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1 Introduction

We are interested in the long time behavior of doubly nonlinear parabolic equation of

the form )
% —Au+ f(u) =g(z,t), v€QteR
u(z,t)]aq =0, w1)

u(z, ) = u ().
in a bounded smooth domain Q, g(x,t) € L*(7,T; L*(Q?). Such equations appear, e.g.,
in the study of gas filtration(so called porous medium equation). The study of equation
of the form (1.1) can be found in [3-5,10,13]). It has been extensively studied when
B(u) = u,g(z,t) = g(x) and the existence of attractors have been proved in([1,7,9,
14,15,17,18]). For more general equation (1.1) with g(z,f) = g(x), the existence of
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attractors are constructed in ([2-4,8,10]), for the non-autonomous case, as far as I know,
the existence of attractors has not been studied.
Our aim in this paper is to study the existence of pullback D-attractors of (1.1), and

extend the result of [7] to the non-autonomous case. We make the following assumptions:

B(s) € CH(R), B(0) =0,B'(s) > Bo, o >0 s € R; (1.2)
Bils|"t? — B3 < B(s)s < Bo|s|"™? + B3, B1,52 > 0,03 > 0,7 >0; (1.3)

f(s) € C(R),mls|? —v3 < f(s)s < yals|?+ 73, s € R,y1,72 > 0,73 > 0,9 > r + 2
(1.4)

There exists a constant Cy > 0, such that
CoB(s) + f(s) is increasing. (1.5)

By hypotheses (1.2)-(1.5), # and f are nonlinear functions with polynomial growth
of arbitrary order. Here § is more general than in [2-4,10](where [ is linear growth),
which is an essential difficulty in proving the existence of attractor. To the problem (1.1),
the key points are to obtain the norm-to-weak continuous and compactness of process
generated by (1.1). By using Legendre transform and the asymptotic a priori estimate
method introduced in [7], we show that the existence of pullback D-attractor.

This article is organized as follows. In Section 2, we recall some basic concepts about
the pullback D-attractor. In Section 3, we show that the uniqueness of solution and
norm-to-weak continuous of process generated by (1.1). In section 4, we verify the
asymptotic compactness of the process U(t,7) in L4(2)), and prove the existence of the
(L™2(Q2), L%(2)) pullback D-attractor under the hypotheses (1.2)-(1.5).

Throughout this paper we use the following notation: H = L*(Q2), and the norms in
Hj(Q) and LP(Q)(1 < p < 00) are denoted by |ul|* = [, |Vul*dz and |ulp = [, |u[’dz,
respectively; Q(u > M) = {z € Q : u(z) > M} and Qu < —M) = {z € Q : u(z) <
—M}; m(€2) or || denote Lebesgue measure of €; sometimes for special differentiation,

we denote the different positive constants by ¢, ¢y, co,- - -.

2 Preliminaries

Let X be a complete metric space, and {U(t,7)} = {U(t,7) : t > 7} be a two-
parameter family of mappings act on X : U(t,7): X — X,t > 7.
Definition 2.1 ([2,9,17]) A two-parameter family of mappings {U(t,7)} is said to

be a norm-to-weak continuous process in X if
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(1) U(t,s)U(s,7) =U(t,7),¥t > s>,

(2) U(r,7) = Id, is the identity operator, T € R,

(U, 7)x, = U(t,7)z, if v, — x in X.

Let B(X) is the set of all bounded subsets of X, D is a nonempty class of parameterised
sets D = {D(t) : t € R} C B(X).

Definition 2.2([2,6,7,9,11,15]) [t is said that B € D is pullback D — absorbing for
the process {U(t,7)} if for any t € R and any D € D, there exists a 7o(t, D) < t such that
U(t,7)D(r) C B(t) for all T < 70(t, D).

Definition 2.3([2,6,7,9,11,15])  The process {U(t,T)} is said to be pullback D— asymptotically

compact if for any t € R, any D e D, and any sequence T, — —O0O0, any Sequence
xn € D(1,), the sequence {U(t,1,)x,} is relatively compact in X .

