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Abstract

In this paper we prove several optimal inequalities involving the hyperbolicity constant of complementary prisms networks. More-
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Abstract

In this paper we prove several optimal inequalities involving the hyperbolicity con-
stant of complementary prisms networks. Moreover, we obtain bounds and closed
formulas for the general topological indices 𝐴(𝐺) =

∑

𝑢𝑣∈𝐸(𝐺)
𝑎(𝑑𝑢, 𝑑𝑣) and 𝐵(𝐺) =

∑

𝑢∈𝑉 (𝐺)
𝑏(𝑑𝑢) of complementary prisms networks.

KEYWORDS:
Complementary prisms; generalized prism network; Gromov hyperbolicity; Geodesics.

1 INTRODUCTION

The different kinds of products of graphs are an important research topic in graph theory, applied mathematics and computer
science. Complementary products were introduced in [1] as a generalization of the Cartesian product. The complementary prism
of a graph is a particular and interesting case. Let 𝐺 be a graph and 𝐺 the complement graph of 𝐺. The complementary prism
of 𝐺, denoted by 𝐺𝐺, is the network obtained from the disjoint union of 𝐺 and 𝐺 by adding edges between the corresponding
vertices of 𝐺 and 𝐺. In what follows, if 𝑣 ∈ 𝑉 (𝐺), we will denote by 𝑣′ the corresponding vertex of 𝑣 in 𝐺.

Two well-known examples of complementary prisms are the Petersen graph and the corona product of 𝐾𝑛 and 𝐾1, 𝐾𝑛◦𝐾1.
In particular, the Petersen graph is the complementary prism 𝐶5𝐶5 and 𝐾𝑛◦𝐾1 is the complementary prism 𝐾𝑛𝐾𝑛. From a
structural geometrical point of view, complementary prism networks have been studied through their properties and indices (see
chromatic index [2], domination number [3], cycle structure [4], complexity properties [5], spectral properties [6], convexity
number [7], chromatic number [8], etc.).

Hyperbolic spaces play an important role in geometric group theory and in the geometry of negatively curved spaces (see
[9, 10, 11, 12]). The concept of Gromov hyperbolicity grasps the essence of negatively curved spaces like the classical hyperbolic
space, Riemannian manifolds of negative sectional curvature bounded away from 0, and of discrete spaces like trees and the
Cayley graphs of many finitely generated groups. It is remarkable that a simple concept leads to such a rich general theory (see
[9, 10, 11, 12, 13, 14]). As observed in [11], the hyperbolicity of a geodesic metric space is equivalent to the hyperbolicity
of a graph related to it. Moreover this conceptualization has multiple practical applications such as networks and algorithms
([15]), random graphs ([16, 17, 18]), real networks ([19, 20, 21, 22, 23]). Other problems that have been addressed are secure
transmission of information, sensor networks, distance estimation, traffic flow, congestion minimization, etc. (see [19, 24, 25,
26, 27]).

The hyperbolicity constant of a geodesic metric space can be viewed as a measure of how tree-like the space is, this impli-
cation has been successfully applied to the study of chemical structures [28] and DNA study [29]. In mathematical chemistry a
topological descriptor is a single number that represents a chemical structure in graph-theoretical terms via the molecular graph,
they play a significant role in mathematical chemistry, especially in the QSPR/QSAR investigations. A topological descriptor
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is called a topological index if it correlates with a molecular property, for more information regarding the study of its main
properties see [30, 31, 32, 33, 34].

In this paper, 𝐺 = (𝑉 ,𝐸) = (𝑉 (𝐺), 𝐸(𝐺)) denotes a (finite or infinite) simple graph (not necessarily connected) such that
𝑉 ≠ ∅ and every edge has length 1. In order to consider a connected graph 𝐺 as a geodesic metric space, identify (by an
isometry) any edge 𝑢𝑣 ∈ 𝐸(𝐺) with the interval [0, 1] in the real line; then the edge 𝑢𝑣 (considered as a graph with just one
edge) is isometric to the interval [0, 1]. Thus, the points in 𝐺 are the vertices and, also, the points in the interior of any edge of
𝐺. In this way, any connected graph 𝐺 has a natural distance defined on its points, induced by taking shortest paths in 𝐺, and we
can see 𝐺 as a metric graph. We denote by 𝑑𝐺 or 𝑑 this distance. If 𝑥, 𝑦 are in different connected components of 𝐺, we define
𝑑𝐺(𝑥, 𝑦) = ∞. These properties guarantee that any connected component of any graph is a geodesic metric space.

The geometrical and topological properties of several products of graphs have been investigated in [35, 36, 37, 38, 39, 40,
41, 42, 43]. So, it is natural to study the hyperbolicity constant and topological indices of complementary prisms. In this paper
we prove several inequalities involving the hyperbolicity constant of complementary prisms networks and in many cases, we
obtain the sharp value of the hyperbolicity constant. In the same direction, we obtain optimal bounds and closed formulas for the
general topological indices 𝐴(𝐺) =

∑

𝑢𝑣∈𝐸(𝐺) 𝑎(𝑑𝑢, 𝑑𝑣) and 𝐵(𝐺) =
∑

𝑢∈𝑉 (𝐺) 𝑏(𝑑𝑢) of complementary prisms networks. Many
important topological indices can be obtained from 𝐴 and 𝐵 by choosing appropriate symmetric functions 𝑎 and 𝑏.

2 ON THE HYPERBOLICITY CONSTANT IN COMPLEMENTARY PRISM NETWORKS

We collect in this section some previous definitions and results which will be useful along the paper.
We say that the curve 𝛾 in a metric space 𝑋 is a geodesic if we have 𝐿(𝛾|[𝑡,𝑠]) = 𝑑(𝛾(𝑡), 𝛾(𝑠)) = |𝑡 − 𝑠| for every 𝑠, 𝑡 ∈ [𝑎, 𝑏]

(then 𝛾 is equipped with an arc-length parametrization). The metric space 𝑋 is said geodesic if for every couple of points in 𝑋
there exists a geodesic joining them; we denote by [𝑥𝑦] any geodesic joining 𝑥 and 𝑦; this notation is ambiguous, since in general
we do not have uniqueness of geodesics, but it is very convenient. Consequently, any geodesic metric space is connected. If the
metric space 𝑋 is a graph, then the edge joining the vertices 𝑢 and 𝑣 will be denoted by 𝑢𝑣.

In [12] appear several different definitions of hyperbolicity, which are equivalent in the sense that if 𝑋 is 𝛿-hyperbolic with
respect to one definition, then it is 𝛿′-hyperbolic with respect to another definition.

