Mechanisms of action of natural small-molecule drugs in
cardiovascular disease

LI SUN!, XUEFANG LI', HUI LUO', ZHIGANG CHEN!, FEI LIN!, XIULONG WANG!,
DONGXU LI', SIYU SUN!, and Guoan Zhao!

Xinxiang Medical University First Affiliated Hospital

August 16, 2022

Abstract

Cardiovascular diseases (CVDs) cause massive morbidity and mortality. In recent years, natural small-molecule therapeutics
have attracted much attention for their significant efficacy. Articles have been published to study the intervention of natural
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Abstract

Cardiovascular diseases (CVDs) cause massive morbidity and mortality. In recent years, natural small-
molecule therapeutics have attracted much attention for their significant efficacy. Articles have been pub-
lished to study the intervention of natural drugs (including monomers, compounds, compound and neo-
combinations) on one type of cardiovascular disease, but the number and variety of natural drugs included
are small and insufficient, and there are no articles detailing the protective effects of different types of natural
small molecule drugs on multiple cardiovascular diseases. Natural small molecule drugs have high biological
activity and structural diversity, and are more likely to enter the body to exert their effects. In this arti-
cle, we describe the efficacy of such drugs for anti-atherosclerosis, cardiomyocyte repair, and antagonism of
ventricular remodeling, heart failure, and arrhythmias to provide an experimental basis for clinical research
and identification of new therapeutic approaches.
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Highlights

e This review summarizes pathophysiological mechanisms of cardiovascular diseases.
e It focuses on natural small molecule drugs for cardiovascular disease treatment.
e [t shows molecular mechanisms of major components of natural small molecule drugs.

Introduction

Cardiovascular diseases (CVDs) have been increasing in incidence and disability rates year after year, posing
serious threats to human life[1, 2]. With the world population aging and growing, 22.2 million people are
expected to die from CVDs in 2030 [3]. CVDs include atherosclerosis (AS), heart failure (HF), arrhythmias,
valvular disease, peripheral arterial disease, thromboembolic disease, and venous thrombosis, with underly-
ing pathologies of abnormal cardiac, vascular, and electrical remodeling. Many cardiovascular diseases have a
long course and poor prognosis, and the current medical approach is mainly based on surgery, supplemented
by symptomatic drugs, but these methods can cause intolerance and some side effects in patients. Therefore,
it is important to explore new, less side effects and well-tolerated treatments for cardiovascular diseases.
Natural small molecules are active ingredients extracted from natural plants, and these natural products
have received widespread attention for their advantages such as multi-target effects and fewer adverse effects
than synthetic drugs.Natural plants have long played an important role in drug discovery and development;
many small-molecule drugs from natural plants are described in classical plant pharmacopoeias such as
the 2020 edition of Pharmacopoeia of the People’s Republic of China, Indian Pharmacopoeia, U.S. Phar-
macopeia/National Formulary U.S. Pharmacopeia/National Formulary,” and ”Japanese Pharmacopoeia.”
Examples include digitalis (Maundiflora), aspirin (Willow), ergotamine (Ergot), and quinine (Cinchona)
[1, 2, 4]. Multiple reports have described the mechanisms by which natural small molecules are involved
in CVD pathophysiologies through complex pathways underlying inflammation, oxidative stress, apoptosis,
and autophagy.

Natural plant drugs have many different targets. However, current discussion is mostly about one natural
drug for one disease or multiple natural drugs for one disease, including only a small number and insufficient
variety of natural drugs and a mixture of complexes and monomers. Data from most randomized clinical
trials and meta-analyses do not address the effects of different classes of natural small molecules on different
CVDs; moreover, a systematic evaluation of pathways by which they can act is lacking. The aim of this
review was to summarize the mechanisms by which natural small-molecule drugs combat CVDs and thus
provide useful information for identification of novel compounds.

The effect of natural small molecule drugs on AS

In AS, lipid plaque-like deposits (atheromatous or atherosclerotic plaques) form in the walls of medium or
large arteries, resulting in reduced blood flow[5]. Pathological factors that contribute to AS development
include increased serum cholesterol levels, impaired vascular endothelial function, and lipid peroxidation



damage. During AS, endothelial permeability increases[6], and oxidized LDL enters the inner layer of the
arterial wall, the intima, where a portion of it is retained and modified by proteases and other enzymes. The
modified lipoproteins and their products, such as fatty acids and oxidized lipids, induce an inflammatory
response, also increasing serum cholesterol level[7] and elevating production of inflammatory factors, includ-
ing TNF-o, IL-13, and IL-6. Adhesion molecules induce vascular inflammation by promoting adhesion of
monocytes and leukocytes to activated endothelial cells (ECs) [8]. TNF-a can induce apoptosis[9]; moreover,
some proatherogenic factors, including oxidized LDL, angiotensin II, nitric oxide, and reactive oxygen species
(ROS), induce EC apoptosis [10]. The most important role of oxidized LDL in AS pathogenesis is regulation
of oxidative stress [11].

Cholesterol accumulation causes differentiation of monocytes into macrophages [12], which in turn can
be functionally and phenotypically modified to respond to microenvironmental stimuli with pro-wound-
healing, pro-inflammatory, tissue regeneration, anti-inflammatory, anti-fibrotic, or pro-fibrotic properties[13].
Macrophages become foam cells by phagocytosing lipid droplets and accumulate in plaques, release cytokines
to induce inflammatory responses, and induce smooth muscle cell apoptosis [14]. Foam cells and macrophages
are also prone to apoptosis. Thin fibrous caps rupture necrotic lipid cores [15] and promote apoptosis, plaque
rupture, and thrombosis [16]. Plaque repair requires vascular smooth muscle cell (VSMC) proliferation and
matrix synthesis, both of which are altered by cell death and senescence [17]. As AS progresses, lipids, dead
cells, and necrotic debris accumulate, requiring increased phagocytosis to prevent formation of a necrotic
core, wherein autophagy plays an important role.

Autophagy contributes to intracellular homeostasis in cardiomyocytes, ECs, and arterial smooth muscle
cells [18], e.g., activation of autophagy by intercellular and/or extracellular stimulation can prevent VSMC
death [19]. Mammalian target of rapamycin inhibitor (mTOR) selectively clears macrophages in rabbit
atherosclerotic plaques via autophagy [20]. Some oxidative stress and apoptosis inducers, including oxys-
terols, oxidized phospholipids (0xPLs), and unesterified free cholesterol, cause macrophage autophagy, which
in turn promotes necrosis, apoptosis, and oxidative stress in advanced atherosclerotic plaques [21].

Inflammatory cell infiltration, oxidative stress, apoptosis, and autophagy are central to AS pathophysiology.
Many natural small-molecule drugs isolated from plants, such as artemisinin, paclitaxel, ginkgolide B, and
curcumin, have been structurally modified to have antioxidant, inflammomodulatory, anticoagulant, hypo-
glycemic, antihypertensive, anti-atherosclerotic, and anti-ischemic properties and to play important roles in
treating CVDs [22, 23]. Therefore, natural small-molecule drugs intervene in AS initiation and progression
through inhibition of inflammation and oxidative stress, regulation of apoptosis and autophagy inhibition,
intervention in cellular senescence, anti-vascular remodeling, anti-cellular iron death, and anti-cellular adhe-
sion. Their specific mechanisms of action are shown in Table 1.

Table 1. Mechanisms of action of natural small-molecule drugs against AS

Serial Chinese Active Molecular ~ Chemical  Cellular/animal Molecular
number medicine ingredient  Classification formula structure models Role mechanisms Re
1 Croton Phorbol Phorbol C36H5605 Japanese Regulation Regulation
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13- with and
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ears signaling
2 Corydalis ~ Dehydrocorydalkadoid CooHoyNOy Macrophages;Regulation Targeting [24
yan- ApoE /- of macrophage
husuo mice inflammation p65
W.T. and
Wang ERK1/2
signaling



Serial Chinese Active Molecular ~ Chemical  Cellular/animal Molecular
number medicine ingredient  Classification formula structure models Role mechanisms Re
3 FEuphorbia  Ethyl Polyphenol CgHi¢0Os5 Macrophages;Regulation Decreasing  [2F
fis- gallate ze- of lipid
cheri- brafish; inflammation content
ana and and
Steud. ApoE/~ macrophage
mice num-
ber in
plaques
4 Magnolia Honokiol Lignan- C18H15802 ApoE/~ Regulation Downregulati{@f
like mice of of pro-
inflammationinflammatory
marker
expression
5 Spatholobus FormononetinFlavonoid — Ci16H1204 HASMCs, Regulation Regulation [27
suberec- HU- of of
tus VECs, inflammation inter-
Dunn THP-1 action
cells be-
and tween
peri- KLF4
toneal and
macrophages; SRA
male
ApoE /-
mice
6 Lithospermunghikonin NaphthoquindigH1405 ApoE/~ Regulation Inhibition  [28
ery- mice of of
throrhi- and inflammation CD4+
zon their T cell
Sieb. macrophages activa-
et tion
Zuce. and re-
duction
of
interferon-
Y
secre-
tion
via a
PKM2-
dependent
metabolism



Serial Chinese Active Molecular ~ Chemical  Cellular/animal Molecular
number medicine ingredient  Classification formula structure models Role mechanisms Re
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Serial Chinese Active Molecular ~ Chemical  Cellular/animal Molecular
number medicine ingredient  Classification formula structure models Role mechanisms Re
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number medicine ingredient  Classification formula models Role mechanisms Re
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number medicine ingredient  Classification formula structure models Role mechanisms Re
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[61

2.1 Inflammation

AS is a chronic inflammatory disease in which, upon endothelial damage and platelet activation in the
arterial vasculature, monocytes adhere to the activated endothelium and differentiate into pro-inflammatory
macrophages, promoting release of inflammatory factors and exacerbating AS [62].

