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Abstract

Motivated by important applications in materials science and biology, we consider a non-stationary coagulation equation with

in-flux and out-flux of particles (cargo). An exact analytical solution to this integrodifferential equation is found in a parametric

form. This solution behaves as a decaying exponent with respect to the particle volume (fluorescence intensity in the case of

coagulation of endosomes). We demonstrate that our exact solution substantially depends on coagulation kernels (fusion and

fission rates) as well as the in-flux and out-flux processes of cargo.
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Motivated by important applications in materials science and biology, we consider
a non-stationary coagulation equation with in-flux and out-flux of particles (cargo).
An exact analytical solution to this integrodifferential equation is found in a paramet-
ric form. This solution behaves as a decaying exponent with respect to the particle
volume (fluorescence intensity in the case of coagulation of endosomes). We demon-
strate that our exact solution substantially depends on coagulation kernels (fusion
and fission rates) as well as the in-flux and out-flux processes of cargo.
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1 INTRODUCTION

The phenomenon of particles sticking together as a result of loss of aggregative stability is called coagulation. Coagulation is
the process of reducing the degree of dispersion and the number of particles in the dispersed system by cohesion of primary
particles. Coagulation usually results in precipitation (sedimentation) of the dispersed phase, or at least a change in the properties
of the primary dispersed system. The coagulation theory for the first time was developed by Marian Smoluchowski1,2 on the
basis of the following idea: particles in the dispersed phase move independently of each other in Brownian motion, until the
distance between the centres of two particles approaching each other is equal to the so-called radius of influence. This value is
approximately equal to the sum of the radii of particles, which corresponds to their direct contact. At this distance the interaction
forces between the particles immediately appear, which creates the possibility of their aggregation. Coagulation results in the
interaction of only two particles, as the collision probability of a larger number of particles is very low. Thus, single particles
collide, forming twins, singles with twins, twins with each other, triplets with singles, etc. This representation of the coagulation
process allows us to formally reduce it to the theory of bimolecular chemical reactions.

The equation describing the particle coagulation process is a time-dependent integrodifferential equation whose solution is
complicated by the presence of a coagulation kernel (collision-frequency function). The form of this kernel is determined by the
predominant coagulation mechanism (Brownian coagulation, coagulation of particles falling under gravity, shear coagulation
and the like3,4,5). Thus, considering proper initial and boundary conditions, we have a strongly nonlinear problem with no
common methods for solving it. As a special note, the existence of exponentially damped, self-similar and stationary solutions
of some particular cases has been discussed by Herrmann, Laurençot, and Niethammer6, Crump and Seinfeld7, Simons8, the
global existence of solutions has been proved for a large class of data by Laurençot9, self-similar solutions and the behavior of
solutions over long times have been investigated by Alyab’eva, Buyevich and Mansurov10 and Alexandrov11,12.

The coagulation equation derived by Smoluchowski1,2 accounts for the basic mechanism of the process: the merging of two
closely approaching particles leads to the formation of a new greater particle. However, when considering endosome fusion and
fission within living cells, clustering and transport of cargoes within endosomes to the cell nucleus, a more complex coagulation
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equation must be considered. Such an equation also includes the appearance of new endosomes when cargo flows, disappearance
of early endosomes and their conversion to late endosomes, the processes when endosomes take up additional cargo by fusing
with endocytic vesicles, and when they lose cargo by budding off vesicular structures13. Such an equation is more complex
than the classical Smoluchowski equation and requires the development of new approaches to its solution. One of the possible
approaches to obtain an exact analytical solution of such a non-stationary coagulation equation is developed in this paper.

2 COAGULATION EQUATION AND ITS ANALYTICAL SOLUTION

Let us consider the particle coagulation equation derived by Foret et al13 in the form of

𝜕𝑛
𝜕𝑡

= 1
2

𝑥

∫
0

𝐾(𝑥′, 𝑥 − 𝑥′)𝑛(𝑥′, 𝑡)𝑛(𝑥 − 𝑥′, 𝑡)𝑑𝑥′ − 𝑛(𝑥, 𝑡)