Definition 2.4([2,6,7,9,11,15))  The family A = {A(t) : t € R} C B(X) is said to be
a pullback D — attractor for U(t, 1) if

(1)A(t) is compact for all t € R,

(2)A is invariant, i.e., U(t, 7)A(T) = A(t) for all t > T,

(8)A is pullback D—attracting, i.e.,

lim dist((U(t,7)D(7), A(t)) =0, for all D € D, and all t € R,

(4)if {C’(:;}?:R is another family of closed attracting sets, then A(t) C C(t) for all
te R

Let X be a complete metric space and B be a bounded subset of X. The Kuratowski
measure of noncompactness «(B) of B is defined by

a(B) =inf{d > 0 |B has a finite open cover of sets of diameter< §}.

Definition 2.5([9]) A process {U(t,7)} is called pullback w-D-limit compact if for

any e > 0 and D € D, there exists a 7o(D,t) <t such that o |J U(t,7)D(7)) < e.
0

T<Tl

Lemma 2.1([9]) Assume {U(t,7)} is pullback w-D-limit compact, then for any
sequence {1} C Ry, 7, — —00 asn — oo, and sequence x, € D(r,) there exists a
convergent subsequence of {U (L, )z, } whose limit lies in w(D,t) = ( U U(t,7)B(7).

s<tT<s
Theorem 2.1([9]) Suppose that the process U(t,T) is norm-to-weak continuous

and pullback w-D-limit compact, BeDisa famaly of pullback D—absorbing sets for
U(t, 7). Then the family A= {A(t) : t € R} C B(X) defined by
A(t) = w(B,t) = N U Ut 7)B(r),

s<tT<s

is a pullback D-attractor for U(t, T).
Theorem 2.2([7]) Let {U(t,7)}i>r is norm-to-weak continuous process in LP(S2),
B ={B(t):t € R} € D is pullback D-absorbing sets in LP(Q), and U(t,T) satisfy the



following two assumptions:
(1) {U(t, 7) }i>r is pullback w-D-limit compact in LI(Q)(1 < q < p);

-~ -~

(2) for any € > 0, there exist M(e,B) and 10 = 79(e,8) < t such that
fQ(lU(t,r)uT\zM) |U(t, 7w, |Pdz)r < e for any u, € B(7), and 7 < 7.
Then there ezists a pullback D—attractor A = {A(t) : t € R} in LP(Q2) and
At =NUUEDBE .

s<tT<s

where |J U(t,T)B(T)Lp(Q) denote closure in LP(S).
T<s

By Lemma 2.1, the process {U(t,7)} is pullback w-D-limit compact, then {U(¢,7)}

is pullback D-asymptotically compact. In practice, as long as the process is pullback

D-asymptotically compact, then the Theorem 2.1 and the Theorem 2.2 are still hold.

3 Uniqueness of solution and norm-to-weak continu-

ous of process

The existence of weak solution for (1.1) can be obtained by the standard Faedo-
Galerkin approximation method(see[1,3,14]). Here we only state the result.

Lemma 3.1 Assume that g(x,t) € L*(Q), 8 and [ satisfying (1.2)-(1.5), u,(z) €
L™%(Q). Then for any initial data u,(x) € L""%(Q), there exists solution u(x,t) for
FEq.(1.1) which satisfies

u(x,t) € O(7,T; LX) N L3(7, T; HY(QY)) N LA(7, T; LI(Q)).

We now show that the solution is uniqueness and continuous dependence on initial
conditions.

Theorem 3.2 Assume that g(z,t) € L*(Q),u,(x) € L™%(Q), B and [ satisfying
(1.2)-(1.5). Then there ezists a unique solution of Fq.(1.1)

Proof Suppose that u(t),v(t) be two solution of (1.1) with initial conditions u,(x),

vy (), then
0(6(u) — B(v))
ot

—A(u—v) + f(u) = f(v) =0,

9(B(u) — B(v))

5 — A(u =) + (CoB(u) + f(u) = (Cof(v) + f(v)) = Co(B(u) — B(v)).




We define the sign function by

1 if 7>0,
sign(r) =4 0 if T =0,
-1 if 7<O.

Multiplying (3.1) by sign(u — v) and integrating in {2, we obtain

% Jo 18(w) = B(v)|dz — [, A(u—v)sign(u —v)
+ [o[(CoB(u) + f(u)) = (CoB(v) + f(v))]sign(B(u) — B(v))dx]
= Co Jo 1B(u) = B(v)]dz.