Phorbol 12-myristate 13-acetate from croton was shown to reduce the rise in oxidized low-density lipoprotein
(ox-LDL)-stimulated reactive oxygen species (ROS) and malondialdehyde (MDA) levels, modulate Notchl
and DLL4 signaling by inhibiting upregulation of nuclear transcription factor (NF)-xB p65 and the related
receptor LOX-1. Dehydrocorydaline (DHC), an alkaloid from the traditional Chinese herb yanhuoshao,
improved aortic compliance and increased plaque stability inApoE~~ mice after intraperitoneal injection
[63]. DHC reduced lipopolysaccharide (LPS)-induced inflammation in bone marrow-derived macrophages
[24]. Ethyl gallate inhibited monocyte chemotactic protein 1 (MCP-1) and interleukin 6 (IL-6) secretion in
activated macrophages and attenuated vascular lipid accumulation and inflammatory responses in vivo in
zebrafish and ApoE~/~ mice [25].

Honokiol downregulated pro-inflammatory marker expression, reduced ROS levels, and enhanced superoxide
dismutase (SOD) activity inApoE~~ mice [26]. Formononetin reduced foam cell formation and its accumu-
lation in the arterial wall by decreasing SRA expression and reducing monocyte adhesion and modulating
the interaction between KLF4 and SRA[27]. Shikonin (SKN) inhibited hyperhomocysteinemia (HHcy)-
stimulated PKM2 activity, interferon-vy secretion, and T cell ability to promote pro-inflammatory macrophage
polarization [28]. Calycosin inhibited foam cell formation, inflammation, and apoptosis by upregulating
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KLF2-MLKL-mediated autophagy [29]. Salvianolic acid B, a phenolic acid from Salvia miltiorrhiza , inhib-
ited NF-xB and TNF-a in ECs and pericytes and decreased the expression of inflammation-related factors
(IL-6, IL-1B, TNF-0) and ox-LDL in ApoE~/~ serum [30].

Finally, kaempferol, morin hydrate, and cordycepin all reduced inflammation through PI3K/Akt signaling to
protect against AS [31-33]. Ginsenoside-Rb2 [34], amygdalin [35], and baicalin [36]were also shown to protect
against AS by reducing inflammation through NF-xB signaling. These findings suggest that natural small-
molecule drugs, as natural antibiotics, intervene in AS by inhibiting EC injury through anti-inflammation,
regulation of macrophage polarization, and intervention in smooth muscle cell phenotypic transformation.

2.2 Oxidative stress

Oxidative stress also promotes AS. Natural small-molecule drugs have been shown to alleviate AS by modulat-
ing NRF2, peroxisome proliferator-activated receptor (PPAR)-y, ROS, and endothelial nitric oxide synthase
(eNOS) levels [64]. Elevated ROS generation is one of the main factors of cardiomyocyte and EC damage[65,
66]. In addition, oxidative stress can modulate AS by stimulating VSMC proliferation[17].

Dihydrotanshinone I (DHT), a diterpenoid derived from Salvia miltiorrhiza , significantly enhanced plaque
stability inApoE~/~ mice in vivo by reducing oxidative stress, narrowing the necrotic core region, increasing
collagen content, and decreasing RIP3 kinase expression; in cultured macrophages, DHT regulated RIP3
through Toll-like receptor 4 (TLR4) dimerization to attenuate necrotic apoptosis[37]. Formononetin (FMNT)
is a flavonoid isolated from Astragalus membranaceus ; in primary human umbilical vein ECs (HUVECs:),
FMNT induced damage via ox-LDL. By measuring the expression of cyclooxygenase 2 (COX-2), eNOS,
and PPAR-v, it was shown that formononetin inhibits oxidative stress by stimulating PPAR-y signaling[38].
RAW 264.7 cells were treated with orientin, a flavonoid isolated from Passiflora edulis , along with 80
pg/mL ox-LDL to mimic AS, wherein orientin was found to inhibit ox-LDL-induced lipid droplets. The
receptor for ox-LDL, CD36, was significantly downregulated after targeted protein treatment. Alterations
in oxidative stress were attenuated by orientin treatment that inhibited ROS generation and increased
eNOS expression. In addition, orientin inhibited ox-LDL-induced cellular angiopoietin 2 (Ang-2) and NF-xB
expression, suppressing oxidative stress and inflammation [39].

Finally, Z-ligustilide [40], homoplantaginin [41], sulforaphane [42], salvianic acid A [43], aucubin [44], and
baicalin [45] protected against AS through Nrf2 signaling by inhibiting oxidative stress. Dioscin [46] and
catalpol [47] inhibited oxidative stress through PGC-1a signaling. Epigallocatechin gallate [48] and puerarin
[49] inhibited oxidative stress through SIRT1 signaling to slow atherosclerotic progression.

2.3 Autophagy

Normal levels of autophagy protect cells from adverse environmental stimuli, but excessive and insufficient
autophagy often contributes to CVD development [21]. During AS progression, macrophage autophagy
reduces cholesterol deposition in plaque macrophages, promotes cholesterol efflux[67], and inhibits both
assembly and activation of NLRP3 inflammatory vesicles.

Gynostemma saponin (GP) is one of the primary bioactive components of the Chinese herb Gynostemma pen-
taphyllum . Incubation of cultured THP-1 cells with ox-LDL induced a significant decrease in LC3-II protein
levels and increased the number of autophagosome puncta and p62 expression. Using co-immunoprecipitation
assays, GP was found to upregulate Sritl and FOXO1 expression and enhance their direct interaction,
thereby promoting autophagy while inhibiting ox-LDL uptake and foam cell formation [50]. In RAW264.7
macrophages exposed to ox-LDL, clematichinenoside AR (AR), a triterpenoid saponin from Chinese herbal
medicine, inhibited foam formation and cholesterol accumulation and promoted cholesterol eflux through
upregulation of ABCA1/ABCG1; however, the autophagy inhibitor bafilomycin Al attenuated these effects,
suggesting that AR attenuates AS by activating autophagy [51]. Quercetin is a flavonol extracted from
Quercus serrata . In ox-LDL-induced cultured RAW264.7 cells, quercetin treatment increased cell survival
and LC3-II/T and beclin-1 expression and reduced MST1 expression, lipid accumulation, and senescence
[52]. Geniposide [53] and berberine [54] regulates autophagy and alleviates AS through the mTOR signaling
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pathway.
2.4 Apoptosis

Apoptosis is a major feature of AS pathophysiology. Apoptosis occurs through extrinsic pathways, involving
the death receptor system, cytotoxic stress, and also through intrinsic pathways, involving intracellular
injury, hypoxia, and survival factor deprivation; these endogenous stresses can activate endogenous apoptotic
pathways [68, 69].

Natural small molecules have been shown to regulate apoptosis through both extrinsic and intrinsic path-
ways. Geniposide is a cyclic enol ether glycoside from the Chinese plant Gardenia jasminoides ; notogin-
senoside R1 is a former ginseng triol-type compound extracted from the Chinese plant Panaz ginseng .
In wvivo , their combination improved lipid levels and attenuated plaque formation; it also inhibited secre-
tion of serum inflammatory factors and oxidative stress factors in ApoE~/~ mice on a high-fat diet (HFD).
Their combination also reduced expression of NLRP3-containing inflammatory vesicle-associated proteins
and Bax/Bcl2/caspase-3 pathway-associated proteins. In cultured cells, their combination activated the
AMPK/ mTOR pathway to inhibit HoOs-induced inflammation and apoptosis, protecting HUVECs from
inflammation and apoptosis [55]. Paeonol is a phenolic compound isolated from peony bark. In cultured
ox-LDL-injured VSMCs, it increased LC3II expression, decreased p62 and caspase-3 expression, increased
the number of autophagosomes, and decreased that of apoptotic vesicles; paeonol also regulated VSMC
autophagy and apoptosis. It inhibited apoptosis in VSMCs by activating PI3K / Beclin-1 signaling and
upregulating autophagy [56].

2.5 Senescence

AS is strongly associated with age. Features of aging, such as lower VSMC proliferation, occur in atheroscle-
rotic plaques, one of the first signs of premature VSMC senescence in AS [70]. Senescence of vascular ECs
plays a key role in vascular senescence in CVDs [71]. Senescence affects AS through complex pathways,
involving sirtuins (Sirts), Klotho, fibroblast growth factor 21 (FGF21), and p53 [72].

