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Abstract

In this paper, the differentiability on time and continuity on fractional order of solutions for a class of Caputo fractional evolution

equations are studied. Under appropriate assumptions, the existence and differentiability on time of solutions for linear as well

as semilinear Caputo fractional evolution equations are analyzed, the continuity of solutions on fractional order for linear and

semilinear Caputo fractional evolution equations are discussed. In addition, if the fractional order converges to $1$, then the

solutions of the Caputo fractional differential equations become the solutions of classic evolution equations. The continuity of

solutions on fractional order for some fractional systems is numerically studied, and the results are basically consistent with the

theoretical results.
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1 Introduction

Starting with some conjectures of Leibniz and Euler, followed by the works of other famous

mathematicians, including Laplace, Fourier, Abel, Liouville and Riemann, fractional calculus

which allows us to consider integration and differentiation of any order has been applied to

various branches of science and engineering, such as control systems [1], physics [2], electrical

engineering [3], viscoelastic mechanics [4], signal processing [5], bioengineering [6] and so on.

From the definition of Caputo fractional derivative, the memory effect or non-local property of

∗E-mail: chenxingfa@gdei.edu.cn (Xingfa Chen), jfcaomath@163.com/caojunfei@gdei.edu.cn (Junfei Cao),
yzhou@xtu.edu.cn (Yong Zhou, Corresponding author)

1



Caputo fractional derivative is represented by a convolution integral with power-law memory

kernel, which makes Caputo fractional differential equations an excellent tool in complex sys-

tems, which is one of the main advantages of Caputo fractional differential equation (nonlocal)

compared with classical (local) model [7, 8].

In recent years, Caputo fractional differential equations have become more and more im-

portant in theory and application, which has attracted great attention of researchers. Many

authors pay attention to the Caputo fractional differential equations, such as the existence and

uniqueness of solutions [9–13], the continuous dependence of solutions on initial values [14, 15],

dynamic behavior [16–21] and so on. Very recently, there are a few researchers pay attention

to the continuity of solutions on fractional order of Caputo fractional differential equations. For

example, Dang, Nane, Nguyen and Tuan studied the continuity of the solutions with respect to

the fractional parameters as well as the initial value of a class of equations including the Abel

equations of the first and second kind, and time fractional diffusion type equations [22]. Tuan,

O’Regan and Ngoc studied the continuity of the solution of both the initial problem and the

inverse initial value problems with respect to the fractional order [23]. Binh, Hoang, Baleanu

and Van considered a problem of continuity fractional-order for pseudo-parabolic equations with

the fractional derivative of Caputo [24]. Note that these papers do not study the relationship

between the solutions of integer order differential equations and fractional ones. In practice,

many problems of time fractional equations depend on fractional parameters, that is, fractional

orders. However, these fractional parameters are unknown in the modeling processes. Therefore,

the continuity of solutions on these parameters is very important for modeling. Moreover, if this

continuity is not tenable, numerical calculations are not allowed. On the other hand, from the

definition of Caputo fractional derivative, it can be seen that the differentiability on time of the

solutions for Caputo fractional differential equations is a basic and necessary property. There-

fore, the existence and differentiability on time of solutions are two basic and key problems in

the qualitative theory of Caputo fractional differential equations.

In this work, motivated by the above consideration, we are eager to study the existence,

differentiability on time and continuity on fractional order of solutions for the following linear

Caputo fractional evolution equations{
CDα

t x(t) = Ax(t) + F (t), 0 < t ≤ T,
x(0) = x0,

(1.1)

as well as the semilinear Caputo fractional evolution equations{
CDα

t x(t) = Ax(t) + F (t, x(t)), 0 < t ≤ T,
x(0) = x0,

(1.2)

in a Banach space X, where CDα
t , 0 < α < 1, is the regularized Caputo fractional derivative

of order α, A is a bounded linear operator on X, T ∈ (0,+∞) is a constant and x0 is given
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belonging to a subset of X. Under appropriate assumptions, the existence and differentiability

on time of solutions for (1.1) and (1.2) are analyzed, the continuity of solutions on fractional

order for (1.1) and (1.2) are discussed. Furthermore, if the fractional order α converges to 1,

the solutions of (1.1) and (1.2) become the solutions of their corresponding classical linear and

semilinear evolution equations. Numerical studies are performed to explore the continuity of

solutions on fractional order for some fractional systems, which show reasonable agreement with

the theoretic results.

The rest of this paper is organized as follows. In Section 2, we review some symbols, defini-

tions, lemmas and preliminary facts. In Section 3, we analyze the existence and differentiability

on time of solutions for (1.1) and (1.2). In Section 4, we discuss the continuity of solutions on

fractional order for (1.1). We firstly study the continuity of solutions on fractional order α for

0 < α < 1, and then the continuity of solutions as α → 1−. In Section 5, the corresponding

semilinear equations (1.2) are studied. Then, we give some examples and their numerical studies

in Section 6 to illustrate our theoretical results. Last but not least, some conclusions are drawn

in Section 7.

2 Preliminaries

This section is concerned with some notations, definitions, lemmas and preliminary facts

which are used in what follows.

From now on, Z+, R, R+ and C stand for the set of positive integral numbers, real numbers,

positive real numbers and complex numbers respectively. Let (X, ‖ · ‖) be a Banach space. For

p ∈ [1,+∞) and set I = [0, T ] for some T ∈ (0,+∞), we denote by Lp(I,X) the Bochner space

of all equivalence classes of strongly measurable functions x : I → X, such that

‖x‖Lp :=

(∫
I
‖x(t)‖pdt

) 1
p

<∞.

Denote by C(I,X) the Banach space of all continuous functions from I to X with the norm

‖x‖∞ := max{‖x(t)‖ : t ∈ I},

and Cn(I,X) (n ∈ Z+) the set of all n order continuous differentiable functions from I to X.

Let also L(X) be the Banach space of all bounded linear operators from X into itself endowed

with the norm

‖T‖L(X) = sup{‖Tx‖ : x ∈ X, ‖x‖ = 1},

and write ‖T‖L(X) as ‖T‖ for every T ∈ L(X) when it has no loss of the clarity.

Firstly, we recall some basic definitions and results on Riemann-Liouville fractional integral,

Riemann-Liouville fractional derivative and Caputo fractional derivative.
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Definition 2.1. [7, 8, 21, 27] The Riemann-Liouville fractional integral of order α > 0 with

lower limit zero for a continuous function g : R+ → X is defined as

Iαt g(t) =
1

Γ(α)

∫ t

0
(t− s)α−1g(s)ds, t > 0,

where Iαt denotes the Riemann-Liouville fractional integral of order α, Γ(·) is the Euler’s Gamma

function and Γ(α+ 1) = αΓ(α).

Definition 2.2. [7, 8, 21, 27] The Riemann-Liouville fractional derivative of order α > 0 with

lower limit zero for a function g ∈ Cn+1(R+, X) is defined as

RLDα
t g(t) =

1

Γ(n− α)

dn

dtn

∫ t

0
(t− s)n−α−1g(s)ds, t > 0,

where RLDα
t denotes the Riemann-Liouville fractional derivative of order α.

Definition 2.3. [7, 8, 21, 27] The Caputo fractional derivative of order α > 0 with lower limit

zero for a function g ∈ Cn+1(R+, X) is defined as

CDα
t g(t) =

1

Γ(n− α)

∫ t

0
(t− s)n−α−1g(n)(s)ds, t > 0,

where CDα
t denotes the Caputo fractional derivative of order α.

Lemma 2.1. [7, 8, 21, 27] If g(t) ∈ Cn(R+, X) and n− 1 < α < n ∈ Z+, then

(1) Iαt [CDα
t g(t)] = g(t)−

n−1∑
k=0

g(k)(0) t
k

k! ,

(2) RLDα
t [Iαt g(t)] = g(t),

(3) RLDα
t g(t) = CDα

t g(t) +
n−1∑
k=0

tk−α

Γ(k+1−α)g
(k)(0).

Lemma 2.2. [7, 8, 21, 27] Let α, β ∈ R+. Then for all f ∈ L1(R+, X) and ∀t > 0,

Iαt [Iβt f(t)] = Iα+β
t f(t).

To deal with fractional differential equations, we need the following special functions and

generalization of Gronwall’s inequality.

Denote by Eα,β the generalized Mittag-Leffler special function defined by

Eα,β(z) :=

∞∑
k=0

zk

Γ(αk + β)
=

1

2πi

∫
Υ

λα−βeλ

λα − z
dλ, α, β > 0, z ∈ C,

where Υ is a contour which starts and ends at −∞ and encircles the disc |λ| ≤ |z|1/α counter-

clockwise. For short, set Eα(z) := Eα,1(z).
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Lemma 2.3. [26] Suppose α > 0, k(t) is a nonnegative function locally integrable on 0 ≤ t ≤ T
(some T < +∞), and g(t) is a nonnegative, nondecreasing continuous function defined on

0 ≤ t ≤ T , g(t) ≤ M = Const, and suppose f(t) is nonnegative and locally integrable on

0 ≤ t ≤ T with

f(t) ≤ k(t) + g(t)

∫ t

0
(t− s)α−1f(s)ds.

Then

f(t) ≤ k(t) +

∫ t

0

[ ∞∑
n=1

[g(t)Γ(α)]n

Γ(nα)
(t− s)nα−1k(s)

]
ds, 0 ≤ t ≤ T.