If 𝑋 is a geodesic metric space and 𝑥1, 𝑥2, 𝑥3 ∈ 𝑋, the union of three geodesics [𝑥1𝑥2], [𝑥2𝑥3] and [𝑥3𝑥1] is a geodesic
triangle that will be denoted by 𝑇 = {[𝑥1𝑥2], [𝑥2𝑥3], [𝑥3𝑥1]} and we will say that 𝑥1, 𝑥2 and 𝑥3 are the vertices of 𝑇 ; it is usual
to write also 𝑇 = {𝑥1, 𝑥2, 𝑥3}. We say that 𝑇 is 𝛿-thin if any side of 𝑇 is contained in the 𝛿-neighborhood of the union of
the two other sides. We denote by 𝛿(𝑇 ) the sharp thin constant of 𝑇 , i.e., 𝛿(𝑇 ) ∶= inf{𝛿 ≥ 0 | 𝑇 is 𝛿-thin}. The space 𝑋 is
𝛿-hyperbolic (or satisfies the Rips condition with constant 𝛿) if every geodesic triangle in 𝑋 is 𝛿-thin. We denote by 𝛿(𝑋) the
sharp hyperbolicity constant of 𝑋, i.e., 𝛿(𝑋) ∶= sup{𝛿(𝑇 ) | 𝑇 is a geodesic triangle in 𝑋}. We say that 𝑋 is hyperbolic if 𝑋 is
𝛿-hyperbolic for some 𝛿 ≥ 0; then 𝑋 is hyperbolic if and only if 𝛿(𝑋) < ∞. If 𝑋 has connected components {𝑋𝑖}𝑖∈𝐼 , then we
define 𝛿(𝑋) ∶= sup𝑖∈𝐼 𝛿(𝑋𝑖), and we say that 𝑋 is hyperbolic if 𝛿(𝑋) < ∞.

For any connected graph 𝐺, we define, as usual,
diam𝑉 (𝐺) ∶= sup

{

𝑑𝐺(𝑣,𝑤) | 𝑣,𝑤 ∈ 𝑉 (𝐺)
}

,
diam𝐺 ∶= sup

{

𝑑𝐺(𝑥, 𝑦) | 𝑥, 𝑦 ∈ 𝐺
}

,

i.e, diam𝑉 (𝐺) is the diameter of the set of vertices of 𝐺, and diam𝐺 is the diameter of the whole graph 𝐺 (recall that in order
to have a geodesic metric space, 𝐺 must contain both the vertices and the points in the interior of any edge of 𝐺).
Lemma 1. If 𝐺 is a graph, then

𝛿(𝐺) ≤ 1
2
diam𝐺 ≤ 1

2
(diam𝑉 (𝐺) + 1).

A subgraph 𝐻 of 𝐺 is said isometric if 𝑑𝐻 (𝑥, 𝑦) = 𝑑𝐺(𝑥, 𝑦) for every 𝑥, 𝑦 ∈ 𝐻 . Note that this condition is equivalent to
𝑑𝐻 (𝑢, 𝑣) = 𝑑𝐺(𝑢, 𝑣) for every vertices 𝑢, 𝑣 ∈ 𝑉 (𝐻).

The following result appears in [44, Lemma 9].
Lemma 2. If 𝐻 is an isometric subgraph of 𝐺, then 𝛿(𝐻) ≤ 𝛿(𝐺).

Let 𝐺 be a graph. A pendant edge 𝑢𝑣 of 𝐺 is an edge such that or the only neighbor of 𝑢 is 𝑣 or vice verse.
Let 𝐺 be a connected graph. If 𝐺 has pendant edges and 𝐺0 is the induced graph by removing all pendant edges of 𝐺, we define
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diam∗ 𝑉 (𝐺) = diam𝑉 (𝐺0), diam∗ 𝐺 = diam𝐺0.
Note that the graph 𝐺0 defined above is an isometric subgraph of 𝐺.
One can check that the following result holds.

Proposition 1. Let 𝐺 be a graph with 𝑣1,… , 𝑣𝑘 ∈ 𝑉 (𝐺) and 𝑤1,… , 𝑤𝑘 ∉ 𝑉 (𝐺). Let Γ be the graph with
𝑉 (Γ) = 𝑉 (𝐺) ∪ {𝑤1,… , 𝑤𝑘}, 𝐸(Γ) = 𝐸(𝐺) ∪ {𝑣1𝑤1,… , 𝑣𝑘𝑤𝑘}.

Then 𝛿(Γ) = 𝛿(𝐺).
Lemma 1 and Proposition 1 have the following consequence.

Corollary 1. If 𝐺 is a graph, then
𝛿(𝐺) ≤ 1

2
diam∗ 𝐺 ≤ 1

2
(

diam∗ 𝑉 (𝐺) + 1
)

.

From [45, Theorem 11] we have the following result.
Theorem 1. The following graphs have these precise values of 𝛿.
∙ If 𝑃𝑛 is a path graph, then 𝛿(𝑃𝑛) = 0 for all 𝑛 ≥ 1.
∙ If 𝐶𝑛 is a cycle graph, then 𝛿(𝐶𝑛) =

1
4
𝐿(𝐶𝑛) =

𝑛
4

for all 𝑛 ≥ 3.
∙ If 𝐾𝑛 is a complete graph, then 𝛿(𝐾1) = 𝛿(𝐾2) = 0, 𝛿(𝐾3) = 3∕4 and 𝛿(𝐾𝑛) = 1 for all 𝑛 ≥ 4.

As usual, by cycle we mean a simple closed curve, i.e., a path with different vertices, unless the last one, which is equal to the
first vertex.

Given a graph 𝐺, we denote by 𝐽 (𝐺) the union of the set 𝑉 (𝐺) and the midpoints of the edges of 𝐺. Consider the set 𝕋1 of
geodesic triangles 𝑇 in 𝐺 that are cycles and such that the three vertices of the triangle 𝑇 belong to 𝐽 (𝐺), and denote by 𝛿1(𝐺)
the infimum of the constants 𝜆 such that every triangle in 𝕋1 is 𝜆-thin.

The following result, which appears in [46, Theorems 2.5, 2.6 and 2.7], will be used throughout the paper.
Theorem 2. For every graph 𝐺 we have 𝛿1(𝐺) = 𝛿(𝐺). Furthermore, if 𝐺 is hyperbolic, then 𝛿(𝐺) is an integer multiple of 1∕4
and there exists 𝑇 ∈ 𝕋1 with 𝛿(𝑇 ) = 𝛿(𝐺).

Since diam𝑉 (𝐺𝐺 ) ≤ 3, Lemma 1 gives the following result.
Theorem 3. If 𝐺 is a graph, then

𝛿(𝐺𝐺 ) ≤ 2.

Theorem 4. Let 𝐺 be a graph. If diam𝑉 (𝐺) ≤ 3, then
𝛿(𝐺) ≤ 𝛿(𝐺𝐺 ).

If diam𝑉 (𝐺) ≥ 3, then
𝛿(𝐺) ≤ 𝛿(𝐺𝐺 ).