∞

∫
0

𝐾(𝑥, 𝑥′)𝑛(𝑥′, 𝑡)𝑑𝑥′

+

∞

∫
0

𝐾 ′(𝑥, 𝑥′)𝑛(𝑥 + 𝑥′, 𝑡)𝑑𝑥′ − 1
2

𝑥

∫
0

𝐾 ′(𝑥′, 𝑥 − 𝑥′)𝑛(𝑥, 𝑡)𝑑𝑥′ + 𝐼(𝑥) − 𝛾𝑛(𝑥, 𝑡) +
(

𝑣𝑜𝑢𝑡 − 𝑣𝑖𝑛
) 𝜕𝑛
𝜕𝑥

,

(1)

where 𝑛 is the structural density of endosomes per cell, 𝑠 is the low-density lipoprotein (LDL) fluorescence intensity, 𝑡 is the
process time. Let us especially underline that 𝑛(𝑥)Δ𝑥 represents the number of Rab5- positive endosomes per cell for which
the LDL fluorescence intensity lies between 𝑥 and 𝑥 + Δ𝑥13. This equation describes the endosome network dynamics and
characterizes the degradative cargo distributed into a network of early Rab5-positive endosomes that can transform into late
Rab7-positive endosomes and lysosomes13,14,15. Here the term cargo plays the role of viruses or nanoparticles that are capable
to penetrate inside the living cell through its membrane. The first two contributions on the right-hand side (r.h.s.) of equation
(1) characterize the fusion process of endosomes with 𝑥 and 𝑥′ of cargo amounts. Their fusion going with the rate 𝐾(𝑥, 𝑥′)
produces a new endosome containing the LDL amount 𝑥 + 𝑥′. These contributions represent the standard particle coagulation
terms obtained by Smoluchowski1,2. The next two integral contributions describe the fission process of an endosome with the
cargo amount 𝑥+𝑥′, which leads to the appearance of two endosomes with cargo amounts 𝑥 and 𝑥′ (here 𝐾 ′(𝑥, 𝑥′) stands for the
rate of this process)13. The source term 𝐼(𝑥) describes the initiation of new endosomes containing the cargo amount 𝑥 as a result
of cargo flows13. The transformation process of early endosomes into the late endosomes is described by the term −𝛾𝑛(𝑥, 𝑡).
The last contribution in the r.h.s. of equation (1) shows how endosomes take up extra cargo by fusing with endocytic vesicles
and lose the cargo by budding off vesicular structures13,16,17. Note that 𝑣𝑖𝑛 and 𝑣𝑜𝑢𝑡 represent the average cargo amount per unit
of time gained and lost by an endosome13.

Foret et al.13 have considered the case of constant fusion and fission rates, i.e. 𝐾 = const and 𝐾 ′ = const. Note that such an
approach is frequently used when studying various particle coagulation processes3,4,10,18,19. Keeping this in mind and introducing
the dimensionless parameters

𝜏 = 𝐾𝑡, 𝜅 =
𝛾
𝐾
, ℎ = 𝐾 ′

𝐾
, 𝑤 =

𝑣𝑜𝑢𝑡 − 𝑣𝑖𝑛
𝐾

, (2)

we rewrite equation (1) as

𝜕𝑛
𝜕𝜏

= 1
2

𝑥

∫
0

𝑛(𝑥′, 𝑡)𝑛(𝑥 − 𝑥′, 𝑡)𝑑𝑥′ − 𝑛(𝑥, 𝑡)

∞

∫
0

𝑛(𝑥′, 𝑡)𝑑𝑥′

+ℎ

∞

∫
0

𝑛(𝑥 + 𝑥′, 𝑡)𝑑𝑥′ − ℎ𝑥
2
𝑛(𝑥, 𝑡) +

𝐼(𝑥)
𝐾

− 𝜅𝑛(𝑥, 𝑡) +𝑤𝜕𝑛
𝜕𝑥

.

(3)

Let us now consider the case when the source term 𝐼(𝑥) is switched off. This process can take place from a certain point in
time, when this contribution becomes small enough to be neglected. Following the theory developed by Schumann18, we will
look for a solution to equation (3) in the form

𝑛(𝑥, 𝜏) = 𝑎(𝜏) exp [−𝑏(𝜏)𝑥] , (4)

where 𝑎(𝜏) and 𝑏(𝜏) will be found below.
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FIGURE 1 The structural density 𝑛(𝑥, 𝑏) (scale of values on the left) accordingly to expression (10) and time 𝜏(𝑏) (scale of
values on the right) accordingly to expression (9). System parameters are ℎ = 1, 𝜅 = 9.375, 𝑤 = 0. The blue dotted distribution
is taken from Foret et al.13 and represents the initial condition at 𝑏0 = 𝑏(0) = 1.386 ⋅ 10−4 and 𝑎(0) = 5.383 ⋅ 10−3 (𝜏 = 0).
The red solid and green dashed distributions are plotted at 𝑏 = 𝑏1 = 1.7 ⋅ 10−4 (𝜏 = 6.315 ⋅ 10−5) and 𝑏 = 𝑏2 = 2 ⋅ 10−4

(𝜏 = 1.237 ⋅ 10−4), respectively.

