
P
os
te
d
on

9
A
u
g
20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
66
00
53
63
.3
69
17
68
8/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Pullback D-attractors for doubly nonlinear parabolic equations

Yongjun Li1, Jinying Wei1, and Li Chen1

1Lanzhou City University

February 22, 2024

Abstract

In this paper, we study a class of doubly nonlinear parabolic equations (1.1). The nonlinearity B(u) brings great difficulties to the

study of the problem. First we show that the problem has a unique solution. Then we prove that the process corresponding to

the problem is norm-to-weak continuous. After that, by using Legendre transform, we obtain uniform estimates and asymptotic

compactness properties that allow us to ensure the existence of pullback D-attractors for the associated process to the problem
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1 Introduction

We are interested in the long time behavior of doubly nonlinear parabolic equation of

the form 
∂β(u)

∂t
−∆u+ f(u) = g(x, t), x ∈ Ω, t ∈ R

u(x, t)|∂Ω = 0,

u(x, τ) = uτ (x).

(1.1)

in a bounded smooth domain Ω, g(x, t) ∈ L2(τ, T ;L2(Ω). Such equations appear, e.g.,

in the study of gas filtration(so called porous medium equation). The study of equation

of the form (1.1) can be found in [3-5,10,13]). It has been extensively studied when

β(u) = u, g(x, t) = g(x) and the existence of attractors have been proved in([1,7,9,

14,15,17,18]). For more general equation (1.1) with g(x, t) = g(x), the existence of

∗The authors were supported by the NSFC of China(No.11761044) and Youth Doctoral Foundation

of Gansu Education Committee(No.2021QB-117, No.2022QB-173).

Email:li−liyong120@163.com; weijy2818@163.com; 3179743618@qq.com
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attractors are constructed in ([2-4,8,10]), for the non-autonomous case, as far as I know,

the existence of attractors has not been studied.

Our aim in this paper is to study the existence of pullback D-attractors of (1.1), and

extend the result of [7] to the non-autonomous case. We make the following assumptions:

β(s) ∈ C1(R), β(0) = 0, β′(s) ≥ β0, β0 > 0 s ∈ R; (1.2)

β1|s|r+2 − β3 ≤ β(s)s ≤ β2|s|r+2 + β3, β1, β2 > 0, β3 ≥ 0, r ≥ 0; (1.3)

f(s) ∈ C(R), γ1|s|q − γ3 ≤ f(s)s ≤ γ2|s|q + γ3, s ∈ R, γ1, γ2 > 0, γ3 ≥ 0, q ≥ r + 2;

(1.4)

There exists a constant C0 ≥ 0, such that

C0β(s) + f(s) is increasing. (1.5)

By hypotheses (1.2)-(1.5), β and f are nonlinear functions with polynomial growth

of arbitrary order. Here β is more general than in [2-4,10](where β is linear growth),

which is an essential difficulty in proving the existence of attractor. To the problem (1.1),

the key points are to obtain the norm-to-weak continuous and compactness of process

generated by (1.1). By using Legendre transform and the asymptotic a priori estimate

method introduced in [7], we show that the existence of pullback D-attractor.

This article is organized as follows. In Section 2, we recall some basic concepts about

the pullback D-attractor. In Section 3, we show that the uniqueness of solution and

norm-to-weak continuous of process generated by (1.1). In section 4, we verify the

asymptotic compactness of the process U(t, τ) in Lq(Ω)), and prove the existence of the

(Lr+2(Ω), Lq(Ω)) pullback D-attractor under the hypotheses (1.2)-(1.5).

Throughout this paper we use the following notation: H = L2(Ω), and the norms in

H1
0 (Ω) and Lp(Ω)(1 ≤ p ≤ ∞) are denoted by ∥u∥2 =

∫
Ω
|∇u|2dx and |u|pp =

∫
Ω
|u|pdx,

respectively; Ω(u ≥ M) = {x ∈ Ω : u(x) ≥ M} and Ω(u ≤ −M) = {x ∈ Ω : u(x) ≤
−M}; m(Ω) or |Ω| denote Lebesgue measure of Ω; sometimes for special differentiation,

we denote the different positive constants by c, c1, c2,· · ·.