Lemma 2.4. [26] Under the hypothesis of Lemma 2.3, let k(t) be a nondecreasing function on

0 ≤ t ≤ T . Then

f(t) ≤ k(t)Eα[g(t)Γ(α)tα], 0 ≤ t ≤ T.

3 Existence and differentiability on time of solutions

In this section, we study the existence and differentiability on time of solutions for the

following linear Caputo fractional evolution equations{
CDα

t x(t) = Ax(t) + F (t), 0 < t ≤ T,
x(0) = x0,

(3.1)

as well as the semilinear Caputo fractional evolution equations{
CDα

t x(t) = Ax(t) + F (t, x(t)), 0 < t ≤ T,
x(0) = x0,

(3.2)

in a Banach space X, where CDα
t , 0 < α < 1, is the regularized Caputo fractional derivative

of order α, A is a bounded linear operator on X, T ∈ (0,+∞) is a constant and x0 is given

belonging to a subset of X.

Firstly, we give two useful lemmas.

Lemma 3.1. If x : [0, T ] → X is a continuously differentiable function, x(t) ∈ D(A) for

t ∈ [0, T ]. Then x(t) is a solution to (3.1) if and only if

x(t) = x0 +
1

Γ(α)

∫ t

0
(t− s)α−1Ax(s)ds+

1

Γ(α)

∫ t

0
(t− s)α−1F (s)ds, 0 ≤ t ≤ T. (3.3)

Proof. The sufficiency of (3.3).

For t = 0, one has x(t) = x0, thus (3.1) holds.

For 0 < t ≤ T , applying the Riemann-Liouville fractional derivative RLDα
t on both sides of

(3.3) and using properties of the fractional derivative (See Lemma 2.1 (2)), we have

RLDα
t x(t) = x0

t−α

Γ(1− α)
+Ax(t) + F (t).
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Considering 0 < α < 1 and using the relationship between the Caputo fractional derivative and

the Riemann-Liouville fractional derivative (See Lemma 2.1 (3)), one can easily obtain

RLDα
t x(t) = CDα

t x(t) + x0
t−α

Γ(1− α)
.

Thus, we get

CDα
t x(t) = Ax(t) + F (t), 0 < t ≤ T,

which implies (3.1) holds.

The necessity of (3.3).

Note that 0 < α < 1, 1− α > 0. Applying I1−α
t to (3.1), we have

Iαt
CDα

t x(t) = Iαt Ax(t) + Iαt F (t).

According to Definition 2.3, one has

Iαt
CDα

t x(t) = Iαt [I1−α
t [D1

t x(t)]].

By using Lemma 2.2, we have

Iαt
CDα

t x(t) = Iαt [I1−α
t [D1

t x(t)]] = I1
t [D1

t x(t)].

Then

Iαt
CDα

t x(t) = I1
t [D1

t x(t)] =

∫ t

0
x′(s)ds = x(t)− x(0).

So

x(t)− x(0) = Iαt Ax(t) + Iαt F (t) =
1

Γ(α)

∫ t

0
(t− s)α−1Ax(s)ds+

1

Γ(α)

∫ t

0
(t− s)α−1F (s)ds,

which implies

x(t) = x0 +
1

Γ(α)

∫ t

0
(t− s)α−1Ax(s)ds+

1

Γ(α)

∫ t

0
(t− s)α−1F (s)ds,

i.e. (3.3) holds.

A similar argument enables us to give the following lemma.

Lemma 3.2. If x : [0, T ] → X is a continuously differentiable function, x(t) ∈ D(A) for

t ∈ [0, T ]. Then x(t) is a solution to the equation (3.2) if and only if

x(t) = x0 +
1

Γ(α)

∫ t

0
(t− s)α−1Ax(s)ds+

1

Γ(α)

∫ t

0
(t− s)α−1F (s, x(s))ds, 0 ≤ t ≤ T. (3.4)

6



Proof. By a similar argument with Lemma 3.1, one can prove this lemma.

Then, we consider the following Volterra equations

x(t) = x0 +
1

Γ(α)

∫ t

0
(t− s)α−1F (s, x(s))ds, 0 ≤ t ≤ T, (3.5)

where 0 < α < 1, x0 ∈ X and F (s, v) : [0, T ]×X → X.

We have the following result.

Lemma 3.3. If F (t, x) is continuous with respect to t on [0, T ] and Lipschitz continuous with

respect to x, namely, there exists a positive constant L such that

‖F (t, x)− F (t, y)‖ ≤ L‖x− y‖, ∀t ∈ [0, T ], x, y ∈ X.

Then there exists a unique solution x(t) for (3.5), moreover x(t) ∈ C([0, T ], X).

Proof. Denote

Gx(t) = x0 +
1

Γ(α)

∫ t

0
(t− s)α−1F (s, x(s))ds.

Firstly, we show that if x(t) ∈ C([0, T ], X), then Gx(t) ∈ C([0, T ], X), i.e ,

G : C([0, T ], X)→ C([0, T ], X).

In fact

Gx(t) = x0 +
1

Γ(α)

∫ t

0
(t− s)α−1F (s, x(s))ds = x0 +

1

Γ(α)

∫ t

0
sα−1F (t− s, x(t− s))ds.

Then for any t1, t2 ∈ [0, T ]

‖Gx(t1)−Gx(t2)‖

=

∥∥∥∥ 1

Γ(α)

∫ t1

0
sα−1F (t1 − s, x(t1 − s))ds−

1

Γ(α)

∫ t2

0
sα−1F (t2 − s, x(t2 − s))ds

∥∥∥∥
≤
∥∥∥∥ 1

Γ(α)

∫ t1

0
sα−1F (t1 − s, x(t1 − s))ds−

1

Γ(α)

∫ t1

0
sα−1F (t1 − s, x(t2 − s))ds

∥∥∥∥
+

∥∥∥∥ 1

Γ(α)

∫ t1

0
sα−1F (t1 − s, x(t2 − s))ds−

1

Γ(α)

∫ t1

0
sα−1F (t2 − s, x(t2 − s))ds

∥∥∥∥
+

∥∥∥∥ 1

Γ(α)

∫ t1

0
sα−1F (t2 − s, x(t2 − s))ds−

1

Γ(α)

∫ t2

0
sα−1F (t2 − s, x(t2 − s))ds

∥∥∥∥
:=ω1 + ω2 + ω3.

(3.6)

For ω1, we have

ω1 ≤
L

Γ(α)

∫ t1

0
sα−1 ‖x(t1 − s)− x(t2 − s)‖ds

≤ L

Γ(α)
sup

s∈[0,t1]
{‖x(t1 − s)− x(t2 − s)‖}

∫ t1

0
sα−1ds

=
L

Γ(α+ 1)
sup

s∈[0,t1]
{‖x(t1 − s)− x(t2 − s)‖}Tα.

(3.7)
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Note that x(t) ∈ C([0, T ], X), then

sup
s∈[0,t1]

{‖x(t1 − s)− x(t2 − s)‖} → 0 as t1 → t2,

which implies ω1 → 0.

For ω2, we have

ω2 ≤
L

Γ(α)

∫ t1

0
sα−1 ‖F (t1 − s, x(t2 − s))− F (t2 − s, x(t2 − s))‖ds

≤ L

Γ(α+ 1)
sup

s∈[0,t1]
{‖F (t1 − s, x(t2 − s))− F (t2 − s, x(t2 − s))‖}Tα.

(3.8)

Note that F (t, x) is continuous with respect to t on [0, T ]. Then

sup
s∈[0,t1]

{‖F (t1 − s, x(t2 − s))− F (t2 − s, x(t2 − s))‖} → 0 as t1 → t2,

which implies ω2 → 0.

For ω3, we have

ω3 =

∥∥∥∥ 1

Γ(α)

∫ t1

t2

sα−1F (t2 − s, x(t2 − s))ds
∥∥∥∥ =

1

Γ(α)
θα−1F (t2 − θ, x(t2 − θ)) |t1 − t2| ,

where min{t1, t2} < θ < max{t1, t2}. When t1 → t2, ω3 → 0.

Then when t1 → t2,

‖Gx(t1)−Gx(t2)‖ ≤ ω1 + ω2 + ω3 → 0,

which implies Gx(t) ∈ C([0, T ], X).

Secondly, we show that for n ≥ 1,

‖Gnu−Gnv‖∞ ≤
(Ltα)n

Γ(nα+ 1)
‖u− v‖∞ .

When n = 1,

‖Gu−Gv‖∞ =

∥∥∥∥ 1

Γ(α)

∫ t

0
(t− s)α−1F (s, u(s))ds− 1

Γ(α)

∫ t

0
(t− s)α−1F (s, v(s))ds

∥∥∥∥
∞

≤ L

Γ(α)

∫ t

0
(t− s)α−1 ‖u− v‖∞ds ≤

L ‖u− v‖∞
Γ(α)

∫ t

0
(t− s)α−1ds

=
L ‖u− v‖∞

Γ(α)

tα

α
≤ Ltα

Γ(α+ 1)
‖u− v‖∞ .