Proof. If diam𝑉 (𝐺) ≤ 3, then 𝐺 is an isometric subgraph in 𝐺𝐺, and so, Lemma 2 gives 𝛿(𝐺) ≤ 𝛿(𝐺𝐺 ).
If diam𝑉 (𝐺) ≥ 3, then it is well-known that diam𝑉 (𝐺) ≤ 3. Therefore, 𝐺 is an isometric subgraph in 𝐺𝐺, and Lemma 2

gives 𝛿(𝐺) ≤ 𝛿(𝐺𝐺 ).
Corollary 2. If 𝐺 is a graph, then

min
{

𝛿(𝐺), 𝛿(𝐺)
}

≤ 𝛿(𝐺𝐺 ).

Theorem 5. If 𝐺 is a graph with more than four vertices, then
𝛿(𝐺𝐺 ) ≤ 2𝛿(𝐺) + 2𝛿(𝐺 ).

Proof. Since 𝐺 has at least five vertices, [47, Theorem 4.3] gives that 𝛿(𝐺)+ 𝛿(𝐺 ) ≥ 1. Hence, Theorem 3 gives the result.
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Remark 1. The inequality 𝛿(𝐺𝐺 ) ≤ 𝛿(𝐺) + 𝛿(𝐺 ) does not hold for every graph with more than four vertices: If 𝐺 is 𝑃5, note
that 𝛿(𝐺) ≤ 3∕2 since diam𝑉 (𝐺) = 2. Then

𝛿(𝐺) + 𝛿(𝐺) ≤ 3∕2 + 0 < 2 = 𝛿(𝐺𝐺).

Note that if diam𝑉 (𝐺) = 1, then 𝐺 is a complete graph.
Theorem 6. If 𝐺 is a graph with diam𝑉 (𝐺) = 1, then

𝛿(𝐺) = 𝛿(𝐺𝐺 ).

Proof. Since diam𝑉 (𝐺) = 1, 𝐺 is isomorphic to a complete graph. Thus, 𝐺𝐺 is obtained from 𝐺 by attaching a pendant edge
to each vertex in 𝑉 (𝐺) and so, Proposition 1 gives 𝛿(𝐺) = 𝛿(𝐺𝐺 ).

Theorems 1 and 6 have the following consequence.
Corollary 3. 𝛿(𝐾2𝐾2 ) = 0, 𝛿(𝐾3𝐾3 ) = 3∕4 and 𝛿(𝐾𝑛𝐾𝑛 ) = 1 for every 𝑛 ≥ 4.

An empty graph 𝐺 is a graph with 𝐸(𝐺) = ∅. We denote by 𝐸𝑛 the empty graph with 𝑛 vertices.
Since the complementary prisms of 𝐺 and 𝐺 are isomorphic graphs, Theorem 6 has the following consequence.

Corollary 4. If 𝐺 is an empty graph, then
𝛿(𝐺 ) = 𝛿(𝐺𝐺 ).

Theorem 7. If 𝐺 is a graph with diam𝑉 (𝐺) = 2, then
5∕4 ≤ 𝛿(𝐺𝐺 ) ≤ 2.

Proof. Theorem 3 gives the upper bound.
Note that by hypothesis there exists a path 𝑃 , such that 𝑃 ∩ 𝑉 (𝐺) = {𝑢0, 𝑢1, 𝑢2} with 𝑑𝐺(𝑢0, 𝑢1) = 𝑑𝐺(𝑢1, 𝑢2) = 1 and

𝑑𝐺(𝑢0, 𝑢2) = 2. Then the cycle 𝐶 in 𝐺𝐺 with vertices {𝑢0, 𝑢1, 𝑢2, 𝑢′2, 𝑢′0} is an isometric subgraph of 𝐺𝐺. Thus, Lemma 2 and
Theorem 1 give the lower bound.

The lower bound in the previous theorem is attained by 𝑃3 and the upper bound is attained by the path graph in Remark 1.
Next, we prove a kind of converse of Theorem 5.

Theorem 8. If 𝐺 is a graph with 𝛿(𝐺) = 0 or 𝛿(𝐺) = 0, then
𝛿(𝐺) + 𝛿(𝐺) ≤ 𝛿(𝐺𝐺 ).

Proof. By symmetry, we can assume that 𝛿(𝐺) = 0. Thus, 𝐺 is a tree or a forest. So, if diam𝑉 (𝐺) ≥ 3, then Theorem 4 gives
the result. If diam𝑉 (𝐺) = 2, then 𝐺 is the star graph 𝑆𝑛, 𝑛 ≥ 3, and 𝐺 is the union of complete graph 𝐾𝑛−1 and an isolated
vertex; thus, 𝛿(𝐺 ) = 𝛿(𝐾𝑛−1) and, by Theorem 1, we have 𝛿(𝐺) ≤ 1. Then Theorem 7 gives

𝛿(𝐺) + 𝛿(𝐺) ≤ 1 < 5∕4 ≤ 𝛿(𝐺𝐺 ).

If diam𝑉 (𝐺) = 1, then 𝐺 is the path graph 𝑃2 and 𝛿(𝐺) = 𝛿(𝐺) = 0.
Theorem 9. If 𝐺 is a graph with diam𝑉 (𝐺) = 3, then

3∕2 ≤ 𝛿(𝐺𝐺 ) ≤ 2.

Proof. Theorem 3 gives the upper bound.
Consider 𝑢, 𝑣 ∈ 𝑉 (𝐺) such that 𝑑𝐺(𝑢, 𝑣) = 3 and let 𝑃 be a geodesic in 𝐺 joining 𝑢 and 𝑣. Let 𝑥 be the midpoint of 𝑃 and

𝑦 the midpoint of 𝑢′𝑣′. Note that 𝑑𝐺𝐺(𝑥, 𝑦) = 3. Consider two geodesics 𝑃 ′ and 𝑃 ′′ joining 𝑥 to 𝑦 such that 𝑃 ′ ∩ 𝑃 ′′ = {𝑥, 𝑦},
𝑢𝑢′ ∈ 𝑃 ′ and 𝑣𝑣′ ∈ 𝑃 ′′. Let us consider the geodesic triangle 𝑇 = {𝑃 ′, [𝑥𝑣], [𝑣𝑦]}. We have

𝛿(𝐺𝐺 ) ≥ 𝛿(𝑇 ) ≥ 𝑑𝐺𝐺(𝑢, [𝑥𝑣] ∪ [𝑣𝑦]) = 3∕2.

Remark 2. The argument in the proof of Theorem 9 gives that if 𝐺 is a connected graph with diam𝑉 (𝐺) ≥ 3 then 𝛿(𝐺𝐺 ) ≥ 3∕2.
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Theorem 10. If 𝐺 is a connected graph which is neither a complete graph nor a complete graph without an edge, then
3∕2 ≤ 𝛿(𝐺𝐺 ) ≤ 2.