2 Preliminaries

Let X be a complete metric space, and {U(t, τ)} = {U(t, τ) : t ≥ τ} be a two-

parameter family of mappings act on X : U(t, τ) : X → X, t ≥ τ .

Definition 2.1 ([2,9,17]) A two-parameter family of mappings {U(t, τ)} is said to

be a norm-to-weak continuous process in X if

2



(1) U(t, s)U(s, τ) = U(t, τ),∀t ≥ s ≥ τ,

(2) U(τ, τ) = Id, is the identity operator, τ ∈ R,
(3)U(t, τ)xn ⇀ U(t, τ)x, if xn → x in X.

Let B(X) is the set of all bounded subsets ofX, D is a nonempty class of parameterised

sets D̂ = {D(t) : t ∈ R} ⊂ B(X).

Definition 2.2([2,6,7,9,11,15]) It is said that B̂ ∈ D is pullback D − absorbing for

the process {U(t, τ)} if for any t ∈ R and any D̂ ∈ D, there exists a τ0(t, D̂) ≤ t such that

U(t, τ)D(τ) ⊂ B(t) for all τ ≤ τ0(t, D̂).

Definition 2.3([2,6,7,9,11,15]) The process {U(t, τ)} is said to be pullback D−asymptotically

compact if for any t ∈ R, any D̂ ∈ D, and any sequence τn → −∞, any sequence

xn ∈ D(τn), the sequence {U(t, τn)xn} is relatively compact in X.

Definition 2.4([2,6,7,9,11,15]) The family Â = {A(t) : t ∈ R} ⊂ B(X) is said to be

a pullback D − attractor for U(t, τ) if

(1)A(t) is compact for all t ∈ R,
(2)Â is invariant, i.e., U(t, τ)A(τ) = A(t) for all t ≥ τ ,

(3)Â is pullback D−attracting, i.e.,

lim
τ→−∞

dist((U(t, τ)D(τ),A(t)) = 0, for all D̂ ∈ D, and all t ∈ R,
(4)if {C(t)}t∈R is another family of closed attracting sets, then A(t) ⊂ C(t) for all

t ∈ R.
Let X be a complete metric space and B be a bounded subset of X. The Kuratowski

measure of noncompactness α(B) of B is defined by

α(B) = inf{δ > 0 |B has a finite open cover of sets of diameter≤ δ}.
Definition 2.5([9]) A process {U(t, τ)} is called pullback ω-D-limit compact if for

any ε > 0 and D̂ ∈ D, there exists a τ0(D̂, t) ≤ t such that α(
∪

τ≤τ0

U(t, τ)D(τ)) ≤ ε.

Lemma 2.1([9]) Assume {U(t, τ)} is pullback ω-D-limit compact, then for any

sequence {τn} ⊂ Rt, τn → −∞ as n → ∞, and sequence xn ∈ D(τn) there exists a

convergent subsequence of {U(t, τn)xn} whose limit lies in ω(D̂, t) =
∩
s≤t

∪
τ≤s

U(t, τ)B(τ).

Theorem 2.1([9]) Suppose that the process U(t, τ) is norm-to-weak continuous

and pullback ω-D-limit compact, B̂ ∈ D is a family of pullback D−absorbing sets for

U(t, τ).Then the family Â = {A(t) : t ∈ R} ⊂ B(X) defined by

A(t) = ω(B̂, t) =
∩
s≤t

∪
τ≤s

U(t, τ)B(τ),

is a pullback D-attractor for U(t, τ).

Theorem 2.2([7]) Let {U(t, τ)}t≥τ is norm-to-weak continuous process in Lp(Ω),

B̂ = {B(t) : t ∈ R} ∈ D is pullback D-absorbing sets in Lp(Ω), and U(t, τ) satisfy the

3



following two assumptions:

(1) {U(t, τ)}t≥τ is pullback ω-D-limit compact in Lq(Ω)(1 ≤ q < p);

(2) for any ε > 0, there exist M(ε, B̂) and τ0 = τ0(ε, B̂) ≤ t such that∫
Ω(|U(t,τ)uτ |≥M)

|U(t, τ)uτ |pdx)
1
p < ε for any uτ ∈ B(τ), and τ ≤ τ0.