Ginsenoside Rbl is a tetracyclic triterpene saponin from ginseng. In SD rats with hyperlipidemia induced
using HFD and in cultured senescent HUVECs induced using ox-LDL, Ginsenoside Rb1 acts through increas-
ing SIRT1 expression to decrease Beclin-1 acetylation and induce autophagy, thereby protecting endothelium
and HUVECs from ox-LDL-induced senescence[57]. Quercetin attenuated AS through nitrogen metabolism,
ECM-receptor interaction, and p53 and mTOR signaling by inhibiting lipid deposition and increased serum
sIcam-1 and IL-6 levels inApoE~”/~ mice; it was also found to improve cell morphology, reduce apoptosis,
increase mitochondrial membrane potential in HAECs, and regulate EC senescence [58].

2.6 Vascular remodeling

Vascular remodeling refers to structural and functional changes in vessel walls caused by disease, injury,
or aging [73]. It is the main determinant affecting vessel lumen areas after AS and balloon injury [74]. In
AS, the middle and inner cells of vessels proliferate and the vessel walls thicken, but vascular remodeling is
characterized by outward expansion of the vessel walls [75]. Vascular remodeling is generally considered a
structural change brought about by cell proliferation, necrosis, and migration and extracellular matrix (ECM)
synthesis/degradation [76]. During this change, growth factors, vasoactive substances, and hemodynamics
play important roles [77]. Punicalagin, a natural small molecule, prevents vascular remodeling by inhibiting
the specific activation of Smadl/5 in human ECs [59].

2.7 Iron death

Iron death is an iron-dependent form of non-apoptotic cell death; oxidative cell death is involved in AS,
characterized by increased intracellular iron level and reduced antioxidant capacity leading to lethal ac-
cumulations of peroxidized lipids [78]. Lipid peroxidation, intraplaque hemorrhage, and iron death are
characteristics of advanced human AS plaques [79].
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Tanshinone ITA (TSA) is a lipid-soluble phenanthrene compound isolated from the root of Salvia divinorum .
It significantly reduced ROS accumulation in HCAEC cells caused by iron death inducers. TSA also restored
glutathione (GSH) and increased the expression of NRF2 and downstream genes. It is also shown to protect
human coronary artery ECs from iron death by activating NRF2 signaling [60].

2.8 Anti-monocyte adhesion

Monocyte-macrophage adhesion to ECs plays an important role in AS and is promoted by ox-LDL [80].
Monocyte adhesion is closely related to tissue injury and repair; during arterial wall hypoxia, the intima
recruits circulating monocytes via a specific integrin receptor (macrophage adhesion ligand 1, or Mac-1)
that binds to endothelial adhesion molecules, allowing tight attachment of monocytes [81]. This interaction
between cells in the vessel wall can accelerate the formation of early AS lesions.

Dehydrocostus lactone (DHL) is a sesquiterpene lactone naturally occurring in plants of the genus Xerophyi-
lum (e.g., Mucuna pruriens ). It inhibits ox-LDL-induced increases in VCAM-1 and E-selectin expression and
reduces their downstream effects (nuclear cell-endothelial adhesion and pro-inflammatory cytokine release),
which may be considered a preventive or therapeutic approach against ox-LDL-induced AS [61].

3. Role of natural small molecules in HF

HF refers to decreased myocardial contractile function and inability of the heart’s pumping capacity to
meet the metabolic needs of the body, resulting in insufficient blood perfusion to tissues and organs; it is
often accompanied by stasis in the pulmonary or body circulation [82]. It is an epidemic disease with high
mortality and morbidity [83] and is common in the end stages of CVDs.

The pathophysiological mechanisms underlying HF are complex. It is characterized by the failure of innate
antioxidant defense mechanisms, including those of SOD, catalase (CAT), and glutathione peroxidase (GPx),
leading to ROS inactivation [84]. Ventricular remodeling is the pathological basis for HF development;
it involves progressive ventricular dilatation and dysfunction, leading to pressure and volume overload,
causing myocardial hypertrophy and fibrosis, while cardiac output decreases, and sustained cardiac overload
eventually leads to arrhythmias and sudden death [85-87]. HF converts hemodynamic stress into sterile
cardiac inflammation; the resulting increased wall tension and mechanical stretch trigger cardiomyocytes
and cardiac fibroblasts to release pro-inflammatory cytokines, including TNF-a, IL-6, IL-13, and angiotensin
1T [88].

Systemic inflammation is a common pathobiological feature of both acute and chronic HF [89]. Inflam-
mation and activation of the immune system significantly stimulate cardiac fibrosis and remodeling [90].
Fibrosis is the result of excessive deposition of ECM components, such as collagen and fibronectin, leading
to fibrous connective tissue accumulation [91]. Initially, fibrosis is cardioprotective, but persistent fibrosis
negatively affects cardiac function. Myofibroblast-mediated fibrosis is a hallmark of pathophysiological car-
diac remodeling [92]; paracrine signals from fibroblasts induce cardiomyocyte hypertrophy, involving TGFB,
interleukin 33 (IL-33), fibroblast growth factor 2 (FGF2), and tumor necrosis factor o (TNFa) [93, 94], and
hypertrophic stimuli activate cardiomyocytes, inducing apoptosis [95]. During physiological and pathological
hypertrophy, the heart cannot pump blood sufficiently, and the cardiac machinery secretes vascular growth
factors that promote angiogenesis to maintain myocardial mass and increase blood supply [96]. In addition,
macrophages mediate cardiac electrical conduction and metabolic stability under homeostatic conditions and
promote early postnatal cardiac recovery by stimulating cardiomyocyte proliferation and angiogenesis [97].

HF is closely associated with myocardial structural changes and activation of multiple molecular signaling
pathways of inflammation, oxidative stress, and cardiomyocyte apoptosis, leading to cardiac insufficiency
[98]. For HF treatment, the most commonly used clinical drugs are angiotensin-converting enzyme inhibitors,
angiotensin receptor blockers, and pB-blockers; however, their prolonged use can cause adverse effects such as
electrolyte disturbances, fluid depletion, and hypotension [99]. Natural drugs in combination with Western
medicine have been shown to improve quality of life in patients with HF [100]; drug action mechanisms are
shown in Table 3.
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Table 2. Mechanisms of action of natural small-molecule drugs against HF

