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Abstract

The thermodynamic properties at variable temperature and pressure, such as density (ρ) and viscosity (η) are necessary in

chemical process design. The quantitative structure-property relationship (QSPR) is a quick and accurate method to obtain the

properties from a large number of potential ionic liquids (ILs). The QSPR models for ρ and ηmay have “pseudo-high” robustness

validated by leave-one-out cross-validation (LOO-CV) and weakened stability with the unbalanced data point distribution. A

rigorous model evaluation method named the leave-one-ion-out cross-validation (LOIO-CV) was proposed to evaluate robustness

of ILs QSPR models. Balancing the distribution of data points in ILs, two f(T,P,I)-QSPR models were developed with norm

index (I) to predict ρ and η of ILs at variable temperature and pressure. LOIO-CV method can enhance the stability QSPR

model in predicting the properties of ILs with new cations and anions, which is essential for data driven design of ILs.

1. Introduction

Ionic liquids (ILs), composed of organic cations and organic/inorganic anions, have been diffusely utilized
in absorption and separation1, 2, synthesis3, catalysis4, 5 and electrochemistry6, 7 owing to their superior
properties as gas solubility, thermal stability and low volatility. Density(ρ ) and viscosity (η ) are key
process parameters required in a significant amount of applications such as chemical process simulation,
equipment sizing, lubrication and refrigeration8, 9. On the other hand, some properties are often estimated
in relation to these two basic attributes, such as heat capacity, speed of sound and surface tension. In face
of the vast number of ILs, it is a hard task to experimentally measure the ρ and η at variable temperature
and pressure of all ILs. Accordingly, computational tools are particularly important to fill the gap of ILs
property database. Furthermore, computational methods are also valuable for the property-directed design
of ILs.

Quantitative structure-property relationship (QSPR) is one of the commonly used approaches to calculate
the physical characteristics of chemical substances10, 11. Up to now, QSPR has been widely applied to
the field of ILs, especially in the temperature and pressure-dependent property12-14. By combining group
contribution (GC), Kamil Paduszynski15 built a QSPR model for estimating the ρ at different temperatures
of ILs with the most comprehensive collection of data reported to date. In Das et al.’s investigation16, based
on the multilayered variable selection strategy, a QSPR model was developed for predicting the η of ILs with
Q 2

LOO= 0.713. Mirkhani and Gharagheizi17 proposed a linear QSPR model for predicting the η of 293
ILs using Genetic function approximation for the model’s parameter selection withR 2

training = 0.8096. In
the process of establishing the QSPR model, validation is inevitable. The external validation and internal
validation are usually adopted in most studies18, 19. Although a few QSPR models have been developed
with external validation and internal validation for the temperature and pressure-dependent properties of
ILs, the stability and reliable of QSPR are challenged.
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. Due to the special nature of ILs - consisting of both anions and cations - ILs with both cations and anions in
the training set can be obtained directly from the contributions of both cations and anions. However, most
studies ignored the criterion that both cation and anion of one IL in testing set should not both reappear in
training set, otherwise, it will lead to “pseudo-high” accuracy for external and internal (Leave-one-out cross-
validation, LOO-CV) validations. Recently, Makarov et al.20 analyzed the published QSPR models21, 22

for the melting point of ILs by the five-fold cross-validation (5-CV) and found that traditional validation
method has “pseudo-high” accuracy. Nevertheless, for the temperature and pressure-dependent properties
of ILs as ρ and η , the data points of ILs vary considerably with variable temperature and pressure. K-fold
cross-validation (K-CV) is difficult to balance the distribution of data points under different types of ions.
So, it is therefore necessary to establish an easy-to-implement internal validation method to efficiently and
accurately evaluate the QSPR model. Furthermore, the stability of the QSPR model is also related by
the veracity and distribution of the dataset. The authenticity of experimental data was evaluated in most
previous studies15, 23-25, while the distribution of data points was ignored. For example, in the QSPR model
of heat capacity developed by Sattari et al.26, 1528 data points were used for [C4mim][PF6], which account
for 41% of the total dataset. Similarly, in our previous work on heat capacity QSPR model23, [C4mim][PF6]
accounted for 21% of the total dataset. The QSPR model is usually established by the least square method,
whose objective function is the minimum sum of error squares10. Thus, a balanced distribution of data points
should be selectively collected. Further, in the case of temperature and pressure-dependent properties, the
temperature and pressure terms are usually treated as constant terms for all ILs27, 28. The temperature and
pressure terms are affected by the structure of IL based on the analysis of our previous works23, 29, 30, so it
is necessary to introduce descriptors to temperature and pressure terms.