Then there exists a pullback D−attractor Â = {A(t) : t ∈ R} in Lp(Ω) and

A(t) =
∩
s≤t

∪
τ≤s

U(t, τ)B(τ)
Lp(Ω)

,

where
∪
τ≤s

U(t, τ)B(τ)
Lp(Ω)

denote closure in Lp(Ω).

By Lemma 2.1, the process {U(t, τ)} is pullback ω-D-limit compact, then {U(t, τ)}
is pullback D-asymptotically compact. In practice, as long as the process is pullback

D-asymptotically compact, then the Theorem 2.1 and the Theorem 2.2 are still hold.

3 Uniqueness of solution and norm-to-weak continu-

ous of process

The existence of weak solution for (1.1) can be obtained by the standard Faedo-

Galerkin approximation method(see[1,3,14]). Here we only state the result.

Lemma 3.1 Assume that g(x, t) ∈ L2(Ω), β and f satisfying (1.2)-(1.5), uτ (x) ∈
Lr+2(Ω). Then for any initial data uτ (x) ∈ Lr+2(Ω), there exists solution u(x, t) for

Eq.(1.1) which satisfies

u(x, t) ∈ C(τ, T ;L1(Ω)) ∩ L2(τ, T ;H1
0 (Ω)) ∩ Lq(τ, T ;Lq(Ω)).

We now show that the solution is uniqueness and continuous dependence on initial

conditions.

Theorem 3.2 Assume that g(x, t) ∈ L2(Ω), uτ (x) ∈ Lr+2(Ω), β and f satisfying

(1.2)-(1.5). Then there exists a unique solution of Eq.(1.1)

Proof Suppose that u(t), v(t) be two solution of (1.1) with initial conditions uτ (x),

vτ (x), then
∂(β(u)− β(v))

∂t
−△(u− v) + f(u)− f(v) = 0,

i.e.,

∂(β(u)− β(v))

∂t
−△(u− v) + (C0β(u) + f(u))− (C0β(v) + f(v)) = C0(β(u)− β(v)).

4



We define the sign function by

sign(τ) =


1 if τ > 0,

0 if τ = 0,

−1 if τ < 0.

Multiplying (3.1) by sign(u− v) and integrating in Ω, we obtain

d

dt

∫
Ω
|β(u)− β(v)|dx−

∫
Ω
∆(u− v)sign(u− v)

+
∫
Ω
[(C0β(u) + f(u))− (C0β(v) + f(v))]sign(β(u)− β(v))dx]

= C0

∫
Ω
|β(u)− β(v)|dx.

Using (1.6), we get∫
Ω

[(C0β(u) + f(u))− (C0β(v) + f(v))]sign(β(u)− β(v))dx ≥ 0.

Since sign(u− v) = lim
ε→0+

u− v

ε+ |u− v|
, by dominated convergence theorem, we have

−
∫
Ω
∆(u− v)sign(u− v)dx = − lim

ε→0+

∫
Ω
∆(u− v)

u− v

ε+ |u− v|
dx

= lim
ε→0+

∫
Ω
∇(u− v)∇(

u− v

ε+ |u− v|
)dx = lim

ε→0+

∫
Ω
ε |∇(u−v)|2
(ε+|u−v|)2)dx ≥ 0.

So
d

dt

∫
Ω

|β(u)− β(v)|dx ≤ C0

∫
Ω

|β(u)− β(v)|dx.

By Gronwall inequality, we get∫
Ω

|β(u(t)− β(v(t))|dx ≤ eC0(t−τ)

∫
Ω

|β(uτ )− β(vτ )|dx,

From (1.2), we have∫
Ω

|u(t)− v(t)|dx ≤ 1

β0
eC0(t−τ)

∫
Ω

|β(uτ )− β(vτ )|dx.

Which gives continuous dependence on initial conditions and uniqueness of solution in

L1(Ω).

By Theorem 3.2, we can define the process {U(t, τ}t≥τ in L1(Ω) as the following:

U(t, τ)uτ : Lr+2(Ω) → L1(Ω),

which is continuous in L1(Ω).
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Since β be a continuous increasing function with β(0) = 0. We define for t ∈ R,

ψ(t) =

∫ t

0

β(τ)dτ.