Proof. Theorem 3 gives the upper bound.
If diam𝑉 (𝐺) ≥ 3, then Remark 2 gives 𝛿(𝐺𝐺 ) ≥ 3∕2. Thus, we can assume that diam𝑉 (𝐺) = 2, since 𝐺 is not a complete

graph. Since diam𝑉 (𝐺) = 2 and |𝑉 (𝐺)| ≥ 4, there exist 𝑢, 𝑣0, 𝑣1, 𝑤 ∈ 𝑉 (𝐺) such that 𝑑𝐺(𝑢, 𝑣0) = 𝑑𝐺(𝑣0, 𝑤) = 1, 𝑑𝐺(𝑢,𝑤) = 2.
Since 𝐺 is neither a complete graph nor a complete graph without an edge, we can choose 𝑢, 𝑣0, 𝑣1, 𝑤 ∈ 𝑉 (𝐺) such that the
induced subgraph of 𝐺 by 𝑢, 𝑣0, 𝑣1, 𝑤 is neither a complete graph nor a complete graph without an edge.

Case A. Suppose that 𝑣0𝑣1 ∉ 𝐸(𝐺). Since 𝐺 is a connected graph without loss of generality we can assume that 𝑣1𝑤 ∈ 𝐸(𝐺).
We have the following cases:

Case A.1. Suppose that 𝑢𝑣1 ∈ 𝐸(𝐺). We have that 𝑢′𝑤′, 𝑣′0𝑣
′
1 ∈ 𝐸(𝐺). Let 𝑥, 𝑦 be the midpoints of 𝑢′𝑤′ and 𝑣′0𝑣

′
1 respectively.

We have 𝑑𝐺𝐺(𝑥, 𝑦) ≥ 3.
Case A.1.1. Assume that there exists 𝑠′ ∈ 𝑉 (𝐺) such that 𝑑𝐺𝐺(𝑥, 𝑠

′) = 𝑑𝐺𝐺(𝑦, 𝑠
′) = 3∕2. Without loss of generality assume

that 𝑠′𝑢′, 𝑠′𝑣′0 ∈ 𝐸(𝐺). Let 𝑃 be the geodesic joining 𝑥 and 𝑦 such that 𝑃 ∩ 𝑉 (𝐺) = {𝑢′, 𝑠′, 𝑣′0}. Let 𝑧 be the midpoint of 𝑣1𝑤.
Let us consider the geodesic triangle 𝑇 = {[𝑥𝑧], [𝑦𝑧], 𝑃 }. We have

𝛿(𝐺𝐺 ) ≥ 𝛿(𝑇 ) ≥ 𝑑𝐺𝐺(𝑠
′, [𝑥𝑧] ∪ [𝑦𝑧]) = 3∕2.

Case A.1.2. Does not exist 𝑠′ ∈ 𝑉 (𝐺) with 𝑑𝐺𝐺(𝑥, 𝑠
′) = 𝑑𝐺𝐺(𝑦, 𝑠

′) = 3∕2. Then there exist two geodesics 𝑃 , 𝑃 ′ joining 𝑥 and
𝑦 such that 𝑃 ∩ 𝑉 (𝐺𝐺) = {𝑣′0, 𝑣0, 𝑢, 𝑢

′} and 𝑃 ′ ∩ 𝑉 (𝐺𝐺) = {𝑤′, 𝑤, 𝑣1, 𝑣′1}. Let 𝑧, 𝑝 be the midpoints of 𝑃 and 𝑃 ′, respectively,
and consider the geodesic triangle 𝑇 = {[𝑥𝑧], [𝑦𝑧], 𝑃 ′}. We have that

𝛿(𝐺𝐺) ≥ 𝛿(𝑇 ) ≥ 𝑑𝐺𝐺(𝑝, [𝑥𝑧] ∪ [𝑦𝑧]) = 3∕2.
Case A.2. Suppose that 𝑢𝑣1 ∉ 𝐸(𝐺). Let 𝑥, 𝑦 be the midpoints of 𝑣0𝑤 and 𝑢′𝑣′1, respectively. We have that 𝑑𝐺𝐺(𝑥, 𝑦) = 3 and

there exist two geodesics 𝑃 , 𝑃 ′ joining 𝑥 and 𝑦 such that 𝑃 ∩𝑉 (𝐺𝐺) = {𝑢′, 𝑢, 𝑣0} and 𝑃 ′ ∩𝑉 (𝐺𝐺) = {𝑣′1, 𝑣1, 𝑤}. Consider the
geodesic triangle 𝑇 = {[𝑥𝑢], [𝑦𝑢], 𝑃 ′}. We have

𝛿(𝐺𝐺) ≥ 𝛿(𝑇 ) ≥ 𝑑𝐺𝐺(𝑣1, [𝑥𝑢] ∪ [𝑦𝑢]) = 3∕2.
Case B. Suppose that 𝑣0𝑣1 ∈ 𝐸(𝐺). Since the induced subgraph of 𝐺 by 𝑢, 𝑣0, 𝑣1, 𝑤 is neither a complete graph nor a complete

graph without an edge, it is not possible to have 𝑢𝑣1, 𝑣1𝑤 ∈ 𝐸(𝐺). We have the following cases:
Case B.1. 𝑢𝑣1, 𝑣1𝑤 ∉ 𝐸(𝐺). Thus, 𝑢′𝑤′, 𝑢′𝑣′1, 𝑣

′
1𝑤

′ ∈ 𝐸(𝐺) and let 𝑥, 𝑦 be the midpoints of 𝑢𝑣0 and 𝑣′1𝑤
′, respectively.

Then 𝑑𝐺𝐺(𝑥, 𝑦) = 3 and there exist two geodesics 𝑃 and 𝑃 ′ in 𝐺𝐺 joining 𝑥 and 𝑦 such that 𝑃 ∩ 𝑉 (𝐺𝐺) = {𝑢, 𝑢′, 𝑣′1} and
𝑃 ′ ∩ 𝑉 (𝐺𝐺) = {𝑤′, 𝑤, 𝑣0}. Consider the geodesic triangle 𝑇 = {[𝑥𝑢′], [𝑦𝑢′], 𝑃 ′}. We have

𝛿(𝐺𝐺) ≥ 𝛿(𝑇 ) ≥ 𝑑𝐺𝐺(𝑤, [𝑥𝑢′] ∪ [𝑦𝑢′]) = 3∕2.

Case B.2. 𝑢𝑣1 ∈ 𝐸(𝐺) or 𝑣1𝑤 ∈ 𝐸(𝐺). We can assume that 𝑣1𝑤 ∈ 𝐸(𝐺), and so 𝑢𝑣1 ∉ 𝐸(𝐺). Let 𝑥, 𝑦 be the midpoints
of 𝑢𝑢′ and 𝑤𝑣1, respectively. There exist two geodesics 𝑃 , 𝑃 ′ in 𝐺𝐺 joining 𝑥 and 𝑦 such that 𝑃 ∩ 𝑉 (𝐺𝐺) = {𝑢, 𝑣0, 𝑣1} and
𝑃 ′ ∩ 𝑉 (𝐺𝐺) = {𝑢′, 𝑤′, 𝑤}. Consider the geodesic triangle 𝑇 = {[𝑥𝑣0], [𝑦𝑣0], 𝑃 ′}. We have

𝛿(𝐺𝐺) ≥ 𝛿(𝑇 ) ≥ 𝑑𝐺𝐺(𝑤
′, [𝑥𝑣0] ∪ [𝑦𝑣0]) = 3∕2.