Molecular
Serial Active Molecular Chemical Cellular/animal mech-
num- Chinese ingre- for- struc- mod- a-
ber medicine dient Classificatiomula ture els Role nisms Re
1 Curcuma B-elemene  SesquiterpenditigHoyg H9c2 cells; Regulation Activation  [1(
longa male ICR  of of PPARS,
Linn. mice inflammation inhibition
of NF-xB
nuclear
transloca-
tion, and
degrada-
tion of
IxBa
2 Lonicera Chlorogenic Styrene Ci16H1509 Human Regulation Inhibition  [1(
japon- acid acrylic in- of of
ica compounds duced inflammation NF-xB
Thunb. pluripo- and
tent JNK
stem signaling
cell-
derived
car-
diomy-
ocytes;
male
C57BL/6N
mice
3 Punica Reynoutrin Flavonoids Co9H15013 H9c2 Regulation Upregulation [1(
grana- cells; of of S100
tum male inflammation calcium-
Linn. Sprague- binding
Dawley protein
rats Al
expres-
sion
and
inhibi-
tion of
MMP
expres-
sion
and
tran-
scrip-
tional
activ-
ity of
NF-kB
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Serial Active Molecular Chemical Cellular/animal mech-
num- Chinese ingre- for- struc- mod- a-
ber medicine dient Classificatiomula ture els Role nisms Re
4 Ligusticum  Liguzinediol Alkaloids CgH12N50O9 Male Regulation Downregulatipk(
chuanz- Sprague- of of
iong Dawley inflammation TGF-
Hort. rats B1/Smad
signaling
5 Brassica Lutein Carotenoids CygHs609 Neonatal Regulation Inhibition  [1(
oler- rat car- of of AP-
acea diomy- inflammation 1/IL-
Lin- ocytes 11
naeus and signaling
var. CFs
acephala
Linn.f.
tricolor
Hort.
6 Lycium Betaine Quaternary CsH;1NOs Wistar Regulation Inhibition [1C
chi- amines rats of of miR-
nense inflammation 423
Miller and
miR-27
expres-
sion,
restora-
tion of
matrix
pro-
teins,
cardiac
biomarker
genes
to
reduce
inflammation
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num- Chinese ingre- for- struc- mod- a-
ber medicine dient Classificatiomula ture els Role nisms Re
7 Brassica Sulforaphane Isothiocyanat€sH,1 NOS, New Regulation Reducing [1C
olerac- Zealand of ox- expres-
era L. white idative sion of
Var. rabbit stress oxida-
Acpi- tive
tata stress
L. mark-
ers and
inflam-
matory
mark-
ers;
in-
creas-
ing
super-
oxide
dismu-
tase
(SOD)
and
malon-
dialde-
hyde
(MDA)
activity
8 Lithospermunghikonin NaphthoquindngsH 05 Neonatal Regulation Inhibition  [1(
erythrorhi- rat of of PKM2,
zon Sieb. cardiomy-  oxidative TGF-
et Zucc. ocytes and  stress B/Smad2/3,
CF's; male and
C57BL/6 Jak2/Stat3
mice signaling
9 TozicodendroButein Polyphenols Cy5H1205 Male Regulation Modulation [1(
verni- Sprague- of ox- of
cifluum Dawley idative ERK/Nrf2
(Stokes) rats stress signaling
F.A.
Barkley
10 Alpinia Cardamonin Chalcones  Ci6H1404 Isolated Regulation Modulation [11
kat- mouse of ox- of Nrf2
sumadai car- idative and
Hayata diomy- stress NF-xB
ocytes; signaling
C57
mice
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Serial Active Molecular Chemical Cellular/animal mech-
num- Chinese ingre- for- struc- mod- a-
ber medicine dient Classificatiomula ture els Role nisms Re
11 Glycine Soybean Isoflavones Ci5H1002 Patients Regulation Upregulation [11
max isoflavones with is- of ox- of Nrf2
(Linn.) chemic idative expression
Merr. stroke stress
12 Panax Ginsenoside Triterpenic Cs3HggOo9 H9C2 Regulation Activation — [11
ginseng Rb3 saponins cells; of of
C. A. male apoptosis PPAR«
Meyer C57BL/6 signaling
mice
13 Spinacia Lutein Carotenoids C4oHsg02 Male Regulation Regulation [11
oler- Sprague- of of
acea Dawley apoptosis Nrf2/HO-
Linn. rats 1
signaling
14 Ligusticum  Liguzinediol Alkaloids CgH15N50O9 Male Regulation Regulation [11
chuanax- Sprague- of of
iong Dawley apoptosis Bcl-2,
Hort. rats Bax,
caspase-
3, and
NF-xB
expression
15 Cistanche  FEchinacoside Phenethyl — C35Hy6020 AC-16 Regulation Upregulation [11
deserti- alcohol cells; of VR of
cola male SIRT1/FOX03,
Ma Sprague- signaling
Dawley
rats
16 Veratrum Resveratrol Polyphenols Ci4H1503 Neonatal Regulation Activation  [11
nigrum rat of VR of
Linn. CFs; Sirtl,
C57BL/6 with
mice subse-
quent
reduc-
tion in
acety-
lation
and
tran-
scrip-
tional
activ-
ity of
Smad3
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17 Tripterygium Celastrol BenzoquinondCygH3504 Rat Regulation Modulation [11
wil- methyl pri- of VR of
fordii triterpenes mary STAT3
Hook. car- activity
f diomy-
ocytes
and
H9C2
cells
18 Quercus Quercetin ~ Flavonoids Ci5H1qO7 HL-1 cells; Regulation Enhancement|[11
dentata male of myocar- of IDH2-
Thunb. C57BL/6J  dial associated
mice fibrosis desucciny-
lation via
SIRT5
19 Astragalus  AstragalosidePolysaccharidel; HggO14 Neonatal Regulation Decreasing [11
mem- v rat CF's of myocar- TRPM7
branaceus and dial channel
(F'isch.) NIH-3T3 fibrosis inhibitory
Bge. cells; male currents
Sprague- and down-
Dawley regulation
rats of TRPM7
protein
expression
20 Centella Asiatic Triterpenic  C39Hyg05 Male Regulation Inhibition  [1Z
asiat- Acid compounds C57BL/6  of my- of
ica mice ocar- TGF-
(Linn.) dial 1/Smad
Urban fibrosis and
IL-6
signaling
21 Aconitum  Higenamine BenzylisoquinGliglty7NO3 Adult Regulation Inhibition  [12
carmichaeli alkaloids mouse of myocar- of TGF-
Debz. cardiac dial B1/Smad
myocytes fibrosis signaling
and CFs;
male
C57BL/6
mice
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22 Astragalus  AstragalosidePolysaccharidel; HggO14 Primary Regulation Induction  [12
mem- v HUVECs;  of of JAK
branaceus male angiogenesis and
(Fisch.) Sprague- STAT3
Bage. Dawley phospho-
rats rylation
and
STAT3-
regulated
VEGF
promoter
activity
23 Salvia Tanshinone Lipid- C19H1803 C57BL/6 Regulation Regulation [12
milti- ITA soluble mice; of of miR-
orrhiza phenanthrenequinones HUVECs angiogenesis 499-5p
Bunge

3.1 Inflammation

Inflammatory responses are a major aspect of HF, involving tumor necrosis factor o (TNFa), IL-1f and IL-18.
Levels of the downstream factor NLRP3 inflammatory vesicles are elevated in HF [124]. CXC motif ligand
16 (CXCL16) was identified as a novel diagnostic marker for inflammatory cardiomyopathy and HF [125].
C-reactive protein (CRP) level was found to be elevated in 57% of patients who participated in the RELAX
(phosphodiesterase 5 inhibition to improve clinical status and exercise capacity in diastolic HF with preserved
ejection fraction) trial [126]. This suggests that systemic inflammation is a common pathobiological feature
of both acute and chronic HF [89, 127] .

Liguzinediol from Chuanxiong reduces cardiomyocyte necrosis as well as collagen deposition and myocardial
fibrosis. It inhibits renin-angiotensin-aldosterone system (RAAS) activation, suppresses pro-inflammatory
factors, and also suppresses HF in SD rats by downregulating TGF-$1/Smad signaling [104]. Luteolin
is a carotenoid; in cardiac fibroblasts (CFs), it prevented Ang II-induced phenotypic transformation and
cardiomyocyte hypertrophy and inhibited inflammation and apoptosis; in vivo, it attenuated Ang II-induced
cardiac remodeling in wild type mice. Its mechanism of action is through AP-1/IL-11 signaling inhibition
[105]. Betalain was found to abrogate inflammatory signaling by restoring the expression of matrix proteins
and cardiac biomarker genes and attenuating that of miR-423 and miR-27 to protect Wistar rats from
isoproterenol (ISO)-induced HF [106]. In addition, B-elemene [101], chlorogenic acid [102], and reynoutrin
[103] prevented HF progression by blocking lipid-induced inflammatory pathways through NF-xB signaling.

3.2 Oxidative stress

Oxidative stress is defined as an imbalance between ROS production and endogenous antioxidant defense
mechanisms. During HF development, excessive oxidative stress not only causes cellular dysfunction, my-
ocardial remodeling, protein and lipid peroxidation, DNA damage, and cardiomyocyte apoptosis, but also
induces arrhythmias [84].

Sulforaphane corrected elevated malondialdehyde (MDA) level, left ventricular shortening fraction (LVFS),
and left ventricular ejection fraction (LVEF) and reduced SOD activity in New Zealand rabbits due to HF
and improved cardiac function by inhibiting oxidative stress and remodeling [107]. In vivo , pyruvate kinase
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isozyme type M2 (PKM2) inhibition by shikonin attenuated Ang-II-induced cardiomyocyte hypertrophy and
fibrosis by inhibiting the cardiac remodeling pathway and oxidative stress by inhibiting TGF-3/Smad2/3
and Jak2/Stat3 signaling [108]. Butein inhibited oxidative stress injury-induced ERK/Nrf2 signaling [109].
Cardamonin [110] and soybean isoflavones [111] inhibited oxidative stress and prevented HF through Nrf2
signaling.

3.3 Apoptosis

Cardiomyocyte apoptosis involves the death receptor system (e.g., tumor necrosis factor receptor-1, Apo2,
and Apo3) and cytotoxic stress (gamma and UV radiation, cytotoxic drugs, altered mitochondrial perme-
ability, CytoC release, and apoptotic vesicle formation). Among these factors, apoptotic vesicles activate
caspases, and the Bel2 protein family (Bcl2, BelXL) prevents apoptosis [69].

Ginsenoside Rb3 (G-Rb3) is a ginseng-derived triterpenoid saponin. It protects mitochondrial membrane
integrity and exerts antiapoptotic effects by increasing the expression of peroxisome proliferator-activated
receptor o (PPARa) [112]. Lutein is a carotenoid isolated from spinach. It reduces infarct size and lipid
peroxidation product (MDA), lactate dehydrogenase (LDH), and caspase-3 and -9 levels , it significant
upregulation of HO-1 and Nrf2 expression protected rats from HF [113]. Liguzinediol is an alkaloid from
Chuanxiong. In male SD rats with HF induced by adriamycin injection, it significantly decreased Bax levels
in cardiomyocytes and increased Bcl-2 levels, decreased caspase-3 and NF-xB expression, and attenuated
cardiomyocyte injury [114].

3.4 Cardiac remodeling

Ventricular remodeling refers to changes in ventricular structure, accompanied by increased volume and
altered ventricular configuration [128]. Pathological myocyte hypertrophy, myocyte apoptosis, myofibroblast
proliferation, and interstitial fibrosis all drive ventricular remodeling [129].