Then the Legendre transform ψ∗ is defined by

ψ∗(τ) = sup
s∈R

{τs− ψ(s)}.

Note that

ψ∗(τ) ≥ 0, ψ∗(β(τ)) + ψ(τ) = τβ(τ), ψ∗(β(τ)) ≤ τβ(τ). (3.1)

Theorem 3.3 Assume that the conditions (1.2)-(1.5) are satisfied, g(x, t) ∈ L2(Ω).

Then the process U(t, τ) is norm-to-weak continuous in Lq(Ω) and H1
0 (Ω).

Proof Let umτ (x) → uτ (x) in Lr+2(Ω), um(t), u(t) are the solutions of Eq.(1.1)

corresponding to initial date umτ (x), uτ (x). In (1.1), replace u(t) by um(t). Multiply

(1.1) by um(t) and integrating in Ω, we get

d

dt

∫
Ω

ψ∗(β(um(t)))dx+ |∇um|22 + (f(um), um) = (g, um).

Thanks to Poincaré inequality λ|u|22 ≤ |∇u|22, and Cauchy inequality, we have

|
∫
Ω

g(x)umdx| ≤
λ

2
|um|22 +

1

2λ
|g(x, t)|22 ≤

1

2
|∇um|22 +

1

2λ
|g(x, t)|22.

So
d

dt

∫
Ω

ψ∗(β(um(t)))dx+
1

2
|∇um|22 + γ1|um|qq ≤ γ3|Ω|+

1

2λ
|g(x, t)|22.

Integrating from τ to T , we obtain∫
Ω
ψ∗(β(um(T )))dx+

1
2

∫ T

τ
|∇um|22dt+ γ1

∫ T

τ
|um|qqdt

≤
∫
Ω
ψ∗(β(umτ ))dx+ γ3|Ω|(T − τ) + 1

2λ

∫ T

τ
|g(x, s)|22ds.

≤
∫
Ω
umτβ(umτ )dx+ γ3|Ω|(T − τ) + 1

2λ

∫ T

τ
|g(x, s)|22ds

≤ β2|umτ |r+2
r+2 + β3|Ω|+ γ3|Ω|(T − τ) + 1

2λ

∫ T

τ
|g(x, s)|22ds.

umτ → uτ in Lr+2(Ω), so there exists M > 0, such that |umτ |r+2
r+2 ≤ M . We get

um(t) are bounded in L2(τ, T ;H1
0 (Ω)) and L

q(τ, T ;Lq(Ω)), there exists weak convergence

subsequence umk
(t) convergence to v(t) in L2(τ, T ;H1

0 (Ω)) and L
q(τ, T ;Lq(Ω)), obviously,

v(t) be a solution of (1.1) satisfies initial value v(x, τ) = uτ (x). By the unique of solution

for (1.1), we have u(t) = v(t), i.e., umk
⇀ u(t) in L2(τ, T ;H1

0 (Ω)) and L
q(τ, T ;Lq(Ω)). By

Definition 2.1, Theorem 3.3 holds.

Remark 3.4 The proess {U(t, τ}t≥τ is norm-to-weak continuous in L2(Ω).
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4 Pullbck D-attractor in Lq(Ω)

By theorem 3.3, we can define process {U(t, τ)}t≥τ as the following:

U(t, τ) : Lr+2(Ω) → Lq(Ω). (4.1)

Moreover, we suppose for any t ∈ R, we have∫ t

−∞
eδs|g(x, s)|22ds <∞,

∫ t

−∞

∫ s

−∞
eδr|g(x, r)|22drds <∞, (4.2)

here δ = γ1q
β2(r+2)

.

Lemma 4.1 Assume that the conditions (1.2)-(1.5) are satisfied and g(x, t) satisfies

(4.2), u(t) be a weak solution of (1.1). Then there exists T > 0, for any t − τ ≥ T , we

have the following inequality:

|∇u(t)|22 + |u(t)|qq ≤ c((t− τ)e−δ(t−τ)|uτ |r+2
r+2 + 1

+
∫ t

−∞ eδ(s−t)|g(x, s)|22ds+
∫ t

−∞

∫ s

−∞ eδ(r−t)|g(x, r)|22drds).
(4.3)

Proof Multiplying (1.1) by u(t) and integrating over Ω, we obtain

d

dt

∫
Ω

ψ∗(β(u))dx+ |∇u|22 + (f(u), u) = (g, u).