Theorem 11. If 𝑛 ≥ 3 and 𝐺 is the complete graph 𝐾𝑛 without an edge, then
𝛿(𝐺𝐺 ) = 5∕4.

Proof. Let 𝑢, 𝑣,𝑤 ∈ 𝑉 (𝐺) such that 𝑢𝑤 ∉ 𝐸(𝐺). Let 𝑥 be the midpoint of 𝑢′𝑤′, so, there exists two geodesics 𝑃 and 𝑃 ′ joining
𝑥 and 𝑣. Let 𝑧, 𝑝 be the midpoints of 𝑃 and 𝑃 ′, respectively. If we consider the geodesic triangle 𝑇 = {[𝑥𝑧], [𝑣𝑧], 𝑃 ′}, then

𝛿(𝐺𝐺) ≥ 𝛿(𝑇 ) ≥ 𝑑𝐺𝐺(𝑝, [𝑥𝑧] ∪ [𝑣𝑧]) = 5∕4.

Since diam∗ 𝑉 (𝐺𝐺 ) = 2, Corollary 1 gives that 𝛿(𝐺𝐺 ) ≤ 3∕2. Since Theorem 2 gives that the hyperbolicity constant is an
integer multiple of 1∕4, we have that 𝛿(𝐺𝐺 ) = 5∕4 or 𝛿(𝐺𝐺 ) = 3∕2. Seeking for a contradiction assume that 𝛿(𝐺𝐺 ) = 3∕2.
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By Theorem 2, there exist 𝑥, 𝑦, 𝑧 ∈ 𝐽 (𝐺𝐺 ), a geodesic triangle 𝑇 = {[𝑥𝑦], [𝑦𝑧], [𝑥𝑧]} which is a cycle with 𝛿(𝐺𝐺 ) = 𝛿(𝑇 ) =
3∕2, and 𝑝 ∈ [𝑥𝑦] with 𝑑𝐺𝐺(𝑝, [𝑥𝑧] ∪ [𝑦𝑧]) = 3∕2. We have that 𝑑𝐺𝐺(𝑥, 𝑦) = 3, since diam∗ 𝐺𝐺 ≤ 3 and

3 ≥ 𝑑𝐺𝐺(𝑥, 𝑦) = 𝑑𝐺𝐺(𝑥, 𝑝) + 𝑑𝐺𝐺(𝑝, 𝑦) ≥ 3.

Since diam∗ 𝑉 (𝐺𝐺 ) = 2, thus 𝑥 and 𝑦 must be midpoints of edges in 𝐸(𝐺𝐺 ).
If 𝑥 ∈ 𝑢′𝑥𝑣

′
𝑥 and 𝑦 ∈ 𝑢𝑦𝑣𝑦, with 𝑢′𝑥𝑣

′
𝑥 ∈ 𝐸(𝐺) and 𝑢𝑦𝑣𝑦 ∈ 𝐸(𝐺), then we have that {𝑢𝑥, 𝑣𝑥}∩{𝑢𝑦, 𝑣𝑦} = ∅. If 𝑃 is a geodesic in

𝐺𝐺 joining 𝑥 and 𝑦, then 𝑢𝑥𝑢′𝑥 ⊂ 𝑃 or 𝑣𝑥𝑣′𝑥 ⊂ 𝑃 ; by symmetry we can assume that 𝑢𝑥𝑢′𝑥 ⊂ 𝑃 . Since 𝑇 is a cycle and 𝑥 ∈ 𝑢′𝑥𝑣
′
𝑥,

we have that 𝑣𝑥𝑣′𝑥 ⊂ [𝑥𝑧] ∪ [𝑦𝑧]. We can assume that 𝑢𝑦 ∈ 𝑃 and so, 𝑣𝑦 belongs to [𝑥𝑧] ∪ [𝑦𝑧], since 𝑇 is a cycle. Since 𝑝 is the
midpoint of [𝑥𝑦], we have 𝑝 = 𝑢𝑥 and

3∕2 = 𝑑𝐺𝐺(𝑢𝑥, [𝑥𝑧] ∪ [𝑦𝑧]) ≤ 𝑑𝐺𝐺(𝑢𝑥, 𝑣𝑦) = 1,

a contradiction.
It is not possible to have 𝑥 ∈ 𝑢𝑥𝑣𝑥 and 𝑦 ∈ 𝑢𝑦𝑣𝑦, or 𝑥 ∈ 𝑢𝑥𝑢′𝑥 and 𝑦 ∈ 𝑢𝑦𝑣𝑦, or 𝑥 ∈ 𝑢𝑥𝑢′𝑥 and 𝑦 ∈ 𝑢𝑦𝑢′𝑦, or 𝑥 ∈ 𝑢𝑥𝑢′𝑥 and

𝑦 ∈ 𝑢′𝑥𝑣
′
𝑦, since thus 𝑑𝐺𝐺(𝑥, 𝑦) ≤ 2. Hence, 𝛿(𝐺𝐺 ) ≠ 3∕2 and the proof is finished.

Theorem 12. If 𝐺 is a graph with diam𝑉 (𝐺) = 4, then
7∕4 ≤ 𝛿(𝐺𝐺 ) ≤ 2.

Proof. Theorem 3 gives the upper bound.
Consider 𝑢, 𝑣 ∈ 𝑉 (𝐺) such that 𝑑𝐺(𝑢, 𝑣) = 4. Let 𝑃 be a geodesic in 𝐺 joining 𝑢 and 𝑣, and let 𝑤 ∈ 𝑃 ∩ 𝑉 (𝐺) such that

𝑑𝐺(𝑢,𝑤) = 1. Let 𝑥 be the midpoint of 𝑢𝑤. Note that 𝑑𝐺𝐺(𝑥, 𝑣) = 7∕2 and there exist geodesics 𝑃 ′, 𝑃 ′′ joining 𝑥 and 𝑣 such
that 𝑃 ′ ⊂ 𝑃 and {𝑢, 𝑢′, 𝑣, 𝑣′} = 𝑃 ′′ ∩ 𝑉 (𝐺𝐺 ). Let 𝑧, 𝑝 be the midpoints of 𝑃 ′ and 𝑃 ′′, respectively, and consider the geodesic
triangle 𝑇 = {[𝑥𝑧], [𝑣𝑧], 𝑃 ′′}. Therefore,

𝑑(𝐺𝐺 ) ≥ 𝛿(𝑇 ) ≥ 𝑑𝐺𝐺(𝑝, [𝑥𝑧] ∪ [𝑣𝑧]) = 7∕4.