In this contribution, two f (T ,P ,I )-QSPR models for ρ and η were established by a method for a balanced
distribution of data points and the treatment of temperature and pressure effects according to the structures
of ILs. A novel internal validation method namely the leave-one-ion-out cross-validation (LOIO-CV) was
proposed to handle the “pseudo-high” accuracy of LOO-CV for ILs. These models were also validated by
the external validation, which follow the principle that cation and anion do not appear in the training set
and testing set simultaneously. Analysis of the statistical results showed that two models achieved good
predictive power as well as stability, which is an excellent guide for future rapid screening and design of
functional ILs.

2. Methodology

2.1. Database

The ILs data were collected from the National Institute of Standards and Technology (NIST)31. In to-
tal, 19335 ρ data points for 972 ILs and 9238 η data points for 832 ILs were included in the dataset.
For ρ and η , the temperature and pressure ranges were 221.314 ˜ 473.15 K and 0.0815 ˜ 251.5 MPa,
253.15 ˜ 438.15 K, and 0.06 ˜ 300 MPa, respectively. The total dataset contains 501 cations, includ-
ing imidazolium (im), pyridinium (py), pyrrolidinium (pyr), ammonium (N), phosphonium (P), piperi-
dinium (pip), morpholinium (mor), sulfonium (S), triazolium (Trl), propylpyrazolium (pyra), etc. It con-
tains 154 anions, such as bis[(trifluoromethyl)sulfonyl]imide [(N(SO2CF3)2)-], tetrafluoroborate [(BF4)-],
hexafluorophosphate [(PF6)-], dicyanamide [(N(CN)2)-], tetracyanoborate [(B(CN)4)-], trifluoroacetate
[(C(CN)3)-], tris(pentafluoroethyl)trifluorophosphate [(PF3(C2F5)3)-], halogen [(X)-], thiocyanate [(SCN)-],
alkoxy-alkylsulfates [(RSO3)-], alkyl-sulfate [(RSO4)-], and so on. In particular, geminal dicationic ILs
(GDILs) were also collected in this work (E.g. 1-methyl-3-(3-(trimethylammonio)propyl)-1H-imidazolium
bis(dicyanamide) ). The information about these ILs together with corresponding experimental values of ρ
and η are shown in Tables S1 ˜ S2 of Supporting Information (exp-cal-values.xlsx).

2.2. Data pre-processing

In the NIST database, the vast data points at variable temperature and pressure were included for one IL.
Some ILs would represent a large percentage of the dataset if all these points were collected for modeling.
According to the principle of the least square method32, 33, a large percentage of some ILs could reduce the
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. reliability of the QSPR model. Therefore, the criteria were adopted in the process of data collection for
which data points were collected at 5 K temperature and 2.5 MPa pressure intervals.

2.3. f (T ,P ,I )-QSPR model

f (T ,P ,I )-QSPR models were established to describe the relationship of ρ and η with structure, temperature
and pressure23. The preliminaryf (T ,P ,I )-QSPR models are shown as Eqs. (1)-(2).

ρ is the density of the ILs in units of kg[?]m3,η is the viscosity of the ILs in units of Pa[?]s, T is the
temperature in K, and P is the pressure in kPa. α is a variable related to the ILs structures. In most studies,
the parametersβ , γ , and χ , are treated as constant terms for all ILs27, 34. From our previous works23, 29,
treating these three coefficients as variables for each IL makes the model more accurate. This strategy has
hence been continued in the present work.

2.4. Proposed norm descriptors

The step matrix (MS ), such as the full step matrix (MS F), the adjacent step matrix (MS A), the adjacent-
interphase step matrix (MS AB) and the adjacent-interphase-jump step matrix (MS ABC) are used to reflect
the connection relationship of atoms, as Eqs. (3)-(6). On this basis, two step matrices (MS ABC cyc andMS

bon cyc), given by Eqs. (7)-(8), are defined to present the interaction of adjacent-interphase-jump atom on the
ring and the interaction of atoms on different bonds on the ring, respectively. To better reveal the properties
of atomic in molecules, the property matrices (MP ) are used as shown in Table 1. The properties of each
atom were shown in S1 of Supporting Information (atom properties.xlsx).

Table 1 . The property matrices (MP ).

MP Notes

relative atom mass
electronegativity
ionization energy
atomic radius (Å)
number of outermost electrons
number of the electron shell
branched degree

where sij is the step between atom i andj . bij is the type of chemical bond between atom i and j (The
single, double, triple and benzene ring bonds are 1, 2, 3, and 1.5 respectively).