By (1.4), we have

d

dt

∫
Ω

ψ∗(β(u))dx+ |∇u|22 + γ1|u|qq − γ3|Ω| ≤ (g, u). (4.4)

Thanks to Poincaré inequality and Young inequality, one gets

|(g, u)| ≤ λ

2
|u|22 +

1

2λ
|g(x, t)|22 ≤

1

2
|∇u|22 +

1

2λ
|g(x, t)|22,

By (4.4), we have

d

dt

∫
Ω

ψ∗(β(u))dx+
1

2
|∇u|22 + γ1|u|qq ≤ γ3|Ω|++

1

2λ
|g(x, t)|22. (4.5)

Using Young inequality, we obtain

|u|r+2
r+2 =

∫
Ω

|u|r+2dx ≤ r + 2

q
|u|qq +

q − r − 2

q
|Ω|.

We find that
γ1q

r + 2
(|u|r+2

r+2 −
q − r − 2

q
|Ω|) ≤ γ1|u|qq. (4.6)

7



Using (1.3) and (3.1), we get

0 ≤
∫
Ω

ψ∗(β(u))dx ≤
∫
Ω

uβ(u)dx ≤ β2|u|r+2
r+2 + β3|Ω|.

Hence

γ1|u|qq ≥
γ1q

β2(r + 2)

∫
Ω

ψ∗(β(u))dx− γ1qβ3
β2(r + 2)

|Ω| − γ1q(q − r − 2)

q(r + 2)
|Ω|.

Let δ = γ1q
β2(r+2)

, c1 = ( γ1qβ3

β2(r+2)
+ γ1q(q−r−2)

q(r+2)
+ γ3)|Ω|, by (4.5), we obtain

d

dt

∫
Ω

ψ∗(β(u))dx+ δ

∫
Ω

ψ∗(β(u))dx ≤ c1 +
1

2λ
|g(x, t)|22. (4.7)

By the Gronwall lemma, for all t ≥ τ , one deduces∫
Ω

ψ∗(β(u(t)))dx ≤ e−δ(t−τ)

∫
Ω

ψ∗(β(u(τ)))dx+
c1
δ
+

1

2λ
e−δt

∫ t

−∞
e−δs|g(x, s)|22ds. (4.8)

Multiplying (1.1) by ut and integrating in Ω, we get∫
Ω

β′(u)u2tdx+
d

dt
(|∇u|22 +

∫
Ω

F (u)dx) = (g(x, t), ut),

where F (u) =
∫ u

0
f(s)ds. By (1.2), we have

|(g(x, t), ut)| ≤
∫
Ω

|g(x, t)ut|dx ≤ 1

2

∫
Ω

β′(u)u2tdx+
1

2β0
|g(x, t)|22.

Therefore, one has
d

dt
(|∇u|22 +

∫
Ω

F (u)dx) ≤ 1

2β0
|g(x, t)|22. (4.9)

It follows from (1.4) that there exist γ′1, γ
′
2 > 0, γ′3 ≥ 0 such that

γ′1|s|q − γ′3 ≤ F (s) ≤ γ′2|s|q + γ′3. (4.10)

Let ρ = min{1
2
, γ1
r′2
}. Using (4.5), one has

d

dt

∫
Ω

ψ∗(β(u))dx+ ρ(|∇u|22 +
∫
Ω

F (u)dx) ≤ c2(1 + |g(x, t)|22). (4.11)

So, by (4.9) and (4.11)

d

dt
(eδt

∫
Ω

ψ∗(β(u))dx) ≤ δeδt
∫
Ω

ψ∗(β(u))dx+eδt(−ρ(|∇u|22+
∫
Ω

F (u)dx)+c2(1+|g(x, t)|22)).