Interventions for ventricular remodeling are part of HF treatment. The natural small-molecule echinacoside
is a phenylethanol-like substance isolated from Cistanche cistanche . It inhibits mitochondrial ROS, lipid
peroxidation, and apoptosis by upregulating SIRT1/FOX03a/MnSOD signaling and reduces mitochondrial
oxidative damage[115]. Resveratrol is a polyphenol derived from quinoa. It protects against adverse cardiac
remodeling induced by HF by activating Sirt1 to reduce Smad3 acetylation and transcriptional activity [116].
Celastrol is a triterpenoid compound derived from ragweed. In mouse and rat primary cardiomyocytes and
HI9C2 cells, it bound to STAT-3 and inhibited its phosphorylation and nuclear translocation and suppressed
angiotensin IT-induced HF [117, 118].

3.5 Myocardial fibrosis

Cardiac fibrosis is an excessive accumulation of fibrous connective tissue common in HF [91]. Its effects
include increased ventricular wall stiffness, reduced cardiomyocyte ratio leading to impaired contraction,
and impaired oxygen diffusion leading to ischemia and hypoxia. These effects involve the RAAS, endothelin
(ET), nitric oxide (NO), transforming growth factor-g1 (TGF-$1), connective tissue growth factor ( CTGF),
and intracellular Ca®* [130].

Quercetin is a flavonoid present in many plants. In a TAC mouse model of HF, it inhibited myocardial
fibrosis by increasing mitochondrial energy metabolism and regulating mitochondrial fusion/fission. In addi-
tion, it inhibited SIRT5 expression and increases IDH2 succinylation, while increasing IDH2 desuccinylation
by increasing SIRT5 expression and ameliorating myocardial fibrosis, thereby attenuating HF [118]. Astra-
galoside IV is a polysaccharide from Astragalus lycopersicuswith antioxidant, antiapoptotic, and antiviral
activities. In hypoxia, it stimulated cardiac fibroblast proliferation and differentiation, upregulated TRPM7
expression, and attenuated isoprenaline (ISO)-induced myocardial fibrosis in rats [119]. Asiatic acid [120]
and higenamine [121] attenuated fibrosis by blocking TGF-1/Smad signaling.

3.6 Angiogenesis
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Myocardial hypertrophy is an adaptive response to the increased physiological and pathological loads created
by HF. In response to overload, hypertrophy increases oxygen demand, and the myocardium secretes angio-
genic growth factors that stimulate coordinated vascular growth [96]. Myocardial angiogenesis is regulated
by secreted vascular growth factors, including VEGF, angiopoietins 1 and 2 [131], fibroblast growth factor
[132], TGF [133], and platelet-derived growth factor [134].

Natural small molecules can alleviate HF by modulating angiogenesis. Astragaloside reduced infarct size,
promoted angiogenesis, and increased vascular density by inducing CD31 and VEGF mRNA expression in
ischemic hearts in HF rats. ASI induced JAK and STAT3 phosphorylation as well as the activity of the
STAT3-regulated VEGF promoter, attenuating HF [122].

Tanshinone ITA, a lipid-soluble phenanthrene compound isolated from the Chinese herb Salvia miltiorrhiza |
has been tested in a mouse myocardial infarction model. It administration was found to activate angiogenesis
to improve cardiac function. Dual luciferase reporter analysis revealed that PTEN contains a direct binding
site for miR~499-5p; thus, tanshinone ITA promotes angiogenesis by regulating miR-499-5p/PTEN signaling
[123].

4. Role of natural small molecules on Myocardial ischemia-reperfusion injury (MIRI)

Revascularization is the first treatment option for ischemic cardiomyopathy, but it causes MIRI, a primary
mechanism leading to myocardial cell death and permanent structural damage [135]. MIRI is defined as
restoration of blood reperfusion to the ischemic myocardium that aggravates structural damage, causing
cell death and expansion of myocardial infarction and further damage to cardiac function, worsening the
prognosis of patients with myocardial infarction [136].

Several physiological mechanisms promote ischemia and lead to hypoxia and hypoperfusion, including AS,
acute myocardial infarction, and HF. Inflammatory infiltration, oxidative stress, ERS, apoptosis, and au-
tophagy are present throughout MIRI. Blocked arterial blood flow leads to hypoxia, when antioxidant con-
centrations are low and ROS production is increased [136]. In addition, reperfusion generates toxic ROS upon
reintroducing oxygen to ischemic tissues. ROS cause oxidative stress and promote endothelial dysfunction,
DNA damage, and local inflammation. Ischemia and reperfusion lead to sterile inflammation, associated
with host signaling pathways mediating responses to microorganisms, including NF-xB, mitogen-activated
protein kinase (MAPK), and type I interferon pathways, all of which induce pro-inflammatory cytokines
and chemokines [137]. Early in reperfusion, innate immune cells promote inflammatory cell infiltration
[138]. MIRI activates multiple cell death programs, including necrosis, apoptosis, and autophagy-related
cell death [139]. MIRI causes multiple types of cell damage, leading to nuclear fragmentation, plasma mem-
brane blistering, cell contraction, and loss of mitochondrial membrane potential and integrity, culminating
in apoptotic death. With MIRI, cytoplasmic vacuolization, organelle loss, and vesicle and membrane thread
accumulation lead to autophagy-associated cell death [138]. Reduced blood flow due to arterial occlusion
or hypotension leads to tissue hypoxia, which then rapidly induces protein misfolding and ERS [140]. In
contrast, nutritional deficiency, hypoxia, point mutations leading to secretory protein aggregation, and loss
of calcium homeostasis have detrimental effects on ERS[141].

Although multivitamin (vitamin E, vitamin C, carotene) treatment of post-coronary patients results in reduc-
tion in troponin I levels, it does not reduce the risk of major focal events over a 5-year period [142]. Current
clinical approaches to protect against IR injury are exogenous, such as increasing myocardial oxygen and
energy supply, reducing cardiac burden, and decreasing energy expenditure [138], but all have shortcomings
and side effects. Natural small molecules are effective against IR injury, involving reduction in microvascular
perfusion defects, platelet activation, sustained cardiomyocyte death, restoration of blood supply to ischemic
myocardium, inhibition of inflammatory cell infiltration, resulting in myocyte necrosis and apoptosis by the
mechanisms shown in Table 4.

Table 3. Mechanisms of action of natural small molecules in preventing or treating MIRI
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1 Panax Panax Saponins C47HgoO17 Male Regulation Modulation [14
noto- noto- Sprague- of of
ginseng ginseng Dawley inflammation ATP-
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Cheng sium
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2 Salvia Salvianolic  Phenolic C36H300156 Male Regulation Increasing  [14
milti- acid B acids Sprague- of PI3K/Akt
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Bunge rats sion
and de-
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HMGBI1
expression
3 Lycopersicon Lycopene Carotenoids CyoHsg HL-1 Regulation Inhibition  [14
escu- cells; of of ROS
lentum male inflammation pro-
Miller C57BL/6 duction
mice and
JNK
phosphorylation
4 Allium Allicin Organosulfur CgH1908S2 Sprague- Regulation Inhibition  [14
sativum compounds Dawley of of p38
L. var. rats inflammation signaling
Viviparum
Regel
5 Rosmarinus Rosmarinic Phenolic Ci1sH1605 Male Regulation Inhibition  [14
offici- acid acids C57BL/6  of of
nalis mice inflammation NF-xB
Linn. inflam-
matory
signal-
ing and
ROS
production
6 Spiraea Astilbin Dihydroflavorfd}; HooO11 H9C2 Regulation Modulation [14
japon- glycosides cells; of of 14
ica adult inflammation HMGB1-
Linn. male dependent
f Sprague- NF-xB
Dawley signaling
rats
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7 Sophora SophocarpineAlkaloids C15H22N,0 Sprague- Regulation Downregulatipif
flavescens Dawley of of JNK 15
Alt. rats inflammation and
p38
expres-
sion;
inacti-
vation
of
NF-xB
8 Glycine Genistin Isoflavone Co1H50019 Male Regulation Inhibition [1¢
max glycosides Sprague- of of
(Linn.) Dawley inflammation P2X7/NF-
Merr. rats »xB
signaling
9 Pueraria Puerarin Flavonoids Cy1Hs0Og H9c 2 cells; Regulation Increasing — [15
lobate male of protein
(Willd.) C57BL/6  oxidative SUMOiza-
Ohwi mice stress tion
through
an
ER/ERK/SUM(
92
dependent
mechanism
10 Ampelopsis  DihydromyricElavonoids Ci5H120sg Neonatal Regulation Increasing  [1F
grosseden- rat ven- of Sirt3
tata tricular oxidative expression
(Hand.- cardiomy-  stress
Mazz.) W. ocytes;
T. Wang male wild
type and
Sirt3/-
mice
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15 Cinnamomun?’- Aldehyde C10H1902 Adult Regulation Reducing [1¢
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HUVECs
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Bunge: hydrox- acids; Sprague- oxidative Akt/Nrf2/HO-
Carthamus  ysafflor Flavonoids Dawley stress 1
tinctorius  yellow A rats signaling
Linn.