Using (1.6), we get

/Q [(CoBlu) + £(u) — (CoB(v) + F(v))]sign(B(u) — A(v))dx > 0.

Since sign(u —v) = lim _uzv , by dominated convergence theorem, we have
e=0t € + |u — v’
— [ A(u —v)sign(u —v)de = — lim [, A v)&dx

e—0F €+ |u—v

= lim [, V(u—v)V( Jdz = lim [, e Md:zc > 0.

e—0+ €+ |u | 0t (e+|u—v[)2

% 18 = iz < 6, [ 1560 - so)jas

By Gronwall inequality, we get

[ 13t = o)l < e [ j3,) = p(on) e

u—v

From (1.2), we have

/|u —o(t |dx< t7/|5u7— (vr)|dx.

Which gives continuous dependence on initial conditions and uniqueness of solution in
LY(9).
By Theorem 3.2, we can define the process {U(t,7};>, in L*(€) as the following:

Ut,7)u, : L"7(Q) — L'(),

which is continuous in L'(Q).



Since f be a continuous increasing function with 5(0) = 0. We define for ¢ € R,

= /Otﬁ(r)dr

Then the Legendre transform * is defined by

() = sup{rs — ¢ (s)}.

seR
Note that
(1) 2 0, (B(7)) + () = 768(7), ¥*(B(7)) < 75(7). (3.1)
Theorem 3.3 Assume that the conditions (1.2)-(1.5) are satisfied, g(z,t) € L*(9).
Then the process U(t,T) is norm-to-weak continuous in L) and Hj ().
Proof Let wu,.(z) — u.(z) in L"™2(Q), un(t),u(t) are the solutions of Eq.(1.1)
corresponding to initial date . (z),u,(z). In (1.1), replace u(t) by wu,(¢). Multiply
(1.1) by u,,(t) and integrating in €, we get

%/Qw*(ﬁ(um(t)))da: + | Vtm|2 4 (f (tm), tim) = (g, Um)-

Thanks to Poincaré inequality Alul3 < |[Vul3, and Cauchy inequality, we have

+ Lt

1
< =
| otaunds| < Shunls+ 5l 0 < 5Vl + 55

d [ 1 1
G | Bl (©))de + 51Tun + mlunly < 2l + 5 lo(e. O

Integrating from 7 to 7', we obtain

N T)))dz + L [ [Vul3dt + 71 [ [u,|2dt

< Jo 0 (B(tmr))dz + v3]Q(T 2)\f (z,s)|3ds.
< Jo Ui Btz )dx + 3| QT + 5 [T |g(z, 5)|3ds
< Boltm 745 + B3lQ] + 75|QU(T + 53 f (x,s)|3ds.

Umr — ur in L™2(Q), so there exists M > 0, such that |u,.[[T3 < M. We get
U (t) are bounded in L?(7,T; H}(Q2)) and Le(7,T; L4(f2)), there exists weak convergence
subsequence u,,, (t) convergence to v(t) in L*(7,T; Hy(Q)) and Li(7, T; L(£)), obviously,
v(t) be a solution of (1.1) satisfies initial value v(z,7) = u.(z). By the unique of solution
for (1.1), we have u(t) = v(t), i.e., Uy, — u(t) in L*(7,T; H3(Q)) and LI(7,T; L9(R2)). By
Definition 2.1, Theorem 3.3 holds.

Remark 3.4 The proess {U(t, T}, is norm-to-weak continuous in L*(Q).
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4 Pullbck D-attractor in L4(})

By theorem 3.3, we can define process {U(t,7)}:+>, as the following:
Ut,7): L'2(Q) — LY(Q). (4.1)

Moreover, we suppose for any ¢ € R, we have

t t s
/ ™ |g(z, s)|3ds < oo,/ / gz, r)2drds < oo, (4.2)

—00

here § = ﬁz?;iz)'
Lemma 4.1 Assume that the conditions (1.2)-(1.5) are satisfied and g(x,t) satisfies
(4.2), u(t) be a weak solution of (1.1). Then there exists T > 0, for anyt —7 > T, we

have the following inequality:

[Vu(®)[3 + [u®)lf < e((t = 7)e D, [[15 + 1

(4.3)
+f e g(z, ) ds—l—f [°. 9D g(z,r)3drds).
Proof Multiplying (1.1) by u(t) and integrating over €2, we obtain
G | vyt + 19 + (0.0 = 9.0
By (1.4), we have
G L B@)de + Va4l = 19 < (0.0 (4.4
Thanks to Poincaré inequality and Young inequality, one gets
A 1 1
(g.0)] < Sl + 5l D < 51Vl + o5 Lot )3
By (4.4), we have
/w )z + 3|Vl £ fulf < 2l + -+ lo(r, O (4.5)
Using Young inequality, we obtain
2 —r—2
e R
Q q q
We find that
Tl 73— 10 <l (1.6



Using (1.3) and (3.1), we get

0< / Y (B(u))dr < /Quﬁ(u)dx < Bolul; 3 + B5[Q.

Hence
¢s N4 / N4 o mala—r—2)
2 gy Jo O e T T ey
Let 0 = g0t ¢ (BZES-%) + M((ZJFZ)Q + 73)|€?], by (4.5), we obtain
/1/} da:—l—c;/w dx<cl+—|g(x t)]3. (4.7)

By the Gronwall lemma, for all ¢ > 7, one deduces

/¢ N))da < e ¢ T)/O,D 7)))dr + — 5 +%e t/ e %% |g(x, s)|ads. (4.8)

—0o0

Multiplying (1.1) by u; and integrating in 2, we get
[ A+ G(vuB+ [ Pl = (gl ), u)
Q Q
where F(u) = [ f(s)ds. By (1.2), we have

(96000 < [ lototyulde < 5 [ Fluudds+ ot 0

Therefore, one has p .
— 3 F(u)dz) < — t)[3. 4.
FIVuli+ [ Plujds) < 5lot. 0 (1.9

It follows from (1.4) that there exist 1,4 > 0,74 > 0 such that
nlslt =75 < F(s) < plsl? + 75 (4.10)
Let p = min{1, 2 o +}. Using (4.5), one has
G v+ o1vul + [ Fujdo) <@ +lo@of). @)
Q
So, by (4.9) and (4.11)

dt /w ))dx) <5e‘5t/1/1 u))dz+ed (— (|Vu|§+/Q F(uw)dz)+co(1+]g(z, 1)[3)).



Using (4.8), one has
Jre(|Vul3 + [, Fu)dz)ds
< es(e fou (Blun))da + [ e fo 0" (Bluls)))dads + e + [ e™|g(w, 5)[3ds)

<e((L+t—7)e [ (Blus))de + e + [Led|g(a, s)[3ds + [ [7e|g(w,r)[3dr).
(4.12)

In fact, by (4.9), we obtain
Gt =) (IVul + [, F(u)dz))
=(1+6(t—7)e"(|Vul3 + [, Fu)dz) + (t — 7)e* L(|Vul3 + [, F(u)dx)  (4.13)

< cs((L+t —7)e®(|Vul3 + [ Fu)dz) + (t — 7)e”[g(z, 1) [3).
For any ¢t — 7 > 1, integrating from 7 to t, we have

IVu(t)] + [, F(u(t))dz
<cs((1+ 2)e [T (|Vu(s) 3 + [, F(u(s))dz)ds + e~ [ e*[g(x, 5)[3ds)
< co((t —71)e ) L (B(uyr))dr + 1

e [Le%|g(x, s)3ds + [ [ e |g(w, 7)|3drds))

(4.14)
< er((t =) u 715+ (t = 1)e T 41
et ([ e g(x, 5)[3ds + [1 [ e |g(x,r)|3drds))
< exl(t = e DNl + (0 — m)e ST 11
"'efét(f_ *lg(x,s |2d8+f [°. e g(z, r)|3drds)).
We find that exists T' > 0, for any ¢ — 7 > max{1, T},
VUl + iy Flu(®)ds < e{(t - 7)1+ 1
(4.15)