8



Using (4.8), one has∫ t

τ
eδs(|∇u|22 +

∫
Ω
F (u)dx)ds

≤ c3(e
δτ
∫
Ω
ψ∗(β(uτ ))dx+

∫ t

τ
eδs

∫
Ω
ψ∗(β(u(s)))dxds+ eδt +

∫ t

τ
eδs|g(x, s)|22ds)

≤ c4((1 + t− τ)eδτ
∫
Ω
ψ∗(β(uτ ))dx+ eδt +

∫ t

τ
eδs|g(x, s)|22ds+

∫ t

τ

∫ s

τ
eδr|g(x, r)|22dr).

(4.12)

In fact, by (4.9), we obtain

d
dt
((t− τ)eδt(|∇u|22 +

∫
Ω
F (u)dx))

= (1 + δ(t− τ))eδt(|∇u|22 +
∫
Ω
F (u)dx) + (t− τ)eδt d

dt
(|∇u|22 +

∫
Ω
F (u)dx)

≤ c5((1 + t− τ)eδt(|∇u|22 +
∫
Ω
F (u)dx) + (t− τ)eδt|g(x, t)|22).

(4.13)

For any t− τ ≥ 1, integrating from τ to t, we have

|∇u(t)|22 +
∫
Ω
F (u(t))dx

≤ c5((1 +
1

t−τ
)e−δt

∫ t

τ
eδs(|∇u(s)|22 +

∫
Ω
F (u(s))dx)ds+ e−δt

∫ t

τ
eδs|g(x, s)|22ds)

≤ c6((t− τ)e−δ(t−τ)
∫
Ω
ψ∗(β(uτ ))dx+ 1

+e−δt(
∫ t

τ
eδs|g(x, s)|22ds+

∫ t

τ

∫ s

τ
eδr|g(x, r)|22drds))

≤ c7((t− τ)e−δ(t−τ)|uτ |r+2
r+2 + (t− τ)e−δ(t−τ) + 1

+e−δt(
∫ t

τ
eδs|g(x, s)|22ds+

∫ t

τ

∫ s

τ
eδr|g(x, r)|22drds))

≤ c7((t− τ)e−δ(t−τ)|uτ |r+2
r+2 + (t− τ)e−δ(t−τ) + 1

+e−δt(
∫ t

−∞ eδs|g(x, s)|22ds+
∫ t

−∞

∫ s

−∞ eδr|g(x, r)|22drds)).

(4.14)

We find that exists T > 0, for any t− τ > max{1, T},

|∇u(t)|22 +
∫
Ω
F (u(t))dx ≤ c((t− τ)e−δ(t−τ)|uτ |r+2

r+2 + 1

+
∫ t

−∞ eδ(s−t)|g(x, s)|22ds+
∫ t

−∞

∫ s

−∞ eδ(r−t)|g(x, r)|22drds).
(4.15)

By (4.10), we obtain Lemma 4.1.

Let R be the set of all functions ρ : R → (0,+∞) such that lim
t→+∞

teδtρr+2(t) = 0,

denote by D the class of all families D̂ = {D(t) : t ∈ R} such that D(t) ⊂ B(ρ(t)) for

some ρ(t) ∈ R, B(ρ(t)) the closed ball in Lr+2(Ω) with radius ρ(t)). Let

ρ0(t) = [2c(1 +

∫ t

−∞
eδ(s−t)|g(x, s)|22ds+

∫ t

−∞

∫ s

−∞
eδ(r−t)|g(x, r)|22drds)]

1
q . (4.16)
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Bq(ρ0(t)) denote close ball in Lq(Ω) with radius ρ0(t). Obviousy Bq(ρ0(t)) be a family

of bounded pullback D-absorbing sets for the process {U(t, τ}t≥τ generated by (1.1) in

Lq(Ω).

From (4.3), we also get that there exists a family of bounded pullback D-absorbing

sets in L2(Ω) and H1
0 (Ω), therefore, the process generated by (1.1) is pullback ω-D-limit

compact in L2(Ω). By theorem 2.1, we have the following theorem.

Theorem 4.2 Assume that the conditions (1.2)-(1.5) are satisfied, g(x, t) satisfies

(4.2). Then the process U(t, τ) generated by (1.1) exists a pullback D-attractor in L2(Ω).