The atomic distribution matrices (MA ) are grouped by MSand MP , which reflect the relationship be-
tween atoms and the special contribution of each atom. In addition, MP and MScorresponding to the
H-suppressed structure are also obtained theMA in the same way. The norm indexes (I ) are the norm of
atomic distribution matrices as listed in Eqs. (9)-(14). The MAused for ρ and η are shown in Table C1-C2 of
Supporting Information (atomic-distribution-matrix.docx). An example for the prediction process with two
ILs generating norm indexes (I ) and applying the ρ (T ,P ,I )-QSPR model is shown in E1 of Supporting
Information (example.xlsx).

Where λ is the eigenvalue of matrix, MH is the Hermite matrix.

2.5. Model validation

LOIO-CV method. The implementation process of LOO-CV is shown in Figure 1. LODPO-CV and LOILO-
CV are two execution methods belonging to LOO-CV, which are often used to evaluate the robustness of
IL-QSPR models. LODPO-CV is widely used because of the ease implementation. For LODPO-CV, a data
point was removed to implement model validation process and the remaining data points serve as training
set. The interpolating process for LODPO-CV leads to the “pseudo-high” accuracy. For LOILO-CV, all data

3
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. points of one IL were removed to implement model validation process. While LOILO-CV is a better method
than LODPO-CV, LOILO-CV will also produce “pseudo-high” accuracy because both cation and anion of
the removed IL may appear in remaining set. In both internal and external validation of ILs QSPR models,
an important criterion has been ignored: both cation and anion of one IL in testing set cannot reappear in
training set. If the cation and anion of one IL in the testing set reappear in the training set at the same time,
the contributions of the anion and cation have been present in the training set, so the predicting ability of
the model cannot be reflected. Hence, to enhance the accuracy of model evaluation and verify the robustness
of the model, the internal validation method of LOIO-CV was proposed as presented in Figure 1. It mainly
includes two processes: (1) leave-one-cation-out cross-validation (LOCO-CV), in which ILs with the same
cation are treated as testing set and the remaining ILs are used as training set; (2) leave-one-anion-out
cross-validation (LOAO-CV), all ILs with the same anion as the validation set and the remaining ILs are
used as the training set.

Figure 1. The comparison of leave-one-out cross-validation (LOO-CV) and leave-one-ion-out cross-
validation (LOIO-CV) methods: orange ball with Ci stands for cations, blue ball with Ai stands for anions
and Ci tightly close to the Ai stand for ILs, and the balls in different shades with fk (T ,P ) represent data
points at variable temperatures and pressure.

Other validation protocols. The correlation coefficient (R 2) and mean absolute error (MAE) were used to
evaluate the QSPR model quantitatively35. The definitions of these parameters are listed in Table S1 of
Supporting Information (Statistical parameters.docx). Through external validation, the predicting ability of
these models was fully evaluated byR 2

training of the training set and R 2
testing of the testing set. To avoid

cations and anions in the testing set reappearing in the training set in the meantime, the dataset was divided
into training set (80%) and testing set (20%) by the ion structures and the proportion of data points. Y
-randomization test was used to avoid the possibility of chance correlation in modeling36.

3. Result and discussion

3.1. The results for the fitted f (T ,P ,I ) model

Unlike treated the β , γ and χ as constant terms in the prior work, this work introduces descriptors to
correct the effects of temperature and pressure terms on thef (T ,P ,I )-QSPR model. To vividly show the
difference between the two methods, the data points of ρ andη were fitted by using Eq. (1) and (2), and the
scatterplot as shown in Figure 2. When β , γ and χ are constants for all ILs, the parameters in Figures 2 (a)
and 2(c) (0.9991 and 0.9675 for ρ and η , respectively) are significantly lower than that of Figures 2 (b) and
2(d) (0.9999 and 0.9994 for ρ andη , respectively) where β , γ, and χ are variables for each IL. Therefore, it is
necessary to introduce descriptors to modify the temperature and pressure terms for improving the model’s

4
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. reliability and predictive capability.

Figure 2. The correlation between experimental and calculated for ρ and η :β , γ , and χ are constants in
(a) and (c); β , γ , and χ are variables in (b) and (d).