17 Astragalus  AstragalosidePolysaccharid€l; HggO14 Male Regulation Regulation [1¢€
mem- v Sprague- of ox- of suc-
branaceus Dawley idative cinate
(Fisch.) rats stress and
Bge. lysophos-

pho-

lipid
metabolism
and

scav-
enging

of ROS

via

Nrf2
signaling

18 Buddleja Linarin Flavonoids; CogH32014 HI9C2 cells Regulation Activation [1€
officinalis linolenic of of Nrf-2
Mazim. acid oxidative signaling

stress
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num- Chinese ingre- for- struc- mod- a-
ber medicine dient Classificatiomula ture els Role nisms Re
19 Paeonia Paconol Phenolic CyoH1003 Male Regulation Inhibition  [1€
suffruti- aromatic CsHsNaOs Sprague- of of
cosa acids Dawley apoptosis apoptosis
Andr. rats via upreg-
ulation of
Bcl-2
protein
expression
and down-
regulation
of caspase-
8 /caspase-
9/caspase-
3 and
PARP
protein
expression)
20 Salvia mil- Tanshinone Lipid- C1gH1203 H9C2 Regulation Inhibition  [1€
tiorrhiza I soluble cells; of of
Bunge phenanthrenequinones Sprague- apoptosis RIP1/RIP3/ML
Dawley signaling
rats and
activation
of
Akt /Nrf2
signaling
21 Arctium Arctiin Lignan- Co7H34011 H9¢2 Regulation Scavenging [1€
lappa like cells; of ROS
Linn. compounds male apoptosis and
Sprague- restor-
Dawley ing
rats mito-
chon-
drial
func-
tion;
target-
ing
RIPK1
and/or
MLKL
22 Curcuma Tetrahydrocubdemtémated Co1HayOg HO9c2 Regulation Activation  [1¢€
longa compounds cells; of of
Linn. Sprague- apoptosis ~ PI3K/AKT/mT
Dawley signaling
rats
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num- Chinese ingre- for- struc- mod- a-
ber medicine dient Classificatiomula ture els Role nisms Re
23 Aconitum  Higenamine BenzylisoquinGlight; 7NO3 Neonatal Regulation Activation [1€
carmichaels alkaloids rat of of 32-
Debz. ven- apoptosis ~ AR/PI3K/Akt
tricular signaling
my-
ocytes
(NRVM);
adult
mouse
ven-
tricular
my-
ocytes;
male
C57BL/6
mice
24 Panazx Ginsenoside Tetracyclic CgssHgoOo3 Male Regulation Modulation [1€
ginseng Rbl triter- Sprague- of of
C. A penic Dawley apoptosis mTOR
Meyer saponins rats signaling
25 Carthamus HydroxysaffloFlavonoids Ca7H32014 NPCM Regulation Inhibition [1¢
tincto- Yellow cells; of of cal-
rius A hiPSC- apoptosis cium
Linn. CMs over-
load
and
apop-
tosis in
car-
diomy-
ocytes,
target-
ing
L-type
cal-
cium
channels
26 Scutellaria  Baicalein Flavonoids Ci5H1005 H9C2 Regulation KLF4- [17
baicalensis cells; male  of MARCHS5-
Georygi C57BL/6 apoptosis Drpl
mice; signaling
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27 Veratrum  Resveratrol Polyphenols Ci4H1203 Neonatal Regulation Antiapoptotid17
nigrum rat ven- of activity
Linn. tricular apoptosis through
cardiomy- inhibition
ocytes; of STIM1-
C57BL/6 induced
mice intracellu-
lar Ca2*
accumulation
28 Centella Asiatic Triterpenic  C39Hyg05 AC16 Regulation Modulation [17
asiat- acid compounds human of of miR-
ica car- apoptosis 1290/HIF-
(Linn.) diomy- 3A/HIF-
Urban ocyte la
cells signaling
29 Glycyrrhiza Glycyrrhizic Triterpenic  CyoHg2O16 H9C2 Regulation Reducing [17
uralen- acid saponins cells;male  of ERS protein
sis Sprague- expres-
Fisch. Dawley sion
rats levels
of
CHOP,
GRPTS,
and p-
PERK
30 Clinopodium Tournefolic Phenolic C17H120¢ H9C2 Regulation Modulation [17
chinense acid B acids cells; of ERS of
(Benth.) adult male PI3K/Akt
0. Kize. Sprague- signaling
Dawley
rats
31 Citrus Hesperidin  Flavonoids CggH34015 Male Regulation  Activation  [17
reticu- Sprague- of of
lata Dawley autophagy  PI3K/Akt/mT(
Blanco rats signaling
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32 Honokiol Bisphenolic CigH1509

compounds

C57BL/6

mice

Regulation
of
autophagy

Magnolia

H9C2
cells;
male
C57BL/6

mice

33 Triterpenic  C39Hyg05

compounds

Asiatic
acid

Centella
asiat-
ca
(Linn.)
Urban

Regulation
of
autophagy

Enhancing
au-
tophagic
flux
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with

the

Akt

signal-

ing
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and re-
ducing
intra-
cellular
ROS
production
Modulation
of p38
mitogen-
activated
protein
kinase/Becl-
2/Beclin-

1

signaling

1

-

[

4.1 Inflammation

After MIRI, the expression of several cytokines increases in the ischemic zone, including the inflammatory
mediators IL-6, TNF-a, and TLR4. These cytokines, in turn, can exert effects through multiple signaling
pathways such as those involving NF-xB and Toll-like receptors (TLRs), which ultimately form the basis of
transition from MIRI to inflammatory injury [138].

Pretreatment with Panax notoginseng saponins (PNS) from Chinese Panaz ginseng restored cardiac function,
reduced infarct size, inhibited NLRP3 inflammasome formation, and inhibited the inflammatory mediators
IL-6, MPO, TNF-o, and MCP-1 through KATP [143]. PI3K/Akt signaling is important for preventing MIRI.
Salvianolic acid B reduced the expression of myocardial injury markers (L-LDH, CK-MB, TNF-q, IL-18)
and the inflammatory response by activating PI3K/Akt expression and inhibiting HMGB1 [144]. Lycopene
is a carotenoid isolated from tomato. It attenuated inflammation in a murine MIRI model established by
ligating the descending branch of the left anterior artery. In culture, hypoxia/reoxygenation (H/R) was
induced using HL-1 cells. As little as 1 uM lycopene inhibited MI, ROS production, JNK phosphorylation,
and inflammatory in murine heart tissue to prevent MIRI [145]. Allicin is an organosulfur compound isolated
from garlic. It significantly reduced cardiac troponin I, serum CK- MB, IL-6, TNF-a, and IL- 8 levels and
reduced myocardial pathological injury, MDA expression, and p-p38 expression in myocardial tissue in SD
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rats, protecting them from MIRI [146]. In addition, rosmarinic acid [147], astilbin [148], sophocarpine [150],
and genistin [152] inhibited inflammation and attenuated MIRI through the NF-xB inflammatory signaling
pathway.

4.2 Oxidative stress

Excessive ROS production is considered the primary cause of MIRI [136]. SOD, CAT, paraoxonase (PON),
glutathione peroxidase (GPx), and heme oxygenase (HO-1), which are endogenous antioxidant enzymes,
protect cells from ROS-induced damage [178]. Nrf2 regulates HO-1 to play an antioxidant role in ROS
detoxification.

Natural small molecules have been shown to modulate oxidative stress to attenuate MIRI. Puerarin is a
flavonoid from Pueraria lobata . In vitro and in vivo studies have shown that SUMO 2 overexpression
promoted nuclear y-actin deposition, and SUMO- 2 silencing decreased nuclear y-actin and SUMOyla-
tion levels, exacerbating DNA damage. Puerarin promotes the upregulation of protein SUMOylation via
ER/ERK/SUMO 2 led to oxidative stress inhibition and MIRI attenuation in both mice and H9c2 cells
[153]. Dihydromyricetin is a flavonoid isolated from Garcinia cambogia . It improved mitochondrial func-
tion, reduced oxidative stress, and protected Sirt$/~ mice and primary cardiomyocytes from MIRI injury
by upregulating Sirt3 [154]. Fisetin, a flavonoid from the Lacertus wildflower, protected against MIRI
by inhibiting mitochondrial oxidative stress, mitochondrial dysfunction, and glycogen synthase kinase 30
(GSK3pB) activity [155]. Mangiferin from C. chinensis enhanced antioxidant capacity and increased the ac-
tivity of glycolytic, citric acid cycle, and fatty acid degradation pathways [156]. Finally, ginsenoside Rg3
[157] and polyphyllin I [158] both regulated oxidative stress by inhibiting ROS accumulation to inhibit MIRI.
2’-Methoxycinnamaldehyde [159], alpha-lactic acid, hydroxysafflor yellow A [160], astragaloside IV [161], and
linarin [162] exerted antioxidant effects through the Nrf2 and HO-1 signaling pathways.