In the following, we will give the asymptotic a priori estimate of {U(t, τ}t≥τ with

respect to Lq(Ω) norm, which play a crucial role in the proof of the pullback D-attractor

in Lq(Ω)

Theorem 4.3 Assume that the conditions (1.2)-(1.5) are satisfied, g(x, t) satisfies

(4.2), q > r+2. Then the process U(t, τ) generated by (1.1) exists a pullback D-attractor

in Lq(Ω).

Proof We know from Theorem 4.2 that the process {U(t, τ}t≥τ is pullback ω-D-limit

compact in L2(Ω). Next we will prove that the process satisfies (2) of Theorem 2.2.

By (1.3) and (1.5), we find that there exists M1 > 0, ∀|u| ≥M1 such that

f(u)u ≥ γ1
2
|u|q, β1

2
|u|r+1 ≤ |β(u)| ≤ 2β2|u|r+1. (4.17)

Let M2 = max{1, β1

2
|M1|r+1}, |u| ≥ M1, then |β(u)| ≥ M2. Multiply (1.1) with

|(β(u)−M2)+|
q

r+1
−2(β(u)−M2)+, we get

r + 1

q

d

dt

∫
Ω
|(β(u)−M2)+|

q
r+1dx+

∫
Ω
∇u∇(|(β(u)−M2)+|

q
r+1

−2(β(u)−M2)+)dx

+
∫
Ω
f(u)|(β(u)−M2)+|

q
r+1

−2(β(u)−M2)+dx

=
∫
Ω
g(x, t)|(β(u)−M2)+|

q
r+1

−2(β(u)−M2)+dx.

(4.18)

Where (β(u)−M2)+ denote the positive part of (β(u)−M2), that is

(β(u)−M2)+ =

 β(u)−M2, β(u) ≥M2,

0, β(u) < M2.
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Thus we have ∫
Ω
∇u∇(|(β(u)−M2)+|

q
r+1

−2(β(u)−M2)+)dx

=
∫
Ω(β(u)≥M)

∇u∇(|(β(u)−M2)|
q

r+1
−1)dx

= ( q
r+1

− 1)
∫
Ω(β(u)≥M)

β′(u)|(β(u)−M2)|
q

r+1
−2|∇u|2dx

≥ 0,∫
Ω
f(u)|(β(u)−M2)+|

q
r+1

−2(β(u)−M2)+dx

≥ γ1
2

∫
Ω
|u|q−1|(β(u)−M2)+|

q
r+1

−1dx

≥ c8
∫
Ω
|β(u)|

q−1
r+1 |(β(u)−M2)+|

q
r+1

−1dx

≥ c8
2

∫
Ω
|β(u)|

q−1
r+1 |(β(u)−M2)+|

q
r+1

−1dx+
c8
2

∫
Ω
|β(u)|

r
r+1 |β(u)|

q−r−1
r+1 |(β(u)−M2)+|

q
r+1

−1dx

≥ c8
2
M

q−r−2
r+1

2

∫
Ω
|(β(u)−M2)+|

q
r+1dx+

c8
2

∫
Ω
|(β(u)−M2)+|

2(q−r−1)
r+1 dx

and
|
∫
Ω
g(x, t)|(β(u)−M2)+|

q
r+1

−2(β(u)−M2)+dx|

≤
∫
Ω
|g(x, t)||(β(u)−M2)+|

q−r−1
r+1 dx

≤ c8
2

∫
Ω
|(β(u)−M2)+|

2(q−r−1)
r+1 dx+ 1

2c8

∫
Ω(β(u)≥M2)

|g(x, t)|2dx.

Therefore, one has

d

dt

∫
Ω
|(β(u)−M2)+|

q
r+1dx+ c9

∫
Ω
|(β(u)−M2)+|

q
r+1dx

≤ c10
∫
Ω(β(u)≥M2)

|g(x, t)|2dx.
(4.19)

and

d

dt
[(t− τ)ec9M

q−r−2
r+1 t

2

∫
Ω
|(β(u)−M2)+|

q
r+1dx]

