Automating the Treatment Planning Process for 3D-Conformal Pediatric Craniospinal Irradiation Therapy

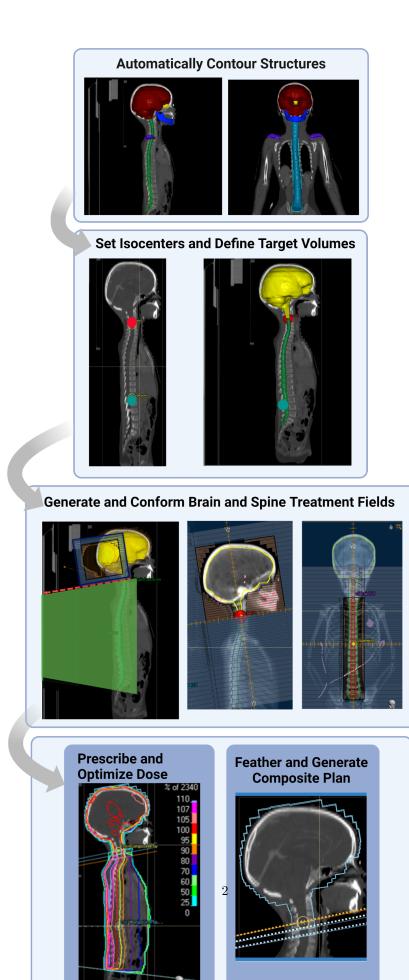
Soleil Hernandez¹, Callistus Nguyen², Jeannette Parkes³, Hester Burger⁴, Dong Joo Rhee², Tucker Netherton¹, Raymond Mumme², Jean Gumma-De La Vega², Jack Duryea², Alexandrea Leone², Arnold Paulino⁵, Carlos Cardenas⁶, Rebecca M. Howell¹, David Fuentes¹, Julianne Pollard-Larkin¹, and Laurence Court¹

¹The University of Texas Graduate School of Biomedical Sciences

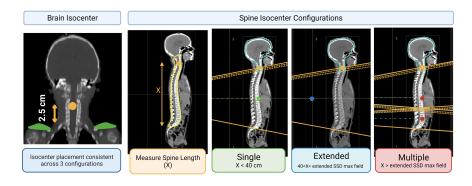
²The University of Texas MD Anderson Cancer Center Department of Radiation Physics ³University of Cape Town Department of Radiation Medicine

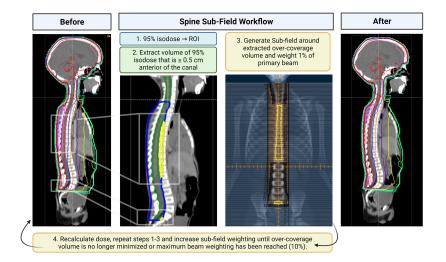
⁴Department Medical Physics Groote Schuur Hospital and University of Cape Town Cape Town South Africa

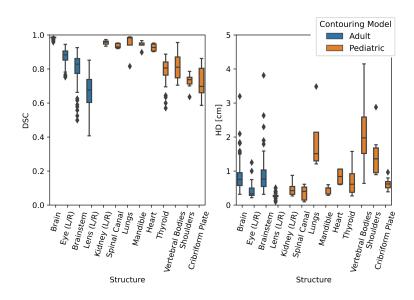
⁵The University of Texas MD Anderson Cancer Center Division of Radiation Oncology ⁶The University of Alabama at Birmingham Department of Radiation Oncology


August 16, 2022

Abstract


Purpose: Pediatric patients with medulloblastoma in LMICs are most treated with 3D conformal photon craniospinal irradiation (CSI), a time-consuming, complex treatment to plan, especially in resource-constrained settings. Therefore, we developed and tested a 3D conformal CSI autoplanning tool for varying patient lengths. Methods and Materials: Autocontours were generated with a deep learning model trained:tested (80:20 ratio) on 143 pediatric medulloblastoma CT scans (patient ages, 2-19 years, median=7 years). Using the verified autocontours, the autoplanning tool generated 2 lateral brain fields matched to a single spine field, an extended single spine field, or 2 matched spine fields. Additional spine sub-fields were added to optimize the corresponding dose distribution. Feathering was implemented (yielding 9-12 fields) to give a composite plan. Each planning approach was tested on 6 patients (ages, 3-10 years). A pediatric radiation oncologist assessed clinical acceptability of each autoplan. Results: The autocontoured structures' average Dice similarity coefficient ranged from 0.65-0.98. The average V95 for the brain/spinal canal for single, extended, and multi-field spine configurations was $99.9 \pm 0.06\%/99.9 \pm 0.10\%$, 99.9±0.07%/99.4±0.30%, and 99.9±0.06%/99.4±0.40%, respectively. The average maximum dose across all field configurations to the brainstem, eyes (L/R), lenses (L/R) and spinal cord were 23.7 ± 0.08 Gy, 24.1 ± 0.28 Gy, 13.3 ± 5.27 Gy, 25.5 ± 0.34 Gy, 25.5 ± 0.34 Gy, 13.3 ± 5.27 Gy, 25.5 ± 0.34 Gy, respectively (prescription=23.4 Gy/13 fractions). Of the 18 plans tested, all were scored as clinically acceptable as-is or clinically acceptable with minor, time-efficient edits preferred or required. No plans were scored as clinically unacceptable. Conclusion: The autoplanning tool successfully generated pediatric CSI plans for varying patient lengths in 3.50 ± 0.4 minutes on average, indicating potential for an efficient planning aid in resource-constrained settings.


Hosted file


CSIPaper_manuscript_not_anon.docx available at https://authorea.com/users/501592/ articles/581975-automating-the-treatment-planning-process-for-3d-conformal-pediatriccraniospinal-irradiation-therapy