3.2. ρ (T ,P ,I )-QSPR model

The ρ (T ,P ,I )-QSPR model was proposed as Eq. (15). Detailed parameter values are shown in Table C1
of Supporting Information (atomic-distribution-matrix.docx).

n = 19335, R 2= 0.9922,Q 2
LOCO = 0.9905,Q 2

LOAO = 0.9894;

n training = 15015; R 2
training= 0.9922; MAEtraining = 9.3290 kg/m3;

n testing = 4320; R 2
testing = 0.9921; MAEtesting = 9.3606 kg/m3;

Where, I IL, I C andI A represent norm index (I ) of ILs, cation and anion, respectively.n C andn A are the
number of cations and anions (eg.n C and n A of 1-methyl-3-(3-(trimethylammonio)propyl)-1H-imidazolium
bis(dicyanamide) are 1 and 2, respectively.).

The high R 2 and low MAE show that theρ (T ,P ,I )-QSPR model has a good ability to calculate the ρ of
ILs. The experimental and calculated ρvalues from the model expressed in Eq. (15) were shown in Table S1
of Supporting Information (exp-cal-values.xlsx).

3.3.1. Model validation

Internal validation. The distribution of cations and anions for ρ are shown in Figures 3a-b. It is apparent
that the type distribution of cations in the ρ dataset is more equal than that of anions. As can be seen in
Figure 3(a), the cations with large data points are [C4mim] = 9.97%, [emim] = 7.57%, [C6mim] = 5.75%,
[meim] = 4.16% and [mC4pyr] = 3.93%. What is noteworthy is that the ILs containing [emim] are in the

5
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. testing set. Although there are more ILs containing [C4mim] in the ρdataset, the results validated by LOCO-
CV are acceptable, with MAE of 7.2524 kg/m3. Similarly in Figure 3(b), the anions with large data points
are [N(SO2CF3)2] = 28.49%, [BF4] = 11.83%, [PF6] =4.62%, [N(CN)2] = 3.57% and [N(SO2F)2] = 3.38%.
Although the proportion of [N(SO2CF3)2] in the anion is relatively high, there are as many as 265 cations
in the ILs with [N(SO2CF3)2] as well. So, the MAE for ILs containing [N(SO2CF3)2], as verified by LOAO-
CV, is quite optimistic at 6.7168 kg/m3. The validation results of the ρ(T ,P ,I ) model are illustrated in
Figure 4. The scatter diagram results of the LOCO-CV and LOAO-CV are shown in Figures 4a-b. Clearly,
the internal cross-validation results for LOCO-CV and LOAO-CV are 0.9905 and 0.9894, respectively, which
fully demonstrated the high stability of the model in predicting ρ of ILs containing novel cations and anions.
Analogously, Figure 4d shows the absolute error distributions diagram for the ρ(T ,P ,I )-model, LOCO-CV
and LOAO-CV. From Figure 4d the error range distribution of LOCO-CV has more points concentrated in
the range of 0 ˜ 10 kg/m3 than LOAO-CV, which further indicates that this model has greater stability in
predicting ILs with new cations. The detailed statistical parameters of internal validation are listed in Table
2. It is worth reminding that the model validation results for LOO (Q 2

LOILO = 0.9907 andQ 2
LODPO =

0.9921) are generally higher than those for LOIO (Q 2
LOCO = 0.9905 andQ 2

LOAO = 0.9894), especially
for LODPO-CV, as can be seen in Table 2. In addition, the “pseudo-high” accuracy of LOO-CV is more
evident in the results of the MAE. The MAE of LOILO-CV is 10.2623 kg/m3 which is lower than that of
the LOAO-CV (MAELOAO = 11.3498 kg/m3). These facts suggest that the LOILO does not accurately
evaluate the stability of QSPR models for new anion and cation, producing a “pseudo-high” accuracy. This
provides a more straightforward demonstration that the use of LOO to validate ILs property models leads
to an “pseudo-high” accuracy of model stability. There is a strong need to use LOIO-CV to evaluate the ILs
QSPR model to obtain a more realistic and stable model. Moreover, the absolute error (AE) distributions
of the LOIO-CV is consistent with the training set of the ρ (T ,P ,I )-model, and most of the errors are
within the range of 0 ˜ 10 kg/m3. Therefore, it is further confirmed that the model is feasible to predictρ of
ILs.

Figure 3. The distribution of cations and anions in theρ dataset. (a) the distribution of cations and (b)
the distribution of anions.
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.

Figure 4. The validation results of the ρ (T ,P ,I )-model: (a-b) the scatter plots of experimental vs.
calculated values for LOCO-CV and LOAO-CV, respectively, (c) the external validation, (d) the results for
the absolute error distributions diagram of the training set, LOCO-CV and LOAO-CV, respectively.

Table 2 . The detailed results of internal and external validations for density.