(3.9)

Assume that for k ≤ n, we already have

∥∥∥Gku−Gkv∥∥∥
∞
≤ (Ltα)k

Γ(kα+ 1)
‖u− v‖∞ .
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Then for k = n+ 1,∥∥Gn+1u−Gn+1v
∥∥
∞

=

∥∥∥∥ 1

Γ(α)

∫ t

0
(t− s)α−1F (s,Gnu(s))ds− 1

Γ(α)

∫ t

0
(t− s)α−1F (s,Gnv(s))ds

∥∥∥∥
∞

≤ L

Γ(α)

∫ t

0
(t− s)α−1 ‖Gnu(s)−Gnv(s)‖∞ds ≤ L

Γ(α)

∫ t

0
(t− s)α−1 (Lsα)n ‖u− v‖∞

Γ(nα+ 1)
ds

≤
Ln+1 ‖u− v‖∞
Γ(α)Γ(nα+ 1)

∫ t

0
(t− s)α−1snαds =

Ln+1 ‖u− v‖∞
Γ(α)Γ(nα+ 1)

∫ 1

0
(t− st)α−1(st)nαtds

=
t(n+1)αLn+1 ‖u− v‖∞

Γ(α)Γ(nα+ 1)

∫ 1

0
(1− s)α−1snαds =

t(n+1)αLn+1 ‖u− v‖∞
Γ(α)Γ(nα+ 1)

B(α, nα+ 1)

=
t(n+1)αLn+1

Γ((n+ 1)α+ 1)
‖u− v‖∞ ,

this implies for n ≥ 1,

‖Gnu−Gnv‖∞ ≤
(Ltα)n

Γ(nα+ 1)
‖u− v‖∞ .

So when t ∈ [0, T ]

‖Gnu−Gnv‖∞ ≤
(LTα)n

Γ(nα+ 1)
‖u− v‖∞ .

Note that

lim
n→∞

(Ltα)n

Γ(nα+ 1)
= 0.

Then there exist N ∈ Z+, when n > N ,

‖Gnu−Gnv‖∞ ≤
1

2
‖u− v‖∞ .

By Banach fixed point theorem, there exists a unique function x(t) ∈ C([0, T ], X) such that

Gx = x, i.e., there exists a unique solution of (3.5) on the interval [0, T ].

From Lemma 3.3, we have the following results.

Lemma 3.4. Let A ∈ L(X) be a closed operator and F (t) ∈ C([0, T ], X). Then (3.3) exists a

unique solution x(t), moreover x(t) ∈ C([0, T ], X).

Proof. Set F̃ (t, x) = Ax+ F (t). Then F̃ (t, x) is continuous with respect to t on [0, T ], and

‖F̃ (t, x)− F̃ (t, y)‖ ≤ ‖A‖ ‖x− y‖ , ∀t ∈ [0, T ], x, y ∈ X.

By Lemma 3.3, there exists a unique solution x(t) ∈ C([0, T ], X) for

x(t) = x0 +
1

Γ(α)

∫ t

0
(t− s)α−1Ax(s)ds+

1

Γ(α)

∫ t

0
(t− s)α−1F (s)ds, 0 ≤ t ≤ T,

which implies (3.3) exists a unique solution x(t) ∈ C([0, T ], X).
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Lemma 3.5. Let A ∈ L(X) be a closed operator, F (t, x) is continuous with respect to t on [0, T ]

and Lipschitz continuous with respect to x, namely, there exists a positive constant L such that

‖F (t, x)− F (t, y)‖ ≤ L‖x− y‖, ∀t ∈ [0, T ], x, y ∈ X.

Then (3.4) exists a unique solution x(t), moreover x(t) ∈ C([0, T ], X).

Proof. Set F̃ (t, x) = Ax+ F (t, x). Then F̃ (t, x) continuous with respect to t on [0, T ], and

‖F̃ (t, x)− F̃ (t, y)‖ ≤ (‖A‖+ L) ‖x− y‖ , ∀t ∈ [0, T ], x, y ∈ X.

By Lemma 3.3, there exists a unique solution x(t) ∈ C([0, T ], X) for

x(t) = x0 +
1

Γ(α)

∫ t

0
(t− s)α−1Ax(s)ds+

1

Γ(α)

∫ t

0
(t− s)α−1F (s, x(s))ds, 0 ≤ t ≤ T,

which implies that (3.4) exists a unique solution x(t), moreover x(t) ∈ C([0, T ], X).

In the following, we proof the existence and differentiability on time of solutions for (3.1).

Theorem 3.1. Let A ∈ L(X) be a closed operator and F (t) ∈ C1([0, T ], X). Then (3.1) exists

a unique solution x(t), moreover x(t) ∈ C1([0, T ], X).

Proof. Firstly, we show that (3.3) exists a unique solution x(t) ∈ C1([0, T ], X).

By Lemma 3.4, integral equation (3.3) exists a unique solution x(t) ∈ C([0, T ], X), such that

x(t) = x0 +
1

Γ(α)

∫ t

0
(t− s)α−1Ax(s)ds+

1

Γ(α)

∫ t

0
(t− s)α−1F (s)ds.

Note that x(t) ∈ C([0, T ], X), which allow applying the Riemann-Liouville fractional derivative

RLDα
t on both sides. Then we get

RLDα
t x(t) = x0

t−α

Γ(1− α)
+Ax(t) + F (t),

which implies RLDα
t x(t) ∈ X exists for any 0 < α < 1. Then consider RLD1−α

t Ax(t). Since

A ∈ L(X) and A is a closed operator, we get

d

dt

(
1

Γ(α)

∫ t

0
(t− s)α−1Ax(s)

)
=RL D1−α

t Ax(t) = A(RLD1−α
t x(t)) ∈ X.

On the other hand,

1

Γ(α)

∫ t

0
(t− s)α−1F (s)ds = Iαt F (t) = Iαt (I1

t F
′(t)− F (0)) = I1

t I
α
t F
′(t)− tα

Γ(α+ 1)
F (0).

Then we get
d

dt

(
1

Γ(α)

∫ t

0
(t− s)α−1F (s)ds

)
= Iαt F

′(t)− tα−1

Γ(α)
F (0) ∈ X.
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So

dx(t)

dt
=

d

dt

(
1

Γ(α)

∫ t

0
(t− s)α−1Ax(s)

)
+
d

dt

(
1

Γ(α)

∫ t

0
(t− s)α−1F (s)ds

)
= A(RLD1−α

t x(t)) + Iαt F
′(t)− tα−1

Γ(α)
F (0),

which implies (3.3) exists a unique solution x(t) ∈ C1([0, T ], X).

Since A ∈ L(X), D(A) = X. Then by Lemma 3.1, (3.1) also exists a unique solution

x(t) ∈ C1([0, T ], X).

In order to study (3.2), we need the following lemma.

Lemma 3.6. Let A ∈ L(X) be a closed operator and F (t, λ) : [0, T ] × R → X. If F (t, λ) is

continuous with respect to t on [0, T ] and λ on [a, b] ⊂ R. Then for any λ ∈ [a, b] and x0 ∈ X,

there exists a unique solution x(t, λ, x0) ∈ C([0, T ], X) for the following integral equations

x(t) = x0 +
1

Γ(α)

∫ t

0
(t− s)α−1Ax(s)ds+

1

Γ(α)

∫ t

0
(t− s)α−1F (s, λ)x(s)ds, 0 ≤ t ≤ T. (3.10)

Moreover, x(t, λ, x0) is continuous with respect to λ ∈ [a, b] and x0 ∈ X.

Proof. Fixing λ ∈ [a, b] and x0 ∈ X, set F̃ (t, x) = Ax+ F (t, λ)x. Then

∥∥∥F̃ (t, x1)− F̃ (t, x2)
∥∥∥ ≤ (‖A‖+ sup

(t,λ)∈[0,T ]×[a,b]
‖F (t, λ)‖

)
‖x1 − x2‖ = L ‖x1 − x2‖ ,

where

L = ‖A‖+ sup
(t,λ)∈[0,T ]×[a,b]

‖F (t, λ)‖ .

By Lemma 3.3, (3.10) exists a unique solution x(t, λ, x0) ∈ C([0, T ], X). Then

‖x(t, λ, x0,1)− x(t, λ)x0,2‖ =‖x0,1 +
1

Γ(α)

∫ t

0
(t− s)α−1F̃ (s, λ, x(s, λ, x0,1))ds

− x0,2 −
1

Γ(α)

∫ t

0
(t− s)α−1F̃ (s, λ, x(s, λ, x0,2))ds‖

≤‖x0,1 − x0,2‖+
L

Γ(α)

∫ t

0
(t− s)α−1 ‖x(s, λ, x0,1)− x(s, λ, x0,2)‖ .

By Lemma 2.4, we get

‖x(t, λ, x0,1)− x(t, λ, x0,2)‖ ≤ ‖x0,1 − x0,2‖Eα(Ltα) ≤ ‖x0,1 − x0,2‖Eα(LTα).