≤ ec9M
q−r−2
r+1 t

2

∫
Ω
|(β(u)−M2)+|

q
r+1dx+ c10(t− τ)ec9M

q−r−2
r+1 t

2

∫
Ω(β(u)≥M2)

|g(x, t)|2dx.
(4.20)
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Integrating from τ to t, we have∫
Ω
|(β(u)−M2)+|

q
r+1dx

≤ 1
t−τ

e−c9M
q−r−2
r+1 t

2 (
∫ t

τ
ec9M

q−r−2
r+1 s

2

∫
Ω
|(β(u(s))−M2)+|

q
r+1dxds

+c10
∫ t

τ
(s− τ)ec9M

q−r−2
r+1 s

2

∫
Ω(β(u(s))≥M2)

|g(x, t)|2dxds)

≤ c11(
1

t−τ

∫ t

τ
e−c9M

q−r−2
r+1 (t−s)

2 |u(s)|qqds+
∫ t

τ
e−c9M

q−r−2
r+1 (t−s)

2

∫
Ω(β(u(s))≥M2)

|g(x, t)|2dxds)
(4.21)

Using (4.3), we obtain∫
Ω
|(β(u)−M2)+|

q
r+1dx

≤ c12[
e−δ(t−τ)

(c9M
q−r−2
r+1

2 −δ)(t−τ)

|uτ |r+2
r+2 +

1

c9M
q−r−2
r+1

2 (t−τ)

+ e−δt

c9M
q−r−2
r+1

2

∫ t

−∞ eδs|g(x, s)|22ds

+ e−δt

c9M
q−r−2
r+1

2

∫ t

−∞

∫ s

−∞ eδs|g(x, r)|22drds].

(4.22)

Obviously, for any ε > 0, p > r + 2, there exist M > 0, τ0 < t, for any M2 > M , τ < τ0,

we have ∫
Ω

|(β(u)−M2)+|
q

r+1dx < ε. (4.23)

Hence ∫
Ω(β(u)≥M)

((|β(u|)−M)+)
q

r+1dx < ε. (4.24)

Repeat the same step above, mulitplying (1.1) with |(β(u)+M2)−|
q

r+1
−2(β(u)+M2)−,

we get ∫
Ω(β(u)≤−M)

(|β(u(t))| −M)
q

r+1dx < ε, (4.25)

where (β(u) +M2)− =

 β(u) +M2, β(u) ≤ −M2,

0, β(u) > −M2.

Combining (4.24) and (4.25), we have∫
Ω(|β(u)|≥2M)

|β(u(t))|
q

r+1dx

=
∫
Ω(|β(u)|≥2M)

(|β(u(t))| −M +M)
q

r+1dx

≤ c13(
∫
Ω(|β(u)|≥2M)

(|β(u(t))| −M)
q

r+1dx+
∫
Ω(|β(u)|≥2M)

M
q

r+1dx)

≤ c13(
∫
Ω(|β(u)|≥M)

(|β(u(t))| −M)
q

r+1dx+
∫
Ω(|β(u)|≥M)

(|β(u(t)| −M)
q

r+1dx)

≤ c14ε.
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Thanks to (4.17), we conclude∫
Ω(|u(t)|≥M)

|u(t)|qdx < c15ε.

Hence, the (2) of Theorem 2.2 is satisfied, which say that the process is pullback

ω-D-limit compact in Lq(Ω).

For p = r + 2, the constant M
q−r−2
r+1

2 = 1, the above prove can not obtain the right

hand side of (4.22) tend to 0. For our purpose, we add another condition,

∀ε > 0, ∃δ > 0, ∀e ⊂ Ω,me < δ,∀t ∈ R,
∫
e

|g(x, t)|2dx < ε. (4.26)

Using (4.13) and (4.17), we get

β1
2
M

q
r+1

2 m(Ω(|β(u)| ≥M2)) ≤
∫
Ω(|β(u)|≥M2)

|β(t)|
q

r+1dx < +∞.

We find that there exists M > 0, for any M2 > M , m(Ω(|β(u)| ≥ M2)) < ε, using (4.19)

and the previous proof method, we also get∫
Ω(|u(t)|≥M)

|u(t)|qdx < c16ε,

which say that the process is pullback ω-D-limit compact in Lq(Ω), so we have the

following theorem.

Theorem 4.4 Assume that the conditions (1.2)-(1.5) are satisfied, g(x, t) satisfy (4.2)

and (4.26), q = r + 2. Then the process U(t, τ) generated by (1.1) exists a pullback D-

attractor in Lq(Ω).
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