Method Status Status D.P. R2(Q2) MAE (kg/m3)

Internal validation Internal validation LOCO-CV 15015 0.9905 10.3470
LOAO-CV 15015 0.9894 11.3498
LOILO-CV 15015 0.9907 10.2623
LODPO-CV 15015 0.9921 9.3723

External validation External validation Training set 15015 0.9922 9.3290
Testing set 4320 0.9921 9.3606

Overall data set Overall data set Overall data set 19335 0.9922 9.3361

External validation. For external validation, 757 ILs (15015 data points) from the ρ dataset were used as
training set and the remaining 215 ILs (4320 data points) served as the testing set. The detailed results
for external validation are listed in Table 2. TheR 2 of training and testing sets reached 0.9922 and 0.9921,
respectively. The MAE values were 9.3290 kg/m3 and 9.3606 kg/m3, respectively. The experimental and
calculatedρ values of the model for the training/testing set are shown in Figure 4c. It is easy to see that the
overall trend of data points in training set and testing set remains roughly the same and both fit near the
diagonal, which shows that this model has a good predictive ability for ρ of ILs.

7
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. Y-randomized analysis. To evaluate the reliability of the ρ model, Y -random validation was repeated
1000 times. The results of the Y -random validation with and values were less than 0.00248 and 0.00689,
respectively, far less thanR 2 (0.9919) of the ρ model. Therefore, the ρ (T ,P ,I )-QSPR model was not
affected by chance correlation.

3.3.2. Model comparison: before and after data pre-screening

To more prominently highlight the importance of data pre-screening in the pre-modelling work, this work
implemented LOIO-CV by the data without screening using the same descriptors as the Eq. (15). The
detailed LOIO-CV results are shown in Table 3. HigherQ 2(Q 2

LOCO = 0.9919 andQ 2
LOAO = 0.9899)

and lower MAE (MAELOCO = 8.6487 kg/m3 and MAELOAO = 10.2462 kg/m3) were obtained when the
model was built using the dataset without data pre-screening. However, when Q 2 are recalculated by
the dataset selected by following the data pre-screening rules, there was a decrease in Q 2(Q 2

LOCO =
0.9903 andQ 2

LOAO = 0.9884) and an increase in MAE (MAELOCO = 10.2589 kg/m3 and MAELOAO =
11.8680 kg/m3). In addition, the results in Table 3 show that the Q 2(Q 2

LOCO = 0.9905 andQ 2
LOAO =

0.9894) of pre-screened data is higher than the Q 2(Q 2
LOCO = 0.9903 andQ 2

LOAO = 0.9884) post-screened
data. It is proved that the model although having a higherQ 2without data pre-screening, is “pseudo-high”
in accuracy. Therefore, it is necessary to carry out a pre-screening process before modelling to ensure a
balanced distribution of the dataset.

Table 3 . Comparison of model stability before and after data pre-screening for density.

method data screening status D.P. Q2 MAE (kg/m3)

LOCO-CV no 36784 0.9919 8.6487
post 15015 0.9903 10.2589
pre 15015 0.9905 10.3470

LOAO-CV no 36784 0.9899 10.2462
post 15015 0.9884 11.8680
pre 15015 0.9894 11.3498

here, for data screening method: “no” refers to the model developed by the initial dataset obtained from
NIST; “post” means that the dataset used to build the model is consistent with “no”, but only the data
points selected under the pre-screening rules are used for calculatingQ 2. “pre” refers the model with the
dataset after data pre-screening.

3.3.3. Comparison with references

The comparison of ρ (T ,P ,I )-QSPR model with that in references was mainly carried out through,R 2

and Q 2, and the details are shown in Table 4. Our model has advantages in data set screening, rather than
collecting too many data points. Moreover, theρ (T ,P ,I )-model has higher accuracy withR 2 of 0.9922.
The R 2is slightly lower than that of our previous studies (Yan et al.37 and Zhang et. al29), which can be
attributed to that the data pre-screening process in this work avoided the excessive proportion of data points
from the same ILs, so as to effectively avoid the situation of high R 2. In addition, the model was validated
by LOCO-CV and LOAO-CV, which proved the stability and robustness of theρ (T ,P ,I )-model. To sum
up, this model is reliable in calculating the ρ values for ILs.

Table 4 . Comparisons of this work with references for the density.