Thus

‖x(t, λ, x0,1)− x(t, λ, x0,2)‖ → 0, as x0,1 → x0,2,

which implies x(t, λ, x0) is continuous with respect to x0 ∈ X.
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On the other hand

‖x(t, λ1, x0)− x(t, λ2, x0)‖

=

∥∥∥∥ 1

Γ(α)

∫ t

0
(t− s)α−1F̃ (s, λ1, x(s, λ1, x0))ds− 1

Γ(α)

∫ t

0
(t− s)α−1F̃ (s, λ2), x(s, λ2, x0))ds

∥∥∥∥
≤
∥∥∥∥ 1

Γ(α)

∫ t

0
(t− s)α−1F (s, λ1)x(s, λ1, x0)ds− 1

Γ(α)

∫ t

0
(t− s)α−1F (s, λ1)x(s, λ2, x0)ds

∥∥∥∥
+

∥∥∥∥ 1

Γ(α)

∫ t

0
(t− s)α−1F (s, λ1)x(s, λ2, x0)ds− 1

Γ(α)

∫ t

0
(t− s)α−1F (s, λ2)x(s, λ2, x0)ds

∥∥∥∥
+

∥∥∥∥ 1

Γ(α)

∫ t

0
(t− s)α−1Ax(t, λ1, x0)ds− 1

Γ(α)

∫ t

0
(t− s)α−1Ax(t, λ2, x0)ds

∥∥∥∥
≤ L

Γ(α)

∫ t

0
(t− s)α−1 ‖x(t, λ1, x0)− x(t, λ2, x0)‖ ds+

M1M2(λ1 − λ2)

Γ(α)

∫ t

0
(t− s)α−1ds

=
L

Γ(α)

∫ t

0
(t− s)α−1 ‖x(t, λ1, x0)− x(t, λ2, x0)‖ ds+

M1t
α

αΓ(α)
M2(λ1 − λ2),

where

M1 = sup
t∈[0,T ]

x(t, λ2, x0), M2 = sup
t∈[0,T ]

‖F (t, λ1)− F (t, λ2)‖ .

By Lemma 2.4, we get

‖x(t, λ1, x0)− x(t, λ2, x0)‖ ≤ M1t
α

αΓ(α)
Eα(L1t

α)M2(λ1 − λ2) ≤ M1T
α

αΓ(α)
Eα(L1T

α)M2(λ1 − λ2).

Thus

‖x(t, λ1, x0)− x(t, λ2, x0)‖ → 0, as λ1 → λ2,

which implies x(t, λ, x0) is continuous with respect to λ ∈ R.

In the following, we give and proof the existence and differentiability on time of solutions

for (3.2).

Theorem 3.2. Let A ∈ L(X) be a closed operator, and for the function F (t, x), ∂F
∂t and ∂F

∂x

exist, moreover ∂F
∂t ∈ C([0, T ], X) and ∂F

∂x ∈ C([0, T ], X). Then the equations (3.2) exist a

unique solution x(t), moreover x(t) ∈ C1([0, T ], X).

Proof. Similar to the proof of Theorem 3.1, we should prove (3.4) exists a unique solution

x(t) ∈ C1([0, T ], X).

Since ∂F
∂t exist, by Lemma 3.5, (3.4) exists a unique solution x(t) ∈ C([0, T ], X), such that

x(t) = x0 +
1

Γ(α)

∫ t

0
(t− s)α−1Ax(s)ds+

1

Γ(α)

∫ t

0
(t− s)α−1F (s, x(s))ds.

Rewrite x(t), we get

x(t) = x0 +
1

Γ(α)

∫ t

0
sα−1Ax(t− s)ds+

1

Γ(α)

∫ t

0
sα−1F (t− s, x(t− s))ds.
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For h ∈ R\{0},

x(t+ h)− x(t)

h

=
1

Γ(α)h

∫ t+h

0
sα−1Ax(t+ h− s)ds− 1

Γ(α)h

∫ t

0
sα−1Ax(t− s)ds

+
1

Γ(α)h

∫ t+h

0
sα−1F (t+ h− s, x(t+ h− s))ds− 1

Γ(α)h

∫ t

0
sα−1F (t− s, x(t− s))ds

:=ω1 + ω2.

Then

ω1 =
1

Γ(α)h

∫ t+h

0
sα−1Ax(t+ h− s)ds− 1

Γ(α)h

∫ t

0
sα−1Ax(t− s)ds

=
1

Γ(α)h

∫ t

0
sα−1Ax(t+ h− s)ds− 1

Γ(α)h

∫ t

0
sα−1Ax(t− s)ds

+
1

Γ(α)h

∫ t+h

t
sα−1Ax(t+ h− s)ds

=
1

Γ(α)

∫ t

0
sα−1Ax(t+ h− s)−Ax(t− s)

h
ds+

1

Γ(α)h

∫ t+h

t
sα−1Ax(t+ h− s)ds

=
1

Γ(α)

∫ t

0
(t− s)α−1A

(
x(s+ h)− x(s)

h

)
ds+ r1(t, h),

where

r1(t, h) =
1

Γ(α)h

∫ t+h

t
sα−1Ax(t+ h− s)ds, h 6= 0.

Since

lim
h→0

r1(t, h) = lim
h→0

1

Γ(α)h

∫ t+h

t
sα−1Ax(t+ h− s)ds =

tα−1

Γ(α)
Ax(t).

Define

r1(t, 0) =
tα−1

Γ(α)
Ax(t),

then r1(t, h) is continuous with respect to h.
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For ω2, we have

ω2 =
1

Γ(α)h

∫ t+h

0
sα−1F (t+ h− s, x(t+ h− s))ds− 1

Γ(α)h

∫ t

0
sα−1F (t− s, x(t− s))ds

=
1

Γ(α)h

∫ t

0
sα−1F (t+ h− s, x(t+ h− s))ds− 1

Γ(α)h

∫ t

0
sα−1F (t− s, x(t− s))ds

+
1

Γ(α)h

∫ t+h

t
sα−1F (t+ h− s, x(t+ h− s))ds

=
1

Γ(α)h

∫ t

0
sα−1F (t+ h− s, x(t+ h− s))ds− 1

Γ(α)h

∫ t

0
sα−1F (t+ h− s, x(t− s))ds

+
1

Γ(α)h

∫ t

0
sα−1F (t+ h− s, x(t− s))ds− 1

Γ(α)h

∫ t

0
sα−1F (t− s, x(t− s))ds+ r2(t, h)

=
1

Γ(α)h

∫ t

0
(t− s)α−1(F (s+ h, x(s+ h))− F (s+ h, x(s)))ds

+
1

Γ(α)h

∫ t

0
(t− s)α−1(F (s+ h, x(s))− F (s, x(s)))ds+ r2(t, h)

=
1

Γ(α)

∫ t

0
(t− s)α−1[

∂F (s+ h, x(s))

∂x
+ r3(s, h)]

x(s+ h)− x(s)

h
ds

+
1

Γ(α)

∫ t

0
(t− s)α−1[

∂F (s, x(s))

∂t
+ r4(s, h)]ds+ r2(t, h),

where

r2(t, h) =
1

Γ(α)h

∫ t+h

t
sα−1F (t+ h− s, x(t+ h− s))ds, h 6= 0,

r3(s, h) =

{
F (s+h,x(s+h))−F (s+h,x(s))

x(s+h)−x(s) − ∂F (s+h,x(s))
∂x x(s+ h) 6= x(s)

0 x(s+ h) = x(s),

r4(s, h) =
F (s+ h, x(s))− F (s, x(s))

h
− ∂F (s, x(s))

∂t
, h 6= 0.

Then

lim
h→0

r3(s, h) = 0, lim
h→0

r4(s, h) = 0,

and

lim
h→0

r2(t, h) = lim
h→0

1

Γ(α)h

∫ t+h

t
sα−1F (t+ h− s, x(t+ h− s))ds

= lim
h→0

1

Γ(α)h

∫ h

0
(t+ s)α−1F (h− s, x(h− s))ds

= lim
h→0

1

Γ(α)h

∫ h

0
((t+ s)α−1F (h− s, x(h− s))− F (0, x(0)))ds

+ lim
h→0

1

Γ(α)h

∫ h

0
(t+ s)α−1F (0, x(0))ds.

Moreover

lim
h→0

1

Γ(α)h

∫ h

0
(t+ s)α−1F (0, x(0))ds = lim

h→0

F (0, x(0))

Γ(α)h
(

1

α
(t+ h)α − 1

α
tα) =

tα−1F (0, x(0))

Γ(α)
,
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and ∥∥∥∥ 1

Γ(α)h

∫ h

0
((t+ s)α−1F (h− s, x(h− s))− F (0, x(0)))ds

∥∥∥∥
≤ 1

Γ(α)h

∫ h

0
(t+ s)α−1 ‖F (h− s, x(h− s))− F (0, x(0))‖ ds

≤ sup
l∈[0,h]

‖F (l, x(l))− F (0, x(0))‖ 1

Γ(α)h

∫ h

0
(t+ s)α−1ds.

When h→ 0,

1

Γ(α)h

∫ h

0
(t+ s)α−1ds→ tα−1

Γ(α)
, sup

l∈[0,h]
‖F (l, x(l))− F (0, x(0))‖ → 0.

Then

lim
h→0

1

Γ(α)h

∫ h

0
((t+ s)α−1F (h− s, x(h− s))− F (0, x(0)))ds = 0.

We get

lim
h→0

r2(t, h) =
tα−1

Γ(α)
F (0, x0).

Define

r2(t, 0) =
tα−1

Γ(α)
F (0, x0), r3(s, 0) = r4(s, 0) = 0.

Then r2(t, h), r3(s, h) and r4(s, h) are continuous with respect to h.