Theorem 13. If 𝐺 is a connected graph with diam𝑉 (𝐺) ≥ 5, then
𝛿(𝐺𝐺 ) = 2.

Proof. Theorem 3 gives 𝛿(𝐺𝐺 ) ≤ 2. Let us prove the converse inequality. Since diam𝑉 (𝐺) ≥ 5, there exists 𝑣0, 𝑣5 ∈ 𝑉 (𝐺)
such that 𝑑𝐺(𝑣0, 𝑣5) = 5. Let 𝑃 be a geodesic joining 𝑣0 to 𝑣5 in 𝐺, with 𝑃 ∩𝑉 (𝐺) = {𝑣0, 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} and 𝑣𝑖−1𝑣𝑖 ∈ 𝐸(𝐺) for
1 ≤ 𝑖 ≤ 5. Let 𝑥, 𝑦, 𝑧 be the midpoints of 𝑣′0𝑣′5, 𝑣0𝑣1, 𝑣4𝑣5, respectively. We consider the geodesic 𝑃 ′ = [𝑥𝑦], 𝑃 ′′ = [𝑦𝑧], 𝑃 ′′′ =
[𝑥𝑧] such that 𝑃 ′ ∩ 𝑉 (𝐺𝐺) = {𝑣0, 𝑣′0}, 𝑃 ′′ ∩ 𝑉 (𝐺𝐺) = {𝑣1, 𝑣2, 𝑣3, 𝑣4} and 𝑃 ′′′ ∩ 𝑉 (𝐺𝐺) = {𝑣5, 𝑣′5}. Let 𝑝 be the midpoint of
𝑃 ′′, and consider the geodesic triangle 𝑇 = {[𝑥𝑦], [𝑥𝑧], [𝑦𝑧]}. Hence,

𝑑(𝐺𝐺 ) ≥ 𝛿(𝑇 ) ≥ 𝑑𝐺𝐺(𝑝, [𝑥𝑦] ∪ [𝑥𝑧]) = 2.

The results in this section allow to obtain the following result, which characterizes the connected graphs with 𝛿(𝐺𝐺 ) ≤ 5∕4.
Theorem 14. If 𝐺 is a connected graph, then:

• 𝛿(𝐺𝐺 ) = 0 if and only if 𝐺 is 𝐾2.
• 𝛿(𝐺𝐺 ) = 3∕4 if and only if 𝐺 is 𝐾3.
• 𝛿(𝐺𝐺 ) = 1 if and only if 𝐺 is 𝐾𝑛, 𝑛 ≥ 4.
• 𝛿(𝐺𝐺 ) = 5∕4 if and only if 𝐺 is 𝐾𝑛 without an edge, 𝑛 ≥ 3.

We consider now the complementary prism of non-connected graphs.
Theorem 15. If 𝐺 is a graph with at least two non-empty connected components, then

3∕2 ≤ 𝛿(𝐺𝐺 ) ≤ 2.
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Proof. Theorem 3 gives the upper bound.
Denote by 𝐺1 and 𝐺2 two non-empty connected components. Let 𝑢0, 𝑢1, 𝑣0, 𝑣1 ∈ 𝑉 (𝐺) such that 𝑢0𝑢1 ∈ 𝐸(𝐺1) and 𝑣0𝑣1 ∈

𝐸(𝐺2). Let 𝑥, 𝑦 be the midpoints of 𝑢0𝑢1 and 𝑣0𝑣1, respectively. Let 𝑃 , 𝑃 ′ be the two geodesics joining 𝑥 and 𝑦 such that
𝑃 ∩ 𝑉 (𝐺𝐺 ) = {𝑢1, 𝑢′1, 𝑣

′
1, 𝑣1} and 𝑃 ′ ∩ 𝑉 (𝐺𝐺 ) = {𝑢0, 𝑢′0, 𝑣

′
0, 𝑣0}, and choose 𝑧 ∈ 𝑃 ′. Let 𝑝 be the midpoint of 𝑢′1𝑣′1. Consider

the geodesic triangle 𝑇 = {[𝑥𝑧], [𝑦𝑧], 𝑃 }. We have

𝛿(𝐺𝐺 ) ≥ 𝛿(𝑇 ) ≥ 𝑑𝐺𝐺(𝑝, [𝑥𝑧] ∪ [𝑦𝑧]) = 𝑑𝐺𝐺(𝑝, {𝑢
′
2, 𝑣

′
2}) = 𝑑𝐺𝐺(𝑝, {𝑢

′
1, 𝑣

′
1}) + 1 = 3∕2.

Theorem 16. If 𝐺 is a non-empty disconnected graph, then
5∕4 ≤ 𝛿(𝐺𝐺 ) ≤ 2.

Proof. Theorem 3 gives the upper bound.
By Theorem 15 we can assume that 𝐺 has an isolated vertex. Let 𝑢, 𝑣,𝑤 ∈ 𝑉 (𝐺) such that 𝑢𝑣 ∈ 𝐸(𝐺) and 𝑤 is an isolated

vertex. There exists an isometric cycle 𝐶 such that 𝑉 (𝐺𝐺 )∩𝐶 = {𝑢, 𝑣, 𝑣′, 𝑤′, 𝑢′}, and Lemma 2 and Theorem 1 give the desired
result.
Theorem 17. If 𝐺 is a disconnected graph such that one of its connected components has at least two edges, then

3∕2 ≤ 𝛿(𝐺𝐺 ) ≤ 2.

Proof. Theorem 3 gives the upper bound.
By Theorem 15 we can assume that 𝐺 has an isolated vertex 𝑢 ∈ 𝑉 (𝐺). Denote by 𝐺1 the connected component of 𝐺 with at

least two edges 𝑣1𝑣2, 𝑣2𝑣3 ∈ 𝐸(𝐺). Let 𝑥, 𝑦 be the midpoints of 𝑢′𝑣′1 and 𝑣2𝑣3, respectively. Note that 𝑑𝐺𝐺(𝑥, 𝑦) = 3. Let 𝑃 , 𝑃 ′

be geodesics joining 𝑥 and 𝑦 such that 𝑃 ∩ 𝑉 (𝐺𝐺 ) = {𝑣′1, 𝑣1, 𝑣2} and 𝑃 ′ ∩ 𝑉 (𝐺𝐺 ) = {𝑢′, 𝑣′3, 𝑣3}.
Case 𝐴. 𝑣1𝑣3 ∉ 𝐸(𝐺). Consider the geodesic triangle 𝑇 = {[𝑥𝑣′3], [𝑦𝑣

′
3], 𝑃 }. Thus

𝛿(𝐺𝐺 ) ≥ 𝛿(𝑇 ) ≥ 𝑑𝐺𝐺(𝑣1, [𝑥𝑣
′
3] ∪ [𝑦𝑣′3]) = 3∕2.