Now substituting (4) into (3) and equating the terms with the same powers of 𝑥, we obtain
𝑑𝑎
𝑑𝜏

= 𝑎(𝜏)
[

ℎ − 𝑎(𝜏)
𝑏(𝜏)

− 𝜅 −𝑤𝑏(𝜏)
]

,

𝑎(𝜏) = ℎ − 2𝑑𝑏
𝑑𝜏

.
(5)

Combining these equations and introducing the new function 𝑔(𝑏) = 𝑑𝑏∕𝑑𝜏, we come to
𝑑𝑔
𝑑𝑏

=
(

1 − ℎ
2𝑔

)[

2𝑔
𝑏

− 𝜅 −𝑤𝑏
]

,

𝑎(𝑏) = ℎ − 2𝑔(𝑏).
(6)

Expression (4) implies that

𝑛(𝑥, 0) = 𝑎(0) exp [−𝑏(0)𝑥] . (7)

Since the initial structural density 𝑛(𝑥, 0) should be known from experiments, parameters of this distribution, 𝑎(0) and 𝑏(0),
should be known as well. It means that the initial value of the function 𝑔 = 𝑔0 at 𝜏 = 0 is also known and given by

𝑔0 =
ℎ − 𝑎(0)

2
. (8)

Now we conclude that the first line of (6) together with the initial condition (8) represent the one-point Cauchy problem for the
determination of 𝑔(𝑏). As this takes place, 𝑎(𝑏) is defined by the second line of expression (6) and 𝜏(𝑏) is given by

𝜏(𝑏) =

𝑏

∫
𝑏(0)

𝑑𝑏1
𝑔(𝑏1)

. (9)
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FIGURE 2 The structural density 𝑛(𝑥, 𝑏) accordingly to expression (10) for different ℎ at the same time 𝜏 = 5 ⋅ 10−4. System
parameters correspond to Figure 1 . The red solid, blue dotted and green dashed distributions are illustrated at 𝑏 = 2.6075 ⋅10−4,
𝑏 = 3.835 ⋅ 10−4 and 𝑏 = 6.269 ⋅ 10−4, respectively.

An important point is that (4) can be rewritten in a parametric form as

𝑛(𝑥, 𝑏) = 𝑎(𝑏) exp (−𝑏𝑥) , (10)

where 𝑎(𝑏) = ℎ − 2𝑔(𝑏) accordingly to the second line of (6).
Thus, expressions (4), (6), (8)–(10) determine the exact analytical solution to the non-stationary coagulation equation found

in a parametric form (with a decision variable 𝑏). Note that the solution obtained represents a decaying exponential solution
with increasing the variable 𝑥. As this takes place, an exponential form of this solution evolves with time due to time-dependent
behaviour of the functions 𝑎(𝜏) and 𝑏(𝜏). A particular case 𝐾 ′ ≪ 𝐾 when the fission rate is much smaller that the fusion rate is
considered in the Appendix A. In this case, the solution has a simpler parametric form.

Our exact analytical solutions plotted accordingly expressions (9) and (10) are illustrated in Figure 1 . The initial structural
density 𝑛(𝑥, 0) (parameters 𝑎(0) and 𝑏(0) in accordance with expression (7)) were found from real experimental data obtained
by Foret et al.13. This initial structural density, 𝑛(𝑥, 0), is shown by the blue dotted line corresponding to the initial value of the
parameter 𝑏0 = 𝑏(0). The dynamics of structural density are demonstrated by the red solid and green dashed lines corresponding
to greater values of 𝑏 and dimensionless times 𝜏. As is easily seen the structural density substantially increases with increasing
𝑏 and 𝜏 for 103 ≲ 𝑥 ≲ 104. As this takes place, all distributions represent exponentially decreasing functions of the LDL
fluorescence intensity 𝑥. Such behaviour follows from expression (4) in the form of which we were looking for a solution to the
original integrodifferential equation.