Thus

x(t+ h)− x(t)

h

=r1(t, h) + r2(t, h) +
1

Γ(α)

∫ t

0
(t− s)α−1A

(
x(s+ h)− x(s)

h

)
ds

+
1

Γ(α)

∫ t

0
(t− s)α−1[

∂F (s+ h, x(s))

∂x
+ r3(s, h)]

x(s+ h)− x(s)

h
ds

+
1

Γ(α)

∫ t

0
(t− s)α−1[

∂F (s, x(s))

∂x
+ r4(s, h)]ds.

(3.11)

Define

ψ(t, h) =
x(t+ h)− x(t)

h
.

For fix t0 ∈ [0, T ], set

x̃0(t0, h) = r1(t0, h) + r2(t0, h) +
1

Γ(α)

∫ t0

0
(t0 − s)α−1

[
∂F (s, x(s))

∂x
+ r4(s, h)

]
ds ∈ X,

F̃ (t, h) =
(∂F (t+ h, x(t))

∂x
+ r3(s, h)

)
.

By (3.11), we get

ψ(t0, h) =x̃0(t0, h) +
1

Γ(α)

∫ t0

0
(t0 − s)α−1Aψ(s, h)ds

+
1

Γ(α)

∫ t0

0
(t0 − s)α−1F̃ (s, h)ψ(s, h)ds.

(3.12)
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By Lemma 3.6, there exists a unique solution v(t, h, x̃0(t0, h)) ∈ C([0, T ], X) for integral equa-

tions

v(t) =x̃0(t0, h) +
1

Γ(α)

∫ t

0
(t− s)α−1Av(s)ds

+
1

Γ(α)

∫ t

0
(t− s)α−1F̃ (s, h)v(s)ds, 0 ≤ t ≤ T.

(3.13)

Moreover, v(t, h, x̃0(t0, h)) is continuous with respect to h and x̃0 ∈ X.

Combining (3.12) and (3.13), we get

ψ(t0, h) = v(t0, h, x̃0(t0, h)).

Then we get

x′(t0) = lim
h→0

ψ(t0, h) = lim
h→0

v(t0, h, x̃0(t0, h)) = v(t0, 0, x̃0(t0, 0)).

Since A ∈ L(X), D(A) = X. Combining Lemma 3.2, (3.4) exists a unique solution x(t),

moreover x(t) ∈ C1([0, T ], X).

4 Continuity of solution on fractional order for linear equations

In this section, we consider the continuity of solutions on fractional order for linear Caputo

fractional evolution equations, i.e., as α→ β, the relationship of solutions between{
CDα

t x(t) = Ax(t) + F (t), 0 < t ≤ T,
x(0) = x0,

(4.1)

and {
CDβ

t x(t) = Ax(t) + F (t), 0 < t ≤ T,
x(0) = x0.

(4.2)

Before giving the main results of this section, we give and proof a lemma, which plays a key

role in the proofs of our main results of this section and the next section.

Lemma 4.1. Let α > 0, β > 0 and 0 ≤ t ≤ T for some T ∈ (0,+∞). When α→ β,

ε(α, β) :=

∫ t

0

[
1

Γ(α)
(t− s)α−1 − 1

Γ(β)
(t− s)β−1

]
ds→ 0.

Proof. As α > 0, β > 0, then∫ t

0

[
1

Γ(α)
(t− s)α−1 − 1

Γ(β)
(t− s)β−1

]
ds =

(
1

Γ(α)

1

α
(t− s)α − 1

Γ(β)

1

β
(t− s)β

)
|s=ts=0

=
1

Γ(α+ 1)
tα − 1

Γ(β + 1)
tβ.
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When α→ β,
1

Γ(α+ 1)
tα − 1

Γ(β + 1)
tβ → 0,

which, together with 0 ≤ t ≤ T , implies∫ t

0

[
1

Γ(α)
(t− s)α−1 − 1

Γ(β)
(t− s)β−1

]
ds→ 0.

In the following, we state and proof our main results.

Theorem 4.1. Let A ∈ L(X) be a closed operator, F (t) ∈ C1([0, T ], X) satisfying

‖F (t)‖ ≤ C2,∀t ∈ [0, T ].

Then the solution of (4.1) converges to the solution of (4.2) as α→ β for 0 < α, β < 1.

Proof. From Theorem 3.1, it follows that (4.1) as well as (4.2) has a unique solution, and

the solutions have the forms

xα(t) = x0 +
1

Γ(α)

∫ t

0
(t− s)α−1Axα(s)ds+

1

Γ(α)

∫ t

0
(t− s)α−1F (s)ds, 0 ≤ t ≤ T,

and

xβ(t) = x0 +
1

Γ(β)

∫ t

0
(t− s)α−1Axβ(s)ds+

1

Γ(β)

∫ t

0
(t− s)β−1F (s)ds, 0 ≤ t ≤ T.

As A ∈ L(X) being a closed operator, then there exists a constant C1 such that

‖Ax‖ ≤ C1,∀x ∈ C1([0, T ], X).

Thus

‖xα(t)− xβ(t)‖

≤
∥∥∥∥ 1

Γ(α)

∫ t

0
(t− s)α−1Axα(s)ds− 1

Γ(β)

∫ t

0
(t− s)β−1Axβ(s)ds

∥∥∥∥
+

∥∥∥∥ 1

Γ(α)

∫ t

0
(t− s)α−1F (s)ds− 1

Γ(β)

∫ t

0
(t− s)β−1F (s)ds

∥∥∥∥
≤ 1

Γ(α)

∫ t

0
(t− s)α−1‖Axα(s)−Axβ(s)‖ds+

∫ t

0

∥∥∥∥[ 1

Γ(α)
(t− s)α−1 − 1

Γ(β)
(t− s)β−1

]
Axβ(s)

∥∥∥∥ds

+

∫ t

0

∥∥∥∥[ 1

Γ(α)
(t− s)α−1 − 1

Γ(β)
(t− s)β−1

]
F (s)

∥∥∥∥ds

≤ ‖A‖
Γ(α)

∫ t

0
(t− s)α−1‖xα(s)− xβ(s)‖ds+

∫ t

0

[
1

Γ(α)
(t− s)α−1 − 1

Γ(β)
(t− s)β−1

]
‖Axβ(s)‖ds

+

∫ t

0

[
1

Γ(α)
(t− s)α−1 − 1

Γ(β)
(t− s)β−1

]
‖F (s)‖ds
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≤ ‖A‖
Γ(α)

∫ t

0
(t− s)α−1‖xα(s)− xβ(s)‖ds+ C1

∫ t

0

[
1

Γ(α)
(t− s)α−1 − 1

Γ(β)
(t− s)β−1

]
ds

+ C2

∫ t

0

[
1

Γ(α)
(t− s)α−1 − 1

Γ(β)
(t− s)β−1

]
ds

=
‖A‖
Γ(α)

∫ t

0
(t− s)α−1‖xα(s)− xβ(s)‖ds+ [C1 + C2]

∫ t

0

[
1

Γ(α)
(t− s)α−1 − 1

Γ(β)
(t− s)β−1

]
ds

:=
‖A‖
Γ(α)

∫ t

0
(t− s)α−1‖xα(s)− xβ(s)‖ds+ ε1(α, β).

From Lemma 4.1, it follows that

lim
α→β

ε1(α, β) = 0.

Then, for any ε > 0, there exists δ > 0 such that for 0 < |β − α| < δ, we have 0 < ε1(α, β) < ε,

which imply

‖xα(t)− xβ(t)‖ ≤ ‖A‖
Γ(α)

∫ t

0
(t− s)α−1‖xα(s)− xβ(s)‖ds+ ε,

as 0 < |β − α| < δ.

From Lemma 2.3, it follows that

‖xα(t)− xβ(t)‖ ≤ ε+ ε

∫ t

0

[ ∞∑
n=1

‖A‖n

Γ(nα)
(t− s)nα−1

]
ds.

Noted that∫ t

0

[ ∞∑
n=1

‖A‖n

Γ(nα)
(t− s)nα−1

]
ds ≤

∞∑
n=1

‖A‖n

Γ(nα)

∫ t

0
(t− s)nα−1ds =

∞∑
n=1

‖A‖n

Γ(nα)

tnα

nα

=
∞∑
n=1

(‖A‖tα)n

Γ(nα+ 1)
≤ Eα(‖A‖tα) <∞,

which implies

‖xα(t)− xβ(t)‖ → 0,

as ε→ 0 (α→ β). This completes the proof.

Moreover, we find a relationship of solutions between the linear Caputo fractional evolution

equations and the classic linear evolution equations, i.e., as α→ 1−, the relationship of solutions

between {
CDα

t x(t) = Ax(t) + F (t), 0 < t ≤ T,
x(0) = x0,

(4.3)

and {
x′(t) = Ax(t) + F (t), 0 < t ≤ T,
x(0) = x0.

(4.4)

18



Firstly, we give some Lemmas.

Consider the following first order differential equations{
x′(t) = F (t, x(t)), 0 < t ≤ T,
x(0) = x0.

(4.5)

Lemma 4.2. ( [28]) x(t) ∈ C1([0, T ], X) is a solution of (4.5) if and only if x(t) ∈ C([0, T ], X)

is a solution of the following nonlinear Volterra integral equations

x(t) = x0 +

∫ t

0
F (s, x(s))ds, 0 ≤ t ≤ T. (4.6)

Lemma 4.3. ( [28]) If F (t, x) is continuous with respect to t on [0, T ] and Lipschitz continuous

with respect to x, namely, there exists a positive constant L such that

‖F (t, x)− F (t, y)‖ ≤ L‖x− y‖, ∀t ∈ [0, T ], x, y ∈ X.