References Method D.P. ILs T/K P/MPa R2 Q2
LOCO Q2

LOAO

Paduszynski and Domanska38 GC 16830 1028 251 ˜ 473 0.1 ˜ 300 -
Lazzús39 QSPR 3020 163 258 ˜ 473 0.1 ˜ 207 0.9307 - -
Yan et al. 37 QSPR 5948 188 253.15 ˜ 473.15 0.1 ˜ 250 0.9980 - -
Zhang et al.29 QSPR 9019 314 253.15 ˜ 473.15 0.1 ˜ 250 0.9970 - -
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. References Method D.P. ILs T/K P/MPa R2 Q2
LOCO Q2

LOAO

This work QSPR 19335 972 221.31˜ 473.15 0.0815 ˜ 251.5 0.9922 0.9905 0.9894

3.3. lnη (T ,P ,I )-QSPR model

The lnη (T ,P ,I )-QSPR model was built to predict η as Eq. (16). The Detailed parameter values are
shown in Table C2 of Supporting Information (atomic-distribution-matrix.docx).

n = 9238, R 2= 0.9100,Q 2
LOCO = 0.8863,Q 2

LOAO = 0.8866;

n training = 7352; R 2
training = 0.9091; MAEtraining =0.3276 Pas;

n testing = 1886; R 2
testing = 0.9108; MAEtesting =0.3232 Pas;

where, I IL, I C andI A represent the norm index of ILs, cation and anion, respectively. n C andn A are the
number of cations and anions.

The results of statistical parameters showed that this ηmodel has high R 2 and low MAE, which demonstrated
the advanced accuracy of the model in predicting η . The experimental and calculated η values from the
model expressed in Eq. (16) are shown in Table S2 of Supporting Information (exp-cal-values.xlsx).

3.4.1. Model validation

Internal validation. The distribution of cations and anions as shown in Figures 5a-b. The distribution of
cations in theη dataset is more varied and more even than anions. The common anion, [N(SO2CF3)2],
accounts for 34.49% of the η dataset, and it is worth noting that 255 different cations are combined with
[N(SO2CF3)2]. So, the MAE (0.2034 Pas) of LOAO-CV is relatively lower for [N(SO2CF3)2]. In addition,
it can be seen that all five cations with a relatively large data points have a low MAE. Figures 6a-b show the
experimental versus calculated values scatter plots of LOCO-CV and LOAO-CV. Obviously, the satisfactory
results of theQ 2

LOCO (0.8863) andQ 2
LOAO (0.8866) indicate that the η model has high stability and good

prediction performance for ILs containing new cations and anions. The detailed results for internal validation
of the η model are given in Table 5. It is clear that the Q 2 for the LOO method (Q 2

LOILO = 0.8908 andQ
2
LODPO = 0.9076) are much higher than the Q 2 for LOIO (Q 2

LOCO = 0.8863 andQ 2
LOAO = 0.8866),

and the MAE for the LOO method (MAELOILO = 0.3558 Pas and MAELODPO = 0.3300 Pas) are lower
than the MAE for LOIO (MAELOCO = 0.3654 Pas and MAELOAO = 0.3677 Pas). This in turn suggests
that the stability of the model validated by LOO-CV is limited to predicting ILs with known ionic types,
while the model passed by the LOIO is more stable when faced with ILs containing unknown ionic types. In
addition, the AE distributions of the lnη (T ,P ,I )-QSPR model, LOCO-CV and LOAO-CV are shown in
Figure 6d. Here, the AE ranges for the both internal validations are roughly the same as the lnη (T ,P ,I
)-QSPR model, and the errors of most data points are concentrated in 0 ˜ 0.2 Pas, further demonstrating
the outstanding stability of the lnη (T ,P ,I )-QSPR model.
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.

Figure 5. The distribution of cations and anions in theη dataset: (a) the distribution of cations, (b) the
distribution of anions.

Figure 6. The validation results of the lnη(T ,P ,I )-QSPR model: (a-b) the scatter plots of experimental
vs. calculated values for LOCO-CV and LOAO-CV, (c) the external validation, (d) the results for the
absolute error distributions diagram of the training set, LOCO-CV and LOAO-CV, respectively.

Table 5 . The results of internal and external validations for viscosity.
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Method Status Status D.P. R2(Q2) MAE (Pas)

Internal validation Internal validation LOCO-CV 7352 0.8863 0.3654
LOAO-CV 7352 0.8866 0.3677
LOILO-CV 7352 0.8908 0.3558
LODPO-CV 7352 0.9076 0.3300

External validation External validation Training set 7352 0.9091 0.3276
Testing set 1886 0.9108 0.3232

Overall data set Overall data set Overall data set 9238 0.9100 0.3267

External validation. In the external validation of theη model, 651 ILs containing 7352 data points are used
for training set and 181 ILs containing 1886 data points are treated as testing set. The detailed statistical
parameters are listed in Table 4. The R 2

testing = 0.9108 is close to the R 2
training = 0.9091. The experimental

vs. calculated η values of the model for the external validation is presented in Figure 6c. Seen from that the
data points in testing set are consistent with the trend of the training set, indicating that the lnη (T ,P ,I
)-QSPR model has quite excellent predictive ability for η of ILs at variable temperature and pressure.