4.3 Apoptosis

MIRI is closely related to cardiomyocyte apoptosis. In MIRI, cardiomyocyte apoptosis is a gene-regulated
process and is affected by time. Many factors cause apoptosis, such as cysteine aspartate-specific protease,
the Bcl-2 gene family (Bcl-2, Bel-x, Bel-XL), Fas/FasL genes, and c-myc[69].

Paeonol, isolated from peony, attenuated MIRI cardiac impairment by inhibiting apoptosis (upregulating
Bcl-2 expression and significantly downregulating caspase-8/9/3 and PARP expression in I/R-injured my-
ocardium) [163]. Tanshinone I exerted cardioprotective effects by inhibiting RIP1/RIP3/MLKL and ac-
tivating Akt/Nrf2 signaling to inhibit necroptosis [164]. Arctiin is a lignan-like compound isolated from
burdock. In rat MIRI, it reduced myocardial infarct size and creatine kinase release, while decreasing the
expression of necroptosis-related proteins (RIPK1/p-RIPK1, RIPK3/p-RIPK3, and MLKL/p-MLKL) [165].
Tetrahydrocurcumin [166], higenamine [167], and ginsenoside Rb1 [168] all attenuates apoptosis and MIRI
through PI3K/AKT/mTOR signaling. Hydroxysafflor yellow A inhibited calcium overload and apoptosis in
cardiomyocytes by targeting the L-type calcium channel (LTCC) [169]. Baicalein inhibited apoptosis through
KLF4-MARCHS5-Drpl signaling to inhibit cardiomyocyte-induced mitochondrial apoptosis [170]. Resveratrol
inhibited STIM1-induced intracellular Ca2+ accumulation and showed antiapoptotic activity [171]. Asiatic
acid regulated the miR-1290/HIF3A /HIF-1ua axis to protect cardiomyocytes from hypoxia-induced apoptosis
[172].

4.4 ERS

ERS is caused by unfolded and misfolded protein accumulation and disturbance of Ca2+ balance in the ER
lumen, one of the mechanisms of reperfusion injury, including uncontrolled intracellular calcium flow and
increased release of calcium from sarcoplasmic reticulum stores [179, 180]. Moderate ERS is a protective

cellular mechanism that reduces injury by promoting ER processing of unfolded and misfolded proteins;
persistent or severe ERS causes apoptosis [140].

Glycyrrhizic acid (GA) is a triterpene saponin extracted from Glycyrrhiza glabra . Tt significantly reduced
apoptosis in H9¢2 cells, while attenuating left ventricular dysfunction, fibrosis, and apoptosis in MIRI rats,
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downregulating CK, CK-MB, LDH, AST, TNF-qo, IL-6 and MDA expression and upregulating SOD levels.
In addition, GA treatment resulted in decreased expression of CHOP, GRP78 and p-PERK in H9c2 cells
and MIRI rats [173]. Tournefolic acid B (TAB) from Clinopodium chinense (Benth.) Kuntze decreased the
expression of ER proteins, including Grp78, ATF6, PERK and elf2a, to inhibit ERS. TAB also enhanced
PI3K and Akt phosphorylation, inhibited CHOP and caspase-12 expression, decreased JNK phosphorylation,
and increased the Bcl-2/Bax ratio to protect against MIRI [174].

4.5 Autophagy

Autophagy plays an important role in IR injury [181]. During myocardial ischemia, activated autophagy pro-
tects the myocardium by removing misfolded proteins and necrotic mitochondria that induce cardiomyocyte
death [182], whereas during reperfusion, autophagy overactivation induces large number of autophagic vesi-
cles; then, lysosome-dependent autophagosome fusion and clearance become impaired, leading to increased
myocardial injury [183].

Hesperidin is a flavonoid isolated from citrus. In male adult rats, hesperidin decreased the expression of
LC3II and beclin-1 and increased that of p-mTOR, p-Akt and p-PI3K. These effects were reversed by the
PI3K inhibitor LY294002. Hesperidin reduced MIRI by inhibiting excessive autophagy [175]. Honokiol is a
low-molecular-weight biphenol compound derived from Magnolia officinalis bark. It enhanced autophagic
flux (associated with the Akt signaling pathway) to attenuate MIRI in mice. In cultured cells, it reduced
ROS production and attenuated mitochondrial damage in neonatal rat cardiomyocytes exposed to H/R by
enhancing autophagy [176]. Asiatic acid from Centella asiatica protected cardiomyocytes from ROS-mediated
autophagy via the p38 mitogen-activated protein kinase/Bcl-2/beclin-1 signaling pathway in MIRI [177].

5. Role of natural small molecules on Other CVDs

Table 4. Mechanisms of action of natural small molecules to prevent or treat Other CVDs

Molecular
Serial Active Molecular Chemical Cellular/aniaapeted mech-
num- Chinese ingre- for- struc- mod- pathol- a-
ber medicine dients Classificatiomula ture els ogy nisms Re
1 Quercus Quercetin ~ Flavonoid  C15H1907 H9C2 Cardiac SIRT3/PARPHS
dentata cells hypertrophy 1
Thunb. pass-
through
2 Tripterygium Triptolide  EpoxyditerpefilsyHo4Og Neonatal Cardiac Increasing  [1¢
wil- lactone rat hypertrophy expres-
fordii ven- sion of
Hook. tricular mR-
f myocytes NAs
encod-
ing
CDK1,
CDK4,
p21,
and
p27
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Serial Active Molecular Chemical Cellular/aniiaapeted mech-
num- Chinese ingre- for- struc- mod- pathol- a-
ber medicine dients Classificatiomula ture els ogy nisms Re
3 Coptis Berberine = Quaternary CogH15C1NOy A549 Cardiac Increasing  [1&
chinen- ammo- and hypertrophy p62
sis nium H9C2 mRNA
Franch. alkaloid cells; expres-
Sprague- sion
Dawley and de-
rats creas-
ing
Beclin-
1
expression
4 Armeniaca Amygdalin  Vitamin C20H27NO11 H9C2 Cardiac Regulation [1&
sibirica cells hypertrophy of Nrf2
(Linn.) and
Lam. NF-xB
5 Centella Asiatic Triterpenic  Cs3gHygO5 Neonatal Cardiac Inhibition  [1¢
asiatica acid compound rat hypertrophy of mTOR [18
(Linn.) cardiomy- and ERK
Urban ocytes and signaling
CF's; male by
C57BL/6 activation
and of
Sprague- AMPKo
Dawley reduction
rats in
overpro-
duction of
TGF-f1,
inhibition
of p38,
ERK1/2
phospho-
rylation,
and
NF-xB
activation;
upregula-
tion of
miR-
126 /PIK3R2
expression
6 Glycyrrhiza Licoisoflavondsoflavone  CooH1504 C57BL/6 Cardiac Activation  [1¢
uralen- A mice hypertrophy of Sirt3
518
Fisch.
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9 Sophora Sophoricosidelsoflavone Co1H50019 Neonatal Cardiac Increasing  [1¢
japon- glycoside rat hypertrophy au-
ica cardiomyocytes tophagy
Linn. through
activa-
tion of
AMPK /mTORC(
10 Eucommia  Pinoresinol Lignan- C30H42016 Sprague- Cardiac Modulation [1¢
ul- diglucoside like Dawley hypertrophy of
moides compound rats Akt/mTOR/NF
Oliver »xB
signaling
11 Cyperus Tamarixetin Flavonoid  Ci14H1207 H9C2 Cardiac Inhibition  [1¢
rotun- cells; hypertrophy of
dus C57BL/6 NFAT
L. mice and
Akt
signaling
12 Plantago PlantamajosidthenylpropancigHssO14 H9C2 Cardiac Inhibition  [1¢
asiat- glycoside cells hypertrophy of
ica HDAC2
L. and
Akt/GSK-
38
signaling
13 Arctium Arctiin Lignan- Co7H34011 H9C2 Cardiac Inhibition  [1¢
lappa like cells; hypertrophy of
Linn. compound male MAPK
C57BL/6 and
mice Akt
signaling
14 Rheum Emodin Anthraquinon€5H1705 NRVM Cardiac Inhibition  [1¢
officinale glycoside and H9C2  hypertrophy of histone
Baill. cells; male deacetylase-
C57BL/6 dependent
mice gene ex-
pression;
regulation
of mito-
chondrial
SIRT3
signaling
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num- Chinese ingre- for- struc- mod- pathol- a-
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15 Lonicera Luteolin Flavonoid  C;i5H100¢ H9C2 Diabetic Inhibition  [1¢
japon- cells; cardiomyopathfy NF-
ica male xB-
Thunb. C57BL/6 mediated
mice inflam-
mation
and
activa-
tion of
Nrf2-
mediated
antiox-
idant
responses
16 PhyllostachysSyringaresinoBis-epoxy ~ CaoHogOg NRVM; Diabetic Modulation [2(
nigra lignin male cardiomyopathfy
(Lodd.) C57BL/6 Keapl/Nrf2
Munro mice and TGF-
var. B/Smad
Henonis signaling
(Mitf.)
Stapf ex
Rendle
17 Leonurus Stachydrine Alkaloid C7H14CINO>y NRVM; Diabetic Inhibition  [2(
artemisia  hydrochloride C57BL/6 cardiomyopathfy
(Lour.) mice CaN/NFAT
S. Y. signaling
Hu
18 Glycine Daidzein Isoflavone  Ci5H1004 Male Diabetic Inhibition  [2(
mazx Sprague- cardiomyopathfy
(Linn.) Dawley NOX-
Merr. rats 4-
induced
oxida-
tive
stress
19 Centella Asiatic Triterpenic  C39Hyg05 Male Diabetic Reducing [2(
asiatica acid and com- C30H4g04 BALB/c cardiomyopatypression
(Linn.) maslinic pound; mice of NF-xB
Urban acid penta- p50, p-
cyclic ERK1/2,
triterpenic and late
acid glycosyla-
tion end
product
receptors
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Chen
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Methyl
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26

27
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Centella
astatica
(Linn.)
Urban

Centella
asiat-
ica
(Linn.)
Urban

Sophora
flavescens
Alt.