Then (4.6) has a unique solution x(t), moreover x(t) ∈ C([0, T ], X).

Lemma 4.4. Let A ∈ L(X) be a closed operator and F (t) ∈ C([0, T ], X). Then (4.4) is

equivalent to the following integral equations

x(t) = x0 +

∫ t

0
Ax(s)ds+

∫ t

0
F (s)ds, 0 ≤ t ≤ T. (4.7)

Moreover (4.4) exists a unique solution x(t), moreover x(t) ∈ C1([0, T ], X).

Proof. Let F̃ (t, x) = Ax+ f(t). Since A ∈ L(X), thus

‖F̃ (t, x)− F̃ (t, y)‖ ≤ ‖A‖‖x− y‖, ∀t ∈ [0, T ], x, y ∈ X.

Note that A is a closed operator and F (t) ∈ C([0, T ], X), then F̃ (t, x) is continuous with respect

to t on [0, T ]. By lemma 4.3, (4.7) has a unique solution x(t) ∈ C([0, T ], X). Combining

Lemma 4.2, (4.4) is equivalent to (4.7). Moreover (4.4) exists a unique solution x(t), moreover

x(t) ∈ C1([0, T ], X).

We have the following result.

Theorem 4.2. Let A ∈ L(X) be a closed operator, F (t) ∈ C1([0, T ], X) satisfying

‖F (t)‖ ≤ C4,∀t ∈ [0, T ].

Then the solution of (4.3) converges to the solution of (4.4) as α→ 1−.

Proof. From Theorem 3.1 and Lemma 4.4, it follows that (4.3) as well as (4.4) has a unique

solution, and the solutions have the forms

xα(t) = x0 +
1

Γ(α)

∫ t

0
(t− s)α−1Axα(s)ds+

1

Γ(α)

∫ t

0
(t− s)α−1F (s)ds, 0 ≤ t ≤ T,
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and

x1(t) = x0 +

∫ t

0
Ax1(s)ds+

∫ t

0
F (s)ds, 0 ≤ t ≤ T.

As A ∈ L(X) being a closed operator, then there exists a constant C3 such that

‖Ax‖ ≤ C3,∀x ∈ C1([0, T ], X).

Thus

‖xα(t)− x1(t)‖

≤
∥∥∥∥ 1

Γ(α)

∫ t

0
(t− s)α−1Axα(s)ds−

∫ t

0
Ax1(s)ds

∥∥∥∥
+

∥∥∥∥ 1

Γ(α)

∫ t

0
(t− s)α−1F (s)ds−

∫ t

0
F (s)ds

∥∥∥∥
≤ 1

Γ(α)

∫ t

0
(t− s)α−1‖Axα(s)−Ax1(s)‖ds+

∫ t

0

∥∥∥∥[ 1

Γ(α)
(t− s)α−1 − 1

]
Ax1(s)

∥∥∥∥ds

+

∫ t

0

∥∥∥∥[ 1

Γ(α)
(t− s)α−1 − 1

]
F (s)

∥∥∥∥ds

≤ ‖A‖
Γ(α)

∫ t

0
(t− s)α−1‖xα(s)− x1(s)‖ds+

∫ t

0

[
1

Γ(α)
(t− s)α−1 − 1

]
‖Ax1(s)‖ds

+

∫ t

0

[
1

Γ(α)
(t− s)α−1 − 1

]
‖F (s)‖ds

≤ ‖A‖
Γ(α)

∫ t

0
(t− s)α−1‖xα(s)− x1(s)‖ds+ C3

∫ t

0

[
1

Γ(α)
(t− s)α−1 − 1

]
ds

+ C4

∫ t

0

[
1

Γ(α)
(t− s)α−1 − 1

]
ds

=
‖A‖
Γ(α)

∫ t

0
(t− s)α−1‖xα(s)− x1(s)‖ds+ [C3 + C4]

∫ t

0

[
1

Γ(α)
(t− s)α−1 − 1

]
ds

:=
‖A‖
Γ(α)

∫ t

0
(t− s)α−1‖xα(s)− x1(s)‖ds+ ε2(α).

Noted that

ε2(α) = [C3+C4]

∫ t

0

[
1

Γ(α)
(t− s)α−1 − 1

]
ds = [C3+C4]

[
1

Γ(α)

ta

a
− t
]

= [C3+C4]

[
ta

Γ(α+ 1)
− t
]
.

So

lim
α→1−

ε2(α) = lim
α→1−

[C3 + C4]

(
ta

Γ(α+ 1)
− t
)

= t− t = 0.

Then, for any ε > 0, there exists δ > 0 such that for 0 < 1 − α < δ, we have 0 < ε2(α) < ε,

which imply

‖xα(t)− x1(t)‖ ≤ ‖A‖
Γ(α)

∫ t

0
(t− s)α−1‖xα(s)− x1(s)‖ds+ ε,

as 0 < 1− α < δ.
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From Lemma 2.3, it follows that

‖xα(t)− x1(t)‖ ≤ ε+ ε

∫ t

0

[ ∞∑
n=1

‖A‖n

Γ(nα)
(t− s)nα−1

]
ds.

Noted that∫ t

0

[ ∞∑
n=1

‖A‖n

Γ(nα)
(t− s)nα−1

]
ds ≤

∞∑
n=1

‖A‖n

Γ(nα)

∫ t

0
(t− s)nα−1ds =

∞∑
n=1

‖A‖n

Γ(nα)

tnα

nα

=
∞∑
n=1

(‖A‖tα)n

Γ(nα+ 1)
≤ Eα(‖A‖tα) <∞,

which implies

‖xα(t)− x1(t)‖ → 0,

as ε→ 0 (α→ 1−). This completes the proof.

5 Continuity of solution on fractional order for semilinear equa-
tions

In this section, we consider the continuity of solution on fractional order for semilinear

Caputo fractional evolution equations, i.e., as α→ β, the relationship of solutions between{
CDα

t x(t) = Ax(t) + F (t, x(t)), 0 < t ≤ T,
x(0) = x0,

(5.1)

and {
CDβ

t x(t) = Ax(t) + F (t, x(t)), 0 < t ≤ T,
x(0) = x0.

(5.2)

Throughout this section, we require the following assumptions.

(H1) There exists a constants C6 such that

‖F (t, x)‖ ≤ C6, for all t ∈ [0, T ] x ∈ X.

(H2) F (t, x) is continuous with respect to t on [0, T ] and Lipschitz continuous with respect

to x, namely, there exists a positive constant L such that

‖F (t, x)− F (t, y)‖ ≤ L‖x− y‖, ∀t ∈ [0, T ], x, y ∈ X.

We have the following result.

Theorem 5.1. Let the assumptions of Theorem 3.2 be satisfied and the conditions H1 and H2

hold. Then the solution of (5.1) converges to the solution of (5.2) as α→ β for 0 < α, β < 1.
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Proof. From Theorem 3.2, it follows that (5.1) as well as (5.2) has a unique solution, and

the solutions have the forms

xα(t) = x0 +
1

Γ(α)

∫ t

0
(t− s)α−1Axα(s)ds+

1

Γ(α)

∫ t

0
(t− s)α−1F (s, xα(s))ds, 0 ≤ t ≤ T,

and

xβ(t) = x0 +
1

Γ(β)

∫ t

0
(t− s)α−1Axβ(s)ds+

1

Γ(β)

∫ t

0
(t− s)β−1F (s, xβ(s))ds, 0 ≤ t ≤ T.

As A ∈ L(X) being a closed operator, then there exists a constant C5 such that

‖Ax‖ ≤ C5,∀x ∈ C1([0, T ], X).

Thus

‖xα(t)− xβ(t)‖

≤
∥∥∥∥ 1

Γ(α)

∫ t

0
(t− s)α−1Axα(s)ds− 1

Γ(β)

∫ t

0
(t− s)β−1Axβ(s)ds

∥∥∥∥
+

∥∥∥∥ 1

Γ(α)

∫ t

0
(t− s)α−1F (s, xα(s))ds− 1

Γ(β)

∫ t

0
(t− s)β−1F (s, xβ(s))ds

∥∥∥∥
≤ 1

Γ(α)

∫ t

0
(t− s)α−1‖Axα(s)−Axβ(s)‖ds+

∫ t

0

∥∥∥∥[ 1

Γ(α)
(t− s)α−1 − 1

Γ(β)
(t− s)β−1

]
Axβ(s)

∥∥∥∥ds

+
1

Γ(α)

∫ t

0
(t− s)α−1‖F (s, xα(s))− F (s, xβ(s))‖ds

+

∫ t

0

∥∥∥∥[ 1

Γ(α)
(t− s)α−1 − 1

Γ(β)
(t− s)β−1

]
F (s, xβ(s))

∥∥∥∥ds

≤ ‖A‖
Γ(α)

∫ t

0
(t− s)α−1‖xα(s)− xβ(s)‖ds+

∫ t

0

[
1

Γ(α)
(t− s)α−1 − 1

Γ(β)
(t− s)β−1

]
‖Axβ(s)‖ds

+
L

Γ(α)

∫ t

0
(t− s)α−1‖xα(s)− xβ(s)‖ds+

∫ t

0

[
1

Γ(α)
(t− s)α−1 − 1

Γ(β)
(t− s)β−1

]
‖F (s, xβ(s))‖ds

≤‖A‖+ L

Γ(α)

∫ t

0
(t− s)α−1‖xα(s)− xβ(s)‖ds+ C5

∫ t

0

[
1

Γ(α)
(t− s)α−1 − 1

Γ(β)
(t− s)β−1

]
ds

+ C6

∫ t

0

[
1

Γ(α)
(t− s)α−1 − 1

Γ(β)
(t− s)β−1

]
ds

=
‖A‖+ L

Γ(α)

∫ t

0
(t− s)α−1‖xα(s)− xβ(s)‖ds+ [C5 + C6]

∫ t

0

[
1

Γ(α)
(t− s)α−1 − 1

Γ(β)
(t− s)β−1

]
ds

:=
‖A‖+ L

Γ(α)

∫ t

0
(t− s)α−1‖xα(s)− xβ(s)‖ds+ ε3(α, β).