Y-randomized analysis. After 1000 repetitions ofY -random validation, and were lower than 0.00586 and
0.00044, far less than the accuracy of the lnη(T ,P ,I )-QSPR model, indicating that the model was not
affected by chance correlation.

3.4.2. Model comparison: before and after data pre-screening

Similar to the analysis of the ρ (T ,P ,I )-QSPR model, this work also carried out a data pre-screening
process for theη dataset. A QSPR model was built for the initial ηdataset using the same descriptors as in
Eq. (16). The detailed LOIO-CV results for that model are shown in Table 6. The model built without data
pre-screening, while having high Q 2(Q 2

LOCO = 0.8935 andQ 2
LOAO = 0.8913) and low MAE (MAELOCO

= 0.3153 and MAELOAO = 0.3211), gets a significant downward trend when the stability of its model is
assessed again by post data pre-screening (Q 2

LOCO = 0.8815 andQ 2
LOAO = 0.8806; MAELOCO = 0.3691

and MAELOAO = 0.3755). The model is not as stable as the one obtained after the data pre-screening
exercise prior to modelling withQ 2

LOCO = 0.8863 andQ 2
LOAO = 0.8866. It is therefore well established

that the model built without data pre-screening are less stable. Thus, it is necessary to carry out data
pre-processing before building the QSPR model to ensure a balanced and stable distribution of the dataset
and to obtain a stable model.

Table 6 . Comparison of model stability before and after data pre-screening for viscosity.

method data screening status D.P. Q2 MAE (Pas)

LOCO-CV no 13747 0.8935 0.3153
post 7352 0.8815 0.3691
pre 7352 0.8863 0.3654

LOAO-CV no 13747 0.8913 0.3211
post 7352 0.8806 0.3755
pre 7352 0.8866 0.3677

here, for data screening method: “no” refers to the model developed by the initial dataset obtained from
NIST; “post” means that the dataset used to build the model is consistent with “no”, but only the data
points selected under the pre-screening rules are used for calculatingQ 2. “pre” refers the model with the
dataset after data pre-screening

3.4.3. Comparison with references

The results of comparison between this work and other literatures are detailed in Table 7. The significant
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. difference from other works is that our work has a wider range of datasets and varying pressure conditions.
Different from our previous studies and other groups, this work expanded the types of ILs and the number
of relevant data points on the basis of increasing the pre-screening process for data points. Thus, the lnη (T
,P ,I )-QSPR model is slightly less accurate than our previous studies, however, it is more robust than the
previous models, because this model has gone through a rigorous LOIO-CV model validation method. In
addition, the modelling process kind of uses only the topology of the ILs, which has the advantage of simple,
fast and efficient preliminary calculations of η .

Table 7 . Comparisons of this work with QSPR method in references for the viscosity.

References D.P. ILs T/K P/MPa R2 Q2
LOCO Q2

LOAO

Matsuda et al.40 300 - 273 ˜ 353 - 0.8971 - -
Barycki et al.41 23 138 298 ˜ 343 0.1 0.8260 - -
Yan et al.42 3228 349 253.15 ˜ 573 0.06 ˜ 300 0.9640 - -
Zhang et al.29 7342 351 253.15 ˜ 438.15 0.06 ˜ 300 0.9642 - -
This work 9238 832 253.15 ˜ 438.15 0.06 ˜ 300 0.9100 0.8863 0.8866