Case 𝐵. 𝑣1𝑣3 ∈ 𝐸(𝐺). If we consider the geodesic triangle 𝑇 = {[𝑥𝑣1], [𝑦𝑣1], 𝑃 ′}, then
𝛿(𝐺𝐺 ) ≥ 𝛿(𝑇 ) ≥ 𝑑𝐺𝐺(𝑣

′
3, [𝑥𝑣1] ∪ [𝑦𝑣1]) = 3∕2.

Since the complementary prism of 𝐺 and 𝐺𝐺 are isomorphic graphs, Theorem 11 has the following consequence.
Proposition 2. If 𝐺 is the union of an edge and one or several isolated vertices, then

𝛿(𝐺𝐺 ) = 5∕4.

The results in this section allow to characterize the disconnected graphs 𝐺 with 𝛿(𝐺𝐺 ) ≤ 5∕4.
Theorem 18. If 𝐺 is a disconnected graph, then:

• 𝛿(𝐺𝐺 ) = 0 if and only if 𝐺 is 𝐸2.
• 𝛿(𝐺𝐺 ) = 3∕4 if and only if 𝐺 is 𝐸3.
• 𝛿(𝐺𝐺 ) = 1 if and only if 𝐺 is 𝐸𝑛, 𝑛 ≥ 4.
• 𝛿(𝐺𝐺 ) = 5∕4 if and only if 𝐺 is the union of an edge and one or several isolated vertices.

Let us define
diam′ 𝑉 (𝐺) = max{ diam𝑉 (𝐻) ∶ 𝐻 is a connected component of 𝐺 }.

Finally, the results in sections 3 and 4 allow to obtain the following result.
Theorem 19. If 𝐺 is a disconnected graph, then:
(𝑎) 𝛿(𝐺𝐺 ) ≥ 5∕4 if diam′ 𝑉 (𝐺) ≥ 1.
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(𝑏) 𝛿(𝐺𝐺 ) ≥ 3∕2 if diam′ 𝑉 (𝐺) ≥ 2.
(𝑐) 𝛿(𝐺𝐺 ) ≥ 7∕4 if diam′ 𝑉 (𝐺) ≥ 4.
(𝑑) 𝛿(𝐺𝐺 ) = 2 if diam′ 𝑉 (𝐺) ≥ 5.

Proof. Corollary 4 and Theorems 16 and 17 give the items (𝑎) and (𝑏). The arguments in the proofs of Theorems 12 and 13 give
items (𝑐) and (𝑑), respectively.

3 ON GENERAL TOPOLOGICAL INDICES IN COMPLEMENTARY PRISM NETWORKS

Topological indices based on end-vertex degrees of edges have been used over 50 years. Among them, several indices are
recognized to be useful tools in chemical researches (see, e.g., [48], [49], [50]).

Given a symmetric function 𝑎 ∶ ℤ+ × ℤ+ → ℝ and a graph 𝐺 with 𝑛 vertices, we consider the general topological index
𝐴(𝐺) =

∑

𝑢𝑣∈𝐸(𝐺)
𝑎(𝑑𝑢, 𝑑𝑣), 𝐴𝑟𝑒𝑑(𝐺) =

∑

𝑢𝑣∈𝐸(𝐺)
𝑎(𝑑𝑢 − 1, 𝑑𝑣 − 1).

Hence,
𝐴(𝐺) =

∑

𝑢𝑣∈𝐸(𝐺)

𝑎(𝑛 − 1 − 𝑑𝑢, 𝑛 − 1 − 𝑑𝑣) =
∑

𝑢𝑣∉𝐸(𝐺)
𝑎(𝑛 − 1 − 𝑑𝑢, 𝑛 − 1 − 𝑑𝑣).

Given a function 𝑏 ∶ ℤ+ → ℝ and a graph 𝐺 with 𝑛 vertices, we consider the general topological index
𝐵(𝐺) =

∑

𝑢∈𝑉 (𝐺)
𝑏(𝑑𝑢), 𝐵𝑟𝑒𝑑(𝐺) =

∑

𝑢∈𝑉 (𝐺)
𝑏(𝑑𝑢 − 1).

Note that the topological index 𝐵(𝐺) also can be written as
𝐵(𝐺) =

∑

𝑢𝑣∈𝐸(𝐺)

(

𝑏(𝑑𝑢)
𝑑𝑢

+
𝑏(𝑑𝑣)
𝑑𝑣

)

=
∑

𝑢∈𝑉 (𝐺)
𝑏(𝑑𝑢).

Furthermore, given a symmetric function 𝑐 ∶ ℤ+ × ℤ+ → ℝ+, the topological index 𝐶(𝐺) defined by
𝐶(𝐺) =

∏

𝑢𝑣∈𝐸(𝐺)
𝑐(𝑑𝑢, 𝑑𝑣)

verifies that
log𝐶(𝐺) =

∑

𝑢𝑣∈𝐸(𝐺)
log 𝑐(𝑑𝑢, 𝑑𝑣),

i.e., log𝐶(𝐺) = 𝐴(𝐺) with 𝑎(𝑑𝑢, 𝑑𝑣) = log 𝑐(𝑑𝑢, 𝑑𝑣). Hence, also these kind of topological indices is essentially contained in the
class of indices 𝐴.

One can check that the following general results hold for any topological index of these kinds.
Theorem 20. Let 𝐺 be any graph with 𝑛 vertices and 𝑎 ∶ ℤ+ × ℤ+ → ℝ a symmetric function. Then

𝐴(𝐺𝐺) =
∑

𝑢𝑣∈𝐸(𝐺)
𝑎(𝑑𝑢 + 1, 𝑑𝑣 + 1) +

∑

𝑢𝑣∉𝐸(𝐺)
𝑎(𝑛 − 𝑑𝑢, 𝑛 − 𝑑𝑣) +

∑

𝑢∈𝑉 (𝐺)
𝑎(𝑑𝑢 + 1, 𝑛 − 𝑑𝑢)

𝐴𝑟𝑒𝑑(𝐺𝐺) = 𝐴(𝐺) + 𝐴(𝐺) +
∑

𝑢∈𝑉 (𝐺)
𝑎(𝑑𝑢, 𝑛 − 1 − 𝑑𝑢).

Theorem 21. Let 𝐺 be any graph with 𝑛 vertices and 𝑏 ∶ ℤ+ → ℝ. Then
𝐵(𝐺𝐺) =

∑

𝑢∈𝑉 (𝐺)

(

𝑏(𝑑𝑢 + 1) + 𝑏(𝑛 − 𝑑𝑢)
)

𝐵𝑟𝑒𝑑(𝐺𝐺) =
∑

𝑢∈𝑉 (𝐺)

(

𝑏(𝑑𝑢) + 𝑏(𝑛 − 1 − 𝑑𝑢)
)

= 𝐵(𝐺) + 𝐵(𝐺).