From Lemma 2.4, it follows that

lim
α→β

ε3(α, β) = 0.

Then, for any ε > 0, there exists δ > 0 such that for 0 < |β − α| < δ, we have 0 < ε3(α, β) < ε,

which imply

‖xα(t)− xβ(t)‖ ≤ ‖A‖+ L

Γ(α)

∫ t

0
(t− s)α−1‖xα(s)− xβ(s)‖ds+ ε,
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as 0 < |β − α| < δ.

From Lemma 2.3, it follows that

‖xα(t)− xβ(t)‖ ≤ ε+ ε

∫ t

0

[ ∞∑
n=1

(‖A‖+ L)n

Γ(nα)
(t− s)nα−1

]
ds.

Noted that∫ t

0

[ ∞∑
n=1

(‖A‖+ L)n

Γ(nα)
(t− s)nα−1

]
ds ≤

∞∑
n=1

(‖A‖+ L)n

Γ(nα)

∫ t

0
(t− s)nα−1ds =

∞∑
n=1

(‖A‖+ L)n

Γ(nα)

tnα

nα

=
∞∑
n=1

((‖A‖+ L)tα)n

Γ(nα+ 1)
≤ Eα(‖A‖+ L)tα) <∞,

which implies

‖xα(t)− xβ(t)‖ → 0,

as ε→ 0 (α→ β). This completes the proof.

Moreover, we find a relationship of solutions between the semilinear Caputo fractional evo-

lution equations and the classic semilinear evolution equations, i.e., as α→ 1−, the relationship

of solutions between {
CDα

t x(t) = Ax(t) + F (t, x(t)), 0 < t ≤ T,
x(0) = x0,

(5.3)

and {
x′(t) = Ax(t) + F (t, x(t)), 0 < t ≤ T,
x(0) = x0.

(5.4)

Firstly, we give a Lemma.

Lemma 5.1. Let A ∈ L(X) be a closed operator. If F (t, x) is continuous with respect to t on

[0, T ] and Lipschitz continuous with respect to x, namely, there exists a positive constant L such

that

‖F (t, x)− F (t, y)‖ ≤ L‖x− y‖, ∀t ∈ [0, T ], x, y ∈ X.

Then (5.4) is equivalent to the following integral equations

x(t) = x0 +

∫ t

0
Ax(s)ds+

∫ t

0
F (s, x(s))ds, 0 ≤ t ≤ T. (5.5)

Moreover (5.4) exists a unique solution x(t) and x(t) ∈ C1([0, T ], X).

Proof. Let F̃ (t, x) = Ax+ f(t, x). Since A ∈ L(X),

‖F̃ (t, x)− F̃ (t, y)‖ ≤ (‖A‖+ L)‖x− y‖, ∀t ∈ [0, T ], x, y ∈ X.
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Note that A is a closed operator and F (t, x) ∈ C([0, T ], X), then F̃ (t, x) is continuous with

respect to t on [0, T ]. By Lemma 4.3, (5.5) has a unique solution x(t) ∈ C([0, T ], X). Combining

Lemma 4.2, (5.4) is equivalent to (5.5). Moreover (5.4) exists a unique solution x(t) and x(t) ∈
C1([0, T ], X).

We have the following result.

Theorem 5.2. Let the assumptions of Theorem 3.2 be satisfied and the conditions H1 and H2

hold. Then the solution of (5.3) converges to the solution of (5.4) as α→ 1−.

Proof. From Theorem 3.2 and Lemma 5.1, it follows that (5.3) as well as (5.4) has a unique

solution, and the solutions have the forms

xα(t) = x0 +
1

Γ(α)

∫ t

0
(t− s)α−1Axα(s)ds+

1

Γ(α)

∫ t

0
(t− s)α−1F (s, xα(s))ds, 0 ≤ t ≤ T,

and

x1(t) = x0 +

∫ t

0
Ax1(s)ds+

∫ t

0
F (s, x1(s))ds, 0 ≤ t ≤ T.

As A ∈ L(X) being a closed operator, then there exists a constant C7 such that

‖Ax‖ ≤ C7,∀x ∈ C1([0, T ], X).

Thus

‖xα(t)− x1(t)‖

≤
∥∥∥∥ 1

Γ(α)

∫ t

0
(t− s)α−1Axα(s)ds−

∫ t

0
Ax1(s)ds

∥∥∥∥
+

∥∥∥∥ 1

Γ(α)

∫ t

0
(t− s)α−1F (s, xα(s))ds−

∫ t

0
F (s, x1(s))ds

∥∥∥∥
≤ 1

Γ(α)

∫ t

0
(t− s)α−1‖Axα(s)−Ax1(s)‖ds+

∫ t

0

∥∥∥∥[ 1

Γ(α)
(t− s)α−1 − 1

]
Ax1(s)

∥∥∥∥ds

+
1

Γ(α)

∫ t

0
(t− s)α−1‖F (s, xα(s))− F (s, x1(s))‖ds+

∫ t

0

∥∥∥∥[ 1

Γ(α)
(t− s)α−1 − 1

]
F (s, x1(s))

∥∥∥∥ds

≤ ‖A‖
Γ(α)

∫ t

0
(t− s)α−1‖xα(s)− x1(s)‖ds+

∫ t

0

[
1

Γ(α)
(t− s)α−1 − 1

]
‖Ax1(s)‖ds

+
L

Γ(α)

∫ t

0
(t− s)α−1‖xα(s)− x1(s)‖ds+

∫ t

0

[
1

Γ(α)
(t− s)α−1 − 1

]
‖F (s, x1(s))‖ds

≤‖A‖+ L

Γ(α)

∫ t

0
(t− s)α−1‖xα(s)− x1(s)‖ds+ C7

∫ t

0

[
1

Γ(α)
(t− s)α−1 − 1

]
ds

+ C6

∫ t

0

[
1

Γ(α)
(t− s)α−1 − 1

]
ds

=
‖A‖+ L

Γ(α)

∫ t

0
(t− s)α−1‖xα(s)− x1(s)‖ds+ [C7 + C6]

∫ t

0

[
1

Γ(α)
(t− s)α−1 − 1

]
ds

:=
‖A‖+ L

Γ(α)

∫ t

0
(t− s)α−1‖xα(s)− x1(s)‖ds+ ε4(α).
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Noted that

ε4(α) = [C7+C6]

∫ t

0

[
1

Γ(α)
(t− s)α−1 − 1

]
ds = [C7+C6]

[
1

Γ(α)

ta

a
− t
]

= [C7+C6]

[
ta

Γ(α+ 1)
− t
]
.

So

lim
α→1−

ε4(α) = lim
α→1−

[C7 + C6]

(
ta

Γ(α+ 1)
− t
)

= t− t = 0.

Then, for any ε > 0, there exists δ > 0 such that for 0 < 1 − α < δ, we have 0 < ε4(α) < ε,

which imply

‖xα(t)− x1(t)‖ ≤ ‖A‖+ L

Γ(α)

∫ t

0
(t− s)α−1‖xα(s)− x1(s)‖ds+ ε,

as 0 < 1− α < δ.

From Lemma 2.3, it follows that

‖xα(t)− x1(t)‖ ≤ ε+ ε

∫ t

0

[ ∞∑
n=1

(‖A‖+ L)n

Γ(nα)
(t− s)nα−1

]
ds.

Noted that∫ t

0

[ ∞∑
n=1

(‖A‖+ L)n

Γ(nα)
(t− s)nα−1

]
ds ≤

∞∑
n=1

(‖A‖+ L)n

Γ(nα)

∫ t

0
(t− s)nα−1ds =

∞∑
n=1

(‖A‖+ L)n

Γ(nα)

tnα

nα

=

∞∑
n=1

((‖A‖+ L)tα)n

Γ(nα+ 1)
≤ Eα(‖A‖+ L)tα) <∞,

which implies

‖xα(t)− x1(t)‖ → 0,

as ε→ 0 (α→ 1−). This completes the proof.

6 Examples and numerical investigations

In this section, the numerical studies are performed to explore the continuity of solutions on

fractional order for some fractional systems, which show reasonable agreement with the theoretic

results.