4. Conclusions

Two f (T ,P ,I )-QSPR models based on 19335ρ data points and 9238 η data points were established to
calculate the ρ and η of ILs under variable temperature and pressure. In order to accurately verify the
stability as well as the robustness of the f (T ,P ,I )-QSPR model, a new internal validation method,
LOIO-CV, was proposed, which has more strict evaluation criteria and is more reliable compared with the
traditional LOO-CV. Moreover, the stability of thef (T ,P ,I )-QSPR model is improved by using data pre-
screening to equalize the distribution of data points of ILs and introducing descriptors to the temperature and
pressure terms. Furthermore, using only atomic linkage relationships of ILs, no additional time is required to
obtain the optimal structure of the ILs. The results of statistical parameter analysis show that these models
have good prediction accuracy and reliability with highR 2 and low MAE. In the evaluation of ILsf (T ,P
,I )-QSPR model, both models passed the rigorous LOIO-CV, which indicates that thesef (T ,P ,I )-QSPR
models have good stability, robustness, and relatively accurate prediction performance. Meanwhile, we also
found that the evaluation results of LOIO-CV were affected by the distribution of ion species, that is, the
model established by the dataset with a more balanced distribution of data points of different ILs had higher
stability and robustness. Therefore, the equilibrium distribution of different ILs data points is particularly
important when modeling the properties of ILs by using QSPR method. In one sense, two proposed f (T ,P
,I )-QSPR models are widely applicable to predict the ρ and η properties of ILs, and these models provide
an intelligent tool for predicting the design or synthesis of ILs containing novel cations and anions. It is
worth mentioning that the strategy can be widely applied to the estimation of other properties of ILs, such
as environmental toxicity and other related physicochemical properties.

Supporting Information

The experimental and calculated values of density and viscosity were listed in exp-cal-values.xlsx. The
definitions of the statistical parameters were listed in Table S1 of Statistical parameters.docx. The atomic
distribution matrix (MA ), used for density and viscosity were shown in atomic-distribution-matrix.docx.
The properties of each atom were shown in S1 of atom properties.xlsx. Also, an example for calculating the
density with the established model was given in example.xlsx.
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Design of Sustainable Chemicals: Ionic Liquids as a Prime Example. Chemical Reviews 2021,121 (21),
13132-13173.

4. Roberts, N. J.; Lye, G. J., Application of Room-Temperature Ionic Liquids in Biocatalysis: Opportunities
and Challenges. 2002,818 , 347-359.

5. Vekariya, R. L., A review of ionic liquids: Applications towards catalytic organic transformations. Journal
of Molecular Liquids2017, 227 , 44-60.

6. Wasilewski, T.; Gebicki, J.; Kamysz, W., Prospects of ionic liquids application in electronic and bioelec-
tronic nose instruments. TrAC Trends in Analytical Chemistry 2017, 93 , 23-36.

7. Watanabe, M.; Thomas, M. L.; Zhang, S.; Ueno, K.; Yasuda, T.; Dokko, K., Application of Ionic Liquids
to Energy Storage and Conversion Materials and Devices. Chemical Reviews 2017, 117 (10), 7190-7239.

8. Song, Z.; Zhang, C.; Qi, Z.; Zhou, T.; Sundmacher, K., Computer-aided design of ionic liquids as solvents
for extractive desulfurization.AIChE Journal 2018, 64 (3), 1013-1025.

9. Huang, Y.; Dong, H.; Zhang, X.; Li, C.; Zhang, S., A new fragment contribution-corresponding states
method for physicochemical properties prediction of ionic liquids. AIChE Journal 2013,59 (4), 1348-1359.

10. Cherkasov, A.; Muratov, E. N.; Fourches, D.; Varnek, A.; Baskin, II; Cronin, M.; Dearden, J.; Gramatica,
P.; Martin, Y. C.; Todeschini, R.; Consonni, V.; Kuz’min, V. E.; Cramer, R.; Benigni, R.; Yang, C.;
Rathman, J.; Terfloth, L.; Gasteiger, J.; Richard, A.; Tropsha, A., QSAR modeling: where have you been?
Where are you going to? J Med Chem2014, 57 (12), 4977-5010.

11. Katritzky, A. R., Kuanar, M., Slavov, S., Hall, C. D., Karelson, M., Kahn, I., and Dobchev, D.
A., Quantitative Correlation of Physical and Chemical Properties with Chemical Structure: Utility for
Prediction.Chemical Reviews 2010, 110(10) , 5714-5789.

12. Greaves, T. L.; Drummond, C. J., Protic Ionic Liquids: Evolving Structure–Property Relationships and
Expanding Applications.Chemical Reviews 2015, 115 (20), 11379-11448.

13. Izgorodina, E. I.; Seeger, Z. L.; Scarborough, D. L. A.; Tan, S. Y. S., Quantum Chemical Methods for
the Prediction of Energetic, Physical, and Spectroscopic Properties of Ionic Liquids. Chemical Reviews2017,
117 (10), 6696-6754.

14. Wu, K.-J.; Luo, H.; Yang, L., Structure-based model for prediction of electrical conductivity of pure
ionic liquids. AIChE Journal2016, 62 (10), 3751-3762.

13



P
os

te
d

on
A

u
th

or
ea

16
A

u
g

20
22

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

g
h
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
66

06
15

26
.6

56
97

83
3/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry
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