7 3

]

𝑥 (𝑘) +

𝐺1 | 𝐺2 | 𝐺3
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
[

0 0 0 0 0 0
9 −1 −1 1 1 0

]

𝑢𝐿 (𝑘)

𝑦𝐿(𝑘) =

𝐻1

𝐻2

𝐻3

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎣

1 0

−2 1

7 −3

⎤

⎥

⎥

⎥

⎥

⎦

𝑥(𝑘) +

⎡

⎢

⎢

⎢

⎢

⎣

−1 0 0 0 0 0

3 0 0 0 0 0

9 1 1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐽=[𝐽𝑖𝑗 ]

𝑢𝐿(𝑘)

. (28)

Note that this realization has dimension 𝑛 = 2.

In order to obtain a periodic state-space realization for the original periodic input/output behavior (25), consider the matrix:

1𝑀 =
⎡

⎢

⎢

⎣

𝐹
𝐻3
𝐻2

𝐺1
𝐽31
𝐽21

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

−1 0
−7 3
7 −3
−2 1

0 0
9 −1
9 1
3 0

⎤

⎥

⎥

⎥

⎥

⎦

.
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It is easy to check that, rank 1𝑀 = 4 > 𝑛 = 2. Define a new time-invariant realization of (26) with increased dimension1
𝑛 + (4 − 2) = 4 as follows:

2𝐹 ∶=

[

02×2 02×2

02×2 𝐹

]

=

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 0 0 0
0 0 −1 0
0 0 −7 3

⎤

⎥

⎥

⎥

⎥

⎦

2𝐺 ∶=

[

02×2

𝐺1

02×2

𝐺2

02×2

𝐺3

]

=

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
9 −1 −1 1 1 0

⎤

⎥

⎥

⎥

⎥

⎦

2𝐻 ∶=

⎡

⎢

⎢

⎢

⎢

⎣

01×2 𝐻1

01×2 𝐻2

01×2 𝐻3

⎤

⎥

⎥

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0 0 1 0
0 0 −2 1
0 0 7 −3

⎤

⎥

⎥

⎦

2𝐽 ∶= 𝐽 .

Further, redefine a new matrix 1
2𝑀 as:

1
2𝑀 =

⎡

⎢

⎢

⎣

2𝐹
2𝐻3

2𝐻2

2𝐺1
𝐽31
𝐽21

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 0 0 0
0 0 −1 0
0 0 −7 3
0 0 7 −3
0 0 −2 1

0 0
0 0
0 0
9 −1
9 1
3 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Since rank 1
2𝑀 = 4 ⩽ 𝑛 + 2, it is possible to factor this matrix as:

1
2𝑀 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 0 0 0
−1 0 0 0
−7 3 9 −1
7 −3 9 1

−2 1 3 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

0 0
0 0
1 0
0 1

⎤

⎥

⎥

⎥

⎥

⎦

=∶

[ 1
2𝑄
1
2𝑅

]

[ 1
2𝑆

1
2𝑇

]

.

Now, define

2
2𝑀 =

[

1
2𝑄

2𝐺2
𝐽32

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 0 0 0
−1 0 0 0
−7 3 9 −1
7 −3 9 1

0 0
0 0
0 0
−1 1
1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Since rank 2
2𝑀 < 4, one can factor this matrix as:

2
2𝑀 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 0 0 0
−1 0 0 0
−7 3 9 −1

7 −3 9 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0 0

1 1
2

0 1
18

4 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=∶

[ 2
2𝑄
2
2𝑅

]

[ 2
2𝑆

2
2𝑇

]

.

1Observe that letting 𝑡 = 1 would not be enough to achieve the desired rank condition.
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In this way, we conclude that the 3-periodic input/output system (25) has a 3-periodic state-space realization Σ(𝑘) =
(𝐴(𝑘) , 𝐵(𝑘) , 𝐶(𝑘) , 𝐷(𝑘)) of dimension 4, given by:

𝐴(0) = 1
2𝑆 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐵(0) = 1
2𝑇 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0
0 0
1 0
0 1

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐶(0) = 2𝐻1 =
[

0 0 1 0
]

, 𝐷(0) = 𝐽11 =
[

−1 0
]

𝐴(1) = 2
2𝑆 =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐵(1) = 2
2𝑇 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0
1 1

2

0 1
18

4 1

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐶(1) = 1
2𝑅 =

[

−2 1 3 0
]

, 𝐷(1) = 𝐽22 =
[

0 0
]

𝐴(2) = 2
2𝑄 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 0 0 0
−1 0 0 0
−7 3 9 −1

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐵(2) = 2𝐺3 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0
0 0
0 0
1 0

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐶(2) = 2
2𝑅 =

[

7 −3 9 1
]

, 𝐷(2) = 𝐽33 =
[

0 0
]

.

5 CONCLUSION

In this paper, we have shown, in a constructive way, the existence of periodic state-space realizations for periodic behaviors
given by linear periodic input/output equations.

In order to obtain such realizations, we started by defining a time-invariant input/output behavior 𝔅𝐿associated with a given
periodic input/output behavior 𝔅 by means of a lifting technique. As a second step, we obtained a state-space realization Σ𝐿

of 𝔅𝐿 using behavioral methods. Finally, we recovered a periodic state-space realization for 𝔅 from a suitable matrix chain
constructed with basis on the matrices of the time-invariant realization Σ𝐿.

Regarding the minimal dimension of the periodic realizations, we have seen that this may be greater than the minimal dimen-
sion of the corresponding time-invariant ones and gave an upper bound for the former in terms of the latter. Moreover, we
presented an algorithm that yields periodic realizations of the lower dimension than the given upper bound.

Future work includes pursuing the goal of obtaining minimal realizations for periodic input/output behaviors.
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