Parameter ℎ represents the ratio of the fission and fusion rates of endosomes. If the fission rate prevails ℎ > 1, the structural
density grows for 103 ≲ 𝑥 ≲ 104 (see Figure 2 ). In the opposite case, ℎ < 1 (𝐾 > 𝐾 ′), the structural density decreases at a
fixed moment in time.

If endosomes take up additional cargo by fusing with endocytic vesicles more intensively than they lose cargo by budding off
vesicular structures, 𝑤 < 0 (𝑣𝑖𝑛 > 𝑣𝑜𝑢𝑡), the structural density is greater than in the opposite case, 𝑤 > 0, or in the case when
these processes are of the same order, 𝑤 ≈ 0 (Figure 3 ).

Let us especially underline that the peculiarities analyzed in Figures 2 and 3 on the basis of exact analytical solutions can
be used for a more precise description of endosome coagulation and cargo clustering when describing intracellular transport of
nanoparticles or viruses.
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FIGURE 3 The structural density 𝑛(𝑥, 𝑏) accordingly to expression (10) for different 𝑤 at the same time 𝜏 = 5 ⋅ 10−4. System
parameters correspond to Figure 1 . The red solid, blue dotted and green dashed distributions are illustrated at 𝑏 = 3.86 ⋅ 10−4,
𝑏 = 3.835 ⋅ 10−4 and 𝑏 = 3.773 ⋅ 10−4, respectively.

3 CONCLUSION

In summary, an exact analytical solution to the non-stationary integrodifferential coagulation equation is constructed. The solu-
tion is represented by a decaying exponent whose amplitude 𝑎(𝜏) and power coefficient 𝑏(𝜏) are dependent on time 𝜏. The
analytical solution is obtained in a parametric form where 𝑏 stands for a decision variable. Our solution describes cargo distribu-
tion inside endosomes as a result of their fusion and fission mechanisms as well as the in-flux and out-flux processes of cargo13.
We show that the evolution of structural density 𝑛(𝑥, 𝜏) essentially depends on the fission and fusion rates of endosomes as
well as on how endosomes pick up additional cargo by fusing with endocytic vesicles and how they lose cargo by budding off
vesicular structures.

The analytical solutions obtained in this paper rely on the assumption of constant fusion and fission rates, 𝐾 and 𝐾 ′. However,
these kernels entering the corresponding integral contributions depend on the mechanism of interaction between particles (see,
among others,3,4,5). Therefore, the development of the theory for the non-constant 𝐾 and 𝐾 ′ is of considerable interest. Here, for
example, one can use the method of averaging 𝐾 and 𝐾 ′ over all possible volumes of particles18. In the case of such averaging
the aforementioned method for constructing an exact analytical solution takes place as before.

The method developed in this work for finding analytical solutions to the non-stationary integrodifferential coagulation
equation can be applied to the final stage of phase transformation in supersaturated solutions and supercooled melts, when simul-
taneous coexistence of Ostwald ripening, fragmentation, and coagulation of particles or aggregates is possible11,20,21,22,23,24.

ACKNOWLEDGMENTS

The research funding from the Ministry of Science and High Education of the Russian Federation (Ural Federal Uviversity
Program of Development within the Priority-2030 Program) is gratefully acknowledged.



6 MAKOVEEVA

Author contributions
The authors contributed equally to the present research article.

Conflict of interest
The authors declare no potential conflict of interests.

ORCID
Eugenya V. Makoveeva https://orcid.org/0000-0002-2499-3196

References

1. Smoluchowski M. Drei Vortrage uber Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen. Zeitschrift
fur Physik. 1916;17:557–585.

2. Smoluchowski M. Versuch einer mathematischen theorie der koagulationskinetik kolloider losungen. Zeitschrift f Physik
Chemie. 1917;92:129–168.

3. Friedlander Sheldon K. Smoke, Dust, and Haze. Fundamentals of Aerosol Dynamics. Oxford University Press; 2000.

4. Williams MMR, Loyalka SK. Aerosol Science: Theory and Practice. Pergamon Press; 1991.

5. Hunt JR. Self-similar particle-size distributions during coagulation: theory and experimental verification. J Fluid Mech.
1982;122:169–185.

6. Herrmann M, Laurençot P, Niethammer B. Self-similar solutions with fat tails for a coagulation equation with nonlocal
drift. C R Acad Sci Paris Ser I. 2009;347:909–914.