Corollary 5. Let 𝐺 be any graph and 𝑏 ∶ ℤ+ → ℝ.
(1) If 𝑏 is an increasing function, then

𝐵(𝐺𝐺) ≥ 𝐵(𝐺) + 𝐵(𝐺).
(2) If 𝑏 is an decreasing function, then

𝐵(𝐺𝐺) ≤ 𝐵(𝐺) + 𝐵(𝐺).
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Recall that the study of topological indices starts with the seminal work by Wiener [51]. The Wiener index of 𝐺 is defined as
𝑊 (𝐺) =

∑

{𝑢,𝑣}⊆𝑉 (𝐺)
𝑑(𝑢, 𝑣),

where {𝑢, 𝑣} runs over every pair of vertices in 𝐺.
It is interesting to generalize the Wiener index in the following way

𝑊 𝜆(𝐺) =
∑

{𝑢,𝑣}⊆𝑉 (𝐺)
𝑑(𝑢, 𝑣)𝜆,

with 𝜆 ∈ ℝ. Obviously, if 𝜆 = 1, then 𝑊 𝜆 coincides with the ordinary Wiener index 𝑊 . Note that 𝑊 −2 is the Harary index;
𝑊 −1 is the reciprocal Wiener index; the quantity 𝑊 2 is closely related to the hyper-Wiener index, since 𝑊𝑊 = (𝑊 1+𝑊 2)∕2.
Another topological index, proposed in [52] is expressed in terms of 𝑊 1, 𝑊 2 and 𝑊 3 as (2𝑊 1 + 3𝑊 2 +𝑊 3)∕6. See [53] for
more connections of the same kind.
Theorem 22. Let 𝐺 be a graph with 𝑛 vertices and 𝜆 ∈ ℝ.
(1) If 𝜆 > 0, then

3
2
2𝜆(𝑛2 − 𝑛) + 1

2
(𝑛2 + 𝑛) ≤ 𝑊 𝜆(𝐺𝐺) ≤

(1
2
3𝜆 + 2𝜆

)

(𝑛2 − 𝑛) + 1
2
(𝑛2 + 𝑛).

(2) If 𝜆 < 0, then
(1
2
3𝜆 + 2𝜆

)

(𝑛2 − 𝑛) + 1
2
(𝑛2 + 𝑛) ≤ 𝑊 𝜆(𝐺𝐺) ≤ 3

2
2𝜆(𝑛2 − 𝑛) + 1

2
(𝑛2 + 𝑛).

Proof. Assume that 𝐺 has 𝑚 edges.
Let us denote by 𝑢, 𝑣 the vertices in 𝑉 (𝐺) and by 𝑢′, 𝑣′ their corresponding vertices in 𝑉 (𝐺).
There are 𝑚 couples of vertices {𝑢, 𝑣} at distance 1 in 𝐺, and (𝑛

2

)

−𝑚 pairs of vertices at distance greater than 1 in 𝐺 (and so,
at distance 2 or 3). Also, there are (𝑛

2

)

−𝑚 pairs of vertices {𝑢′, 𝑣′} at distance 1 in 𝐺, and 𝑚 pairs of vertices at distance greater
than 1 in 𝐺 (and so, at distance 2 or 3). Furthermore, there are 𝑛 pairs of vertices {𝑢, 𝑢′} at distance 1 in 𝐺𝐺, and 𝑛2 − 𝑛 pairs
of vertices {𝑢, 𝑣′} at distance 2.

If 𝜆 > 0, then
𝑊 𝜆(𝐺𝐺) ≤

(

𝑛
2

)

+ 𝑛 + 3𝜆
(

𝑛
2

)

+ 2𝜆(𝑛2 − 𝑛) =
(1
2
3𝜆 + 2𝜆

)

(𝑛2 − 𝑛) + 1
2
(𝑛2 + 𝑛),

𝑊 𝜆(𝐺𝐺) ≥
(

𝑛
2

)

+ 𝑛 + 2𝜆
(

𝑛
2

)

+ 2𝜆(𝑛2 − 𝑛) = 3
2
2𝜆(𝑛2 − 𝑛) + 1

2
(𝑛2 + 𝑛).

We obtain the converse inequalities if 𝜆 < 0.
If we take 𝜆 = 1 in Theorem 22, we obtain the following consequence for the classical Wiener index.

Corollary 6. If 𝐺 is a graph with 𝑛 vertices, then
7
2
𝑛2 − 5

2
𝑛 ≤ 𝑊 (𝐺𝐺) ≤ 4𝑛2 − 3𝑛.

4 CONCLUSIONS

In this research we obtain new results on the hyperbolicity constant of the complementary prism networks. The main results in
the paper are the following:

Let 𝐺 be a connected graph.
• If diam𝑉 (𝐺) = 1, then 𝛿(𝐺) = 𝛿(𝐺𝐺 ) ≤ 1.
• If diam𝑉 (𝐺) = 2, then 5∕4 ≤ 𝛿(𝐺𝐺 ) ≤ 2.
• If diam𝑉 (𝐺) = 3, then 3∕2 ≤ 𝛿(𝐺𝐺 ) ≤ 2.
• If diam𝑉 (𝐺) = 4, then 7∕4 ≤ 𝛿(𝐺𝐺 ) ≤ 2.
• If diam𝑉 (𝐺) ≥ 5, then 𝛿(𝐺𝐺 ) = 2.
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Some topological indices have been successfully applied in several branches of science such as Chemistry, Biology, Computer
Science, among others. We focus on studying two general classes of topological indices on the complementary prism networks:
𝐴(𝐺) =

∑

𝑢𝑣∈𝐸(𝐺)
𝑎(𝑑𝑢, 𝑑𝑣) and 𝐵(𝐺) =

∑

𝑢∈𝑉 (𝐺)
𝑏(𝑑𝑢). It should be noted that the use of our general approach allows us to find new

properties of the most important topological indices:
∙ if 𝑎(𝑥, 𝑦) = 𝑥𝑦, then 𝐴 is the second Zagreb index 𝑀2;
∙ if 𝑎(𝑥, 𝑦) = 2∕(𝑥 + 𝑦), then 𝐴 is the harmonic index 𝐻 ;
∙ if 𝑎(𝑥, 𝑦) = 2

√

𝑥𝑦∕(𝑥 + 𝑦), then 𝐴 is the geometric-arithmetic index 𝐺𝐴;
∙ if 𝑎(𝑥, 𝑦) = 𝑥𝑦∕(𝑥 + 𝑦), then 𝐴 is the inverse sum indeg index 𝐼𝑆𝐼 ;
∙ if 𝑏(𝑡) = 𝑡2, then 𝐵 is the first Zagreb index 𝑀1;
∙ if 𝑏(𝑡) = 1∕𝑡, then 𝐵 is the inverse index 𝐼𝐷.
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