Illicium
verum
Hook.

[

Asiatic
acid
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acid

Matrine
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of TGF-
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30 Aconitum  Higenamine; BenzylisoquinGligld;7NO3 HIC2 cells  CardiotoxicitRegulation [21
carmichaeli 6-gingerol  alkaloid; C17H2604 of
Debz.; phenolic PPARa/PGC-
Zingiber compound lot/Sirt3
officinale signaling
Rosc.
31 Aloe Aloin Anthraquinon€sy Has Og Male CardiotoxicityRestoration [2]
vera glycoside Wistar of
(Linn.) rats antiox-
N. L. idant
Bur- defense
man System
var. by in-
chinen- creas-
818 ing
(Haw.) levels
Berg. of re-
duced
glu-
tathione
and
cata-
lase;
de-
creas-
ing
inflam-
mation
by de-
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ing
expres-
sion of
TNF-a
and
IL-1B8
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5.1 Myocardial hypertrophy

Cardiac hypertrophy is characterized by an increase in cardiomyocyte volume and dense myonodularity.
Persistent hypertrophy leads to cardiac decompensation and systolic dysfunction and exacerbates ventricular
remodeling, leading to HF [220]. Multiple natural small molecules treat cardiac hypertrophy through different
targets [186-202]; for example, quercetin protects mitochondrial function and inhibits cardiac hypertrophy
through SIRT3/PARP-1 signaling [182, 184, 186, 188]. Triptolide increased CDK1 and CDK4 mRNA, CDK1,
p21 and p27 mRNA expression[185]. Berberine upregulated p62 mRNA expression and downregulated beclin-
1 expression to reduce cardiac hypertrophy[186]. These details are shown in Table 5.

5.2. Diabetic cardiomyopathy

Natural small molecules alleviate diabetic cardiomyopathy through multiple effects. Diabetic cardiomyopa-
thy is characterized by early diastolic abnormalities and later clinical HF in the absence of dyslipidemia,
hypertension, and coronary artery disease. Its pathophysiological factors include oxidative stress, inflamma-
tion and immune regulatory dysfunction, and systemic metabolic disorders [221].

Luteolin inhibited NF-xB-mediated inflammation and activates Nrf2-mediated antioxidant response to reg-
ulate diabetic cardiomyopathy [199, 200, 203]. Syringaresinol prevented type 1 diabetic cardiomyopathy by
inhibiting inflammation, as well as oxidative stress through Keapl/Nrf2 and TGF-3/Smad signaling [200,
204]. Natural small molecules can improve diabetic cardiomyopathy by inhibiting CaN/NFAT signaling
[201, 202, 205] and NOX-4 [202, 206], decreasing NF-xB p50, p-ERK1/2, and late glycosylation end product
receptor cardiac expression [203, 207], and promoting Nrf2 activation and NF-xB inhibition [204-211].

5.3. Hypertension-associated heart disease

Natural small molecules have significant utility in the treatment of hypertensive heart disease. Chronic
hypertension causes systolic overload of the left ventricle, leading to its compensatory thickening, which is a
major contributor to adverse cardiovascular and cerebrovascular accidents, including sudden cardiac death,
myocardial ischemia, HF, ventricular arrhythmias, and cerebral infarction [222].

Icariside (ICA) protected ventricular function and attenuates hypertensive cardiomyopathy by inhibiting
ERS-induced cardiomyocyte apoptosis and stimulating increased expression of apoptotic proteins [208, 212].
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Salvianol A (DA) attenuated hypertension-induced cardiac remodeling by improving mitochondrial dysfunc-
tion and inhibiting ROS production [209, 213]. Asiatic acid enhanced antioxidant activity and inhibited
cardiac fibrosis in hypertensive rats through Nrf2/HO-1 and inhibition of TGF-$1/Smad phosphorylation
[210, 214]; inhibited oxidative stress and improved hypertensive heart disease by downregulating eNOS
expression and upregulating iNOS expression [211, 215]; and enhanced eNOS and p47phox expression by
regulating nitric oxide bioavailability to lower blood pressure [212].

5.4 Drug-induced cardiotoxicity

Cardiotoxicity has multiple manifestations; the antineoplastic drug adriamycin causes cardiotoxicity [223];
drugs that reduce body mass, such as sibutramine, can cause cardiomyopathy [224]; cardiotoxicity causes
cardiomyopathy (e.g., myocarditis, HF arrhythmias)with low incidence but high mortality.

Centella asiatica ameliorated adriamycin-induced cardiac and hepatic and renal toxicity in rats through
Nrf2 transcription factor activation [213, 217]. Matrine attenuated adriamycin-induced cardiotoxicity by
inhibiting oxidative stress and cardiomyocyte apoptosis through activation of AMPKa/UCP2 signaling [214,
218]. Isoduninol attenuated adriamycin-induced cardiotoxicity by activating AMPK-ULK1 signaling to pro-
mote autophagy and reduce apoptosis[215]. The natural small molecules higenamine, 6-gingerol, aloin, and
paeonol[216-218] attenuated cardiotoxicity by inhibiting TLR4/NF-xB/TNF-o/IL-6 inflammatory signaling
through the PPARa/PGC-1a/Sirt3 pathway.

6. Conclusions

CVDs are the leading cause of disability and death worldwide [225]. Natural small molecules are from natural
botanicals, with a history of 2000 years, and are receiving increasing attention from the cardiovascular
research community for their " multi-target, multi-channel, low side effect and good efficacy” characteristics,
e.g., digitalis (derived from Trichoderma reesei), aspirin (also known as acetylsalicylic acid, salicylic acid
was first extracted from Scutellaria baicalensis), artemisinin (from Artemisia annua L ).It is important to
continue to search for treatments from natural small molecules for CVDs. Natural small molecule drugs
has been synthesized, structurally modified and simplified to form a new class of drugs with better efficacy,
e.g.,10 hydroxycamptothecin from Camptothecin has been synthesized into Irinotecan and Topotecan; The
modification of monomeric drugs long used in clinical practice to reduce adverse reactions, e.g., berberine
does not have drug resistance;The bioavailability and toxicity of drugs are altered in the arrangement or
conformation of natural small molecules, e.g., the new puerarin crystal , puerarin-V [226], has a better
absorption rate and higher plasma drug concentration compared to puerarin.In this paper, we presented the
mechanisms of action of natural small molecules on cardiovascular diseases elucidated in recent years. We
also presented an in-depth discussion on the molecular mechanisms of natural small molecules for CVDs,
aiming to provide information for clinical research and the identification of new treatments, and to provide
new ideas for the development of new drugs. Clinically, natural small molecules with flavonoids, saponins,
and alkaloids as the main active ingredients have demonstrated therapeutic effects on CVDs such as AS,
HF, and MIRI, with high safety and good application prospects.

In addition to the advantages, these small molecules also have limitations. First, natural drugs primarily
act as complexes in the form of tonics, prescriptions, and pills as carriers for diseases, while relatively little
research has been conducted on single natural small-molecule drugs. Secondly, small-molecule research is
primarily based on animal and cultured-cell models. The same natural small molecule and its active ingre-
dients may show bi-directional effects of activation or inhibition in different target cells or different animal
models, and few relevant studies explaining these differences are available Third, large-scale, multicenter,
randomized and controlled clinical trials for the treatment of CVDs are lacking. Fourth, the systemic and
organ-specific toxicities of these natural products remain to be studied [227]. For example, 0.5 uM lycopene
treatment did not reduce HL-1 cell death, but 4 uM lycopene only retained 75 £ 15% of cell viability[145],
while its dose size and toxicity for humans have not been studied.

Despite these limitations, a better understanding of their active ingredients, mechanisms of action, and
adverse effects will be beneficial to help improve efficacy and decrease the side effects of natural drugs. It
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can be expected that with the advancement of new technologies (e.g., high-throughput screening of natural
compound libraries, bioinformatics, synthetic biology), more cardiovascular drugs will emerge from natural
drugs; therefore, our future efforts will be directed toward their development, so that natural small-molecule
drugs can be more accurately integrated in the clinical setting.
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