7. Crump JG, Seinfeld JH. On existence of steady-state solutions to the coagulation equations. J Colloid Inter Sci.
1982;90:469–476.

8. Simons S. On steady-state solutions of the coagulation equation. J Phys A: Math Gen. 1996;29:1139–1140.

9. Laurençot P. The Lifshitz-Slyozov-Wagner equation with conserved total volume. SIAM J Math Anal. 2002;34:257–272.

10. Alyab’eva AV, Buyevich YA, Mansurov VV. Evolution of a particulate assemblage due to coalescence combined with
coagulation. J Phys II France. 1994;4:951–957.

11. Alexandrov DV. Kinetics of particle coarsening with allowance for Ostwald ripening and coagulation. J Phys: Condens
Matter. 2016;28:035102.

12. Alexandrov DV. The large-time behaviour of coarsening of particulate assemblage due to Ostwald ripening and coagulation.
Phil Mag Lett. 2016;96:355–360.

13. Foret Lionel, Dawson Jonathan E., Villaseor Roberto, et al. A general theoretical framework to infer endosomal network
dynamics from quantitative image analysis. Current Biology. 2012;22:1381–1390.

14. Castro M, Lythe G, Smit J, Molina-Paris C. Fusion and fission events regulate endosome maturation and viral escape. Sci
Rep. 2021;11:7845.

15. Fedotov S, Alexandrov D, Starodumov I, Korabel N. Model of virus–endosome fusion and endosomal escape of pH-
responsive nanoparticles. Mathematics. 2022;10:375.

16. Vonderheit A, Helenius A. Rab7 associates with early endosomes to mediate sorting and transport of Semliki forest virus
to late endosomes. PLoS Biol. 2005;3:e233.



MAKOVEEVA 7

17. Murphy RF. Maturation models for endosome and lysosome biogenesis. Trends Cell Biol. 1991;1:77–82.

18. Schumann TEW. Theoretical aspects of the size distribution of fog particles. Quarterly Journal of the Royal Meteorological
Society. 1940;66:195–208.

19. Alexandrov DV. The steady-state solutions of coagulation equations. Int J Heat Mass Trans. 2018;121:884–886.

20. Lifshitz EM, Pitaevskii LP. Physical Kinetics. Oxford, UK: Pergamon; 1981.

21. Slezov VV. Kinetics of First-order Phase Transitions. Weinheim, Germany: Wiley, VCH; 2009.

22. Alexandrov DV. Relaxation dynamics of the phase transformation process at its ripening stage. J Phys A: Math Theor.
2015;48:245101.

23. Alexandrov DV, Alexandrova IV. From nucleation and coarsening to coalescence in metastable liquids. Phil Trans R Soc A.
2020;378:20190247.

24. Alexandrova IV, Alexandrov DV, Makoveeva EV. Ostwald ripening in the presence of simultaneous occurrence of various
mass transfer mechanisms: an extension of the Lifshitz–Slyozov theory. Phil Trans R Soc A. 2021;379:20200308.



8 MAKOVEEVA

APPENDIX A

In this section, we present an exact analytical solution in the case ℎ = 0 (when the fission rate 𝐾 ′ is much smaller than the fusion
rate 𝐾).

If this is really the case, we have from equations (5)
1
2
𝑑𝑎
𝑑𝑏

= 𝑎
𝑏
+ 𝜅 +𝑤𝑏,

𝑎(𝜏) = −2𝑑𝑏
𝑑𝜏

.
(11)

Integrating the first equation (11), we arrive at
𝑎(𝜏) = 𝑎(𝑏(𝜏)) = −2𝜅𝑏(𝜏) + 2𝑤𝑏2(𝜏) ln 𝑏(𝜏) + 𝐶0𝑏

2(𝜏),

𝐶0 =
𝑎(0)
𝑏2(0)

+ 2𝜅
𝑏(0)

− 2𝑤 ln 𝑏(0).
(12)

Now substituting the first line of (12) into the second line of (11) and integrating the result, we get

𝜏(𝑏) = 2

𝑏

∫
𝑏(0)

𝑑𝑏1
2𝜅𝑏1 − 2𝑤𝑏21 ln 𝑏1 − 𝐶0𝑏21

. (13)

Thus, expressions (12) and (13) determine exact analytical solutions in a parametric form, where 𝑏 is a desicion variable.
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