6.1 Examples and numerical investigations for linear equations

Case α→ β

Setting A = −1, x0 = 10, F (t) = sin(t) and t ∈ [0, 5] in (3.1), we have{
cD

α
t x(t) = −x(t) + sin(t), t ∈ (0, 5],

x(0) = 10.
(6.1)
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Figure 1: Numerical solution of (6.1) when α = 0.5.
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Figure 2: Difference of numerical solutions for (6.1).
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t α=0.5 α=0.6 α=0.55 α=0.51 α=0.501 α=0.4 α=0.45 α=0.49 α=0.499

0 10 10 10 10 10 10 10 10 10

0.5 5.417313 5.494595 5.451875 5.423592 5.417927 5.371333 5.390542 5.411345 5.416702

1 4.671882 4.51666 4.593493 4.656078 4.670299 4.834008 4.751937 4.687752 4.673466

1.5 4.280918 4.010343 4.146668 4.254204 4.278249 4.546053 4.413766 4.307575 4.283586

2 3.954464 3.62294 3.790219 3.921817 3.951203 4.277471 4.116548 3.987023 3.957723

2.5 3.5957 3.227966 3.413084 3.559339 3.592067 3.956876 3.776645 3.631994 3.599333

3 3.185281 2.78988 2.988217 3.14594 3.181348 3.578451 3.381749 3.224599 3.189214

3.5 2.749259 2.326192 2.537626 2.706896 2.745022 3.175245 2.961574 2.791649 2.753497

4 2.338456 1.884632 2.110709 2.292762 2.333884 2.800365 2.56817 2.384229 2.34303

4.5 2.009223 1.522525 1.764344 1.96 2.004295 2.508894 2.257285 2.058573 2.014152

5 1.805929 1.287856 1.544702 1.753339 1.800662 2.341628 2.071499 1.858693 1.811198

Table 1: Numerical solutions of (6.1) for different fractional order α.

Applying the fractional Adams-Bashforth-Moulton scheme in [29], the numerical solution of

(6.1) is obtained. We can compare the numerical solutions when α→ β as bellow.

Table 1 and Figure 2 show that when α getting closer to 0.5, the numerical solution of (6.1)

is getting closer to the numerical solution of (6.1) whose fractional order is 0.5 .

Case α→ 1−

Setting A = −1, x0 = 10, F (t) = sin(t) and t ∈ [0, 5] in (4.4), we have

{
x′(t) = −x(t) + sin(t), t ∈ (0, 5],

x(0) = 10.
(6.2)

Applying the Runge-Kutta method, the numerical solution of (6.2) is obtained. We can compare

the numerical solutions of (4.3) and (4.4) when α→ 1− as bellow.

t u1 α=0.9 α=0.95 α=0.99 α=0.999

0 10 10 10 10 10

0.5 6.169363 5.943919 6.05221 6.145155 6.166798

1 4.013279 4.109099 4.057428 4.021494 4.014145

1.5 2.806249 3.127074 2.968055 2.838886 2.809622

2 2.083763 2.512635 2.302783 2.128405 2.088336

2.5 1.561724 2.021764 1.796678 1.609617 1.566592

3 1.088342 1.54196 1.318514 1.134995 1.093052

3.5 0.609925 1.046372 0.829126 0.653957 0.614348

4 0.140743 0.563295 0.350579 0.182476 0.144926

4.5 -0.266721 0.149002 -0.062356 -0.226435 -0.262681

5 -0.55054 -0.137653 -0.349197 -0.511127 -0.546586

Table 2: Numerical solutions of (6.2) and (6.1) for different fractional order α.

Table 2 and Figure 4 show that when α getting closer to 1, the numerical solution of (6.1)

is getting closer to the numerical solution of (6.2).
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Figure 3: Numerical solution of (6.2).
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(b) Numerical solution of u1 − uα, α = 0.95
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(c) Numerical solution of u1 − uα, α = 0.99
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Figure 4: Difference for numerical solutions of (6.2) and (6.1) for different α.
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6.2 Examples and numerical investigations of semilinear equations

Case α→ β

Setting A = −1, x0 = 10, F (t, x(t)) = sin(t) sin(x(t)) and t ∈ [0, 5] in (3.2), we have{
cD

α
t x(t) = −x(t) + sin(t) sin(x(t)), t ∈ (0, 5],

x(0) = 10.
(6.3)

Applying the fractional Adams-Bashforth-Moulton scheme in [29], the numerical solution of

(6.3) is obtained. We can compare the numerical solutions when α→ β as bellow.

t α=0.5 α=0.6 α=0.55 α=0.51 α=0.501 α=0.4 α=0.45 α=0.49 α=0.499

0 10 10 10 10 10 10 10 10 10

0.5 5.124018 5.254179 5.184282 5.135298 5.125129 5.032457 5.073413 5.113125 5.122911

1 3.973182 3.851906 3.911538 3.960688 3.971929 4.103556 4.037021 3.985763 3.974437

1.5 3.478554 3.266652 3.373309 3.457573 3.476457 3.688947 3.58337 3.499517 3.480651

2 3.221847 2.967334 3.09521 3.196563 3.219319 3.47635 3.348438 3.247128 3.224375

2.5 3.039825 2.740786 2.890318 3.009867 3.036827 3.34395 3.19056 3.069831 3.042823

3 2.857141 2.491824 2.67325 2.820112 2.853432 3.236993 3.044633 2.894313 2.860852

3.5 2.621829 2.165152 2.388655 2.574382 2.617066 3.119342 2.865349 2.669692 2.626597

4 2.308861 1.773257 2.027849 2.250356 2.302957 2.959345 2.619555 2.368565 2.314777

4.5 1.980443 1.431716 1.685294 1.91744 1.974044 2.749393 2.331331 2.045676 1.986864

5 1.760844 1.232035 1.474215 1.699121 1.75456 2.554616 2.112185 1.825126 1.767154

Table 3: Numerical solutions of (6.3) for different fractional order α.
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Figure 5: Numerical solution of (6.3) when α = 0.5.

Table 3 and Figure 6 show that when α getting closer to 0.5, the numerical solution of (6.3)

is getting closer to the numerical solution of (6.3) whose fractional order is 0.5.

Case α→ 1−

Setting A = −1, x0 = 10, F (t, x(t)) = sin(t) sin(x(t)) and t ∈ [0, 5] in (5.4), we have{
x′(t) = −x(t) + sin(t) sin(x(t)), t ∈ (0, 5],

x(0) = 10.
(6.4)

29



0 1 2 3 4 5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

t

u α−
u β

(a) α = 0.5, β = 0.6

0 1 2 3 4 5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

t

u α−
u β

(b) α = 0.5, β = 0.55

0 1 2 3 4 5
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

t

u α−
u β

(c) α = 0.5, β = 0.51

0 1 2 3 4 5
−6

−4

−2

0

2

4

6

8
x 10−3

t

u α−
u β

(d) α = 0.5, β = 0.501

0 1 2 3 4 5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

t

u α−
u β

(e) α = 0.5, β = 0.4

0 1 2 3 4 5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

t

u α−
u β

(f) α = 0.5, β = 0.45

0 1 2 3 4 5
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

t

u α−
u β

(g) α = 0.5, β = 0.49

0 1 2 3 4 5
−8

−6

−4

−2

0

2

4

6
x 10−3

t

u α−
u β

(h) α = 0.5, β = 0.499

Figure 6: Difference of numerical solutions for (6.3).
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Applying the Runge-Kutta method, the numerical solution of (6.4) is obtained. We can compare

the numerical solutions of (5.3) and (5.4) when α→ 1− as bellow.

t u1 α=0.9 α=0.95 α=0.99 α=0.999

0 10 10 10 10 10

0.5 6.115991 5.859458 5.985998 6.091125 6.115209

1 3.510434 3.559828 3.53078 3.513968 3.511052

1.5 2.272599 2.552636 2.415196 2.300793 2.27452

2 1.729996 2.101008 1.922883 1.768311 1.731841

2.5 1.345234 1.762551 1.5641 1.38994 1.348437

3 0.945308 1.381591 1.17239 0.991852 0.949135

3.5 0.545073 0.952198 0.752635 0.587118 0.548797

4 0.250764 0.58589 0.417477 0.283997 0.253925

4.5 0.097841 0.361633 0.225853 0.122852 0.100311

5 0.036261 0.252826 0.138817 0.055805 0.038145

Table 4: Numerical solutions of (6.4) and (6.3) for different fractional order α.
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Figure 7: Numerical solution of (6.4).

Table 4 and Figure 8 show that when α getting closer to 1, the numerical solution of (6.3)

is getting closer to the numerical solution of (6.4).

7 Conclusion

In this study, we firstly established the well-posedness for a type of Caputo fractional evolu-

tion equations. Then, we considered the continuity of solutions with respect to fractional order

of those equations. Particularly, if the fractional order α converges to 1, then the solution of

Caputo fractional evolution equations becomes the solution of classic evolution equation. Nu-

merical studies are performed to explore the continuity on fractional order for some fractional
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Figure 8: Difference for numerical solutions of (6.4) and (6.3) for different α.
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systems, which show reasonable agreement with the theoretic results. To the best of our knowl-

edge, only a few researchers pay attention to the continuity of solutions on fractional order of

Caputo fractional evolution equations, particularly, few ones pay attention to the relationship

between the solutions of integer order differential equations and the fractional ones. Future work

may include exploring the well-posedness and long time behavior of Caputo fractional evolution

equations for the order in (1, 2). Especially, the continuity of solution with respect to fractional

order of Caputo fractional evolution equations for the order in (1, 2), and the relationship be-

tween the the solution of Caputo fractional evolution equations for the order in (1, 2) and the

solutions of classic evolution equations of first order and second order.
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