+ [ e g(x, ) 2ds + [T [ 0D g(w,r)3drds).
By (4.10), we obtain Lemma 4.1.
Let R be the set of all functions p : R — (0,+00) such thatt liin tedtp T2 (t) = 0,
—+400

denote by D the class of all families D = {D(¢t) : t € R} such that D(t) C B(p(t)) for
some p(t) € R, B(p(t)) the closed ball in L™+2(Q) with radius p(t)). Let

po(t) = [2¢(1 +/ e g(x, 5)|2ds +/ / O g(x 7‘)|2drds)]é (4.16)

—0o0

t



By,(po(t)) denote close ball in L(Q) with radius po(t). Obviousy By(po(t)) be a family
of bounded pullback D-absorbing sets for the process {U(t, 7}+>, generated by (1.1) in
L1(Q).

From (4.3), we also get that there exists a family of bounded pullback D-absorbing
sets in L2(2) and H{ (), therefore, the process generated by (1.1) is pullback w-D-limit
compact in L?(€). By theorem 2.1, we have the following theorem.

Theorem 4.2 Assume that the conditions (1.2)-(1.5) are satisfied, g(x,t) satisfies
(4.2). Then the process U(t,T) generated by (1.1) exists a pullback D-attractor in L*(£2).

In the following, we will give the asymptotic a priori estimate of {U(t, 7}i>, with
respect to L9(€2) norm, which play a crucial role in the proof of the pullback D-attractor
in L1(Q)

Theorem 4.3 Assume that the conditions (1.2)-(1.5) are satisfied, g(x,t) satisfies
(4.2), q > r+2. Then the process U(t, ) generated by (1.1) exists a pullback D-attractor
in LI(Q).

Proof We know from Theorem 4.2 that the process {U(t, 7}+>- is pullback w-D-limit
compact in L?(Q). Next we will prove that the process satisfies (2) of Theorem 2.2.

By (1.3) and (1.5), we find that there exists M; > 0,V|u| > M; such that

Flayu > Dpuft, S up < (5] < 2Bful (4.17)

Let M, = max{l, &|M;["*'}, |u| > M, then |8(u)| > M,. Multiply (1.1) with
[(B(w) = M) [T 2(B(u) = Ma), we get

r+1d

o Jn|(BC) = M)+ fo VN (1(B(u) — Ma).l 1 (8(u) — Ma) )

+ fQ Fu)|(B(u) — M2)+|$_2(B(u) — M,). dx

= Jo9(x,1)[(B(u) — My) |71 72(B(u) — My), da.

(4.18)
Where (5(u) — Ms)+ denote the positive part of (5(u) — Ms), that is

B(u) — My, B(u) > M,
0, ﬁ(U) < MQ.

(B(u) = My), =
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Thus we have

Jo VuV([(8(u) — M) 4 |77 2(B(u) — M), )dx
= fQ(,B(u)ZM) VuV (| (B(u) — M2)|ﬁ_l)d$

(% - 1) fg(ﬁ(u)zM) B (w)|(B(u) — M2)| | VulPda
>0,

fQ M2)+| +1 ( ( )_ M2)+dx
= % Jo [l (B (u) — M), |7 da
> ¢ J 1800 [(Bu) — Ma)y |7 da

g

= ﬁfg\ﬂ (u)| 77 (5(“)—M2)+\$_1dﬂf+ﬁfg\ﬂ(u)\%ﬂfﬁ(u)! | (B(u) — M) [T da

2M2 S Jo | (B(w) = M) |F7d + 2 fg — M) | da

and
| Jo 9@, )| (B(u) = My)|7172(B(u) — My) 4 dx|

< fQ l9(2, 1)]|(B(u) — M2>+rq11?das

fQ — M)+ 2cs fQ |9 x,t)|2dx.
Therefore, one has
d 9
EIQKB( u) — Ma)| de‘i‘CQfQ — Ms) y|=Tdx
(4.19)
< 10 Jogsazam [9(2: ) Pd.
and
d c Mq;lIzt _4q_
%[(t—'r)eg 2 fﬂ|(ﬁ<u>—M2)+|r+ldI‘]
q7T72t qi’r72t
r+1 q =i
< et Jol(B(u) = Ma)y|[rde ot =)™ fo g 19(2 t)|2ElZéO)
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Integrating from 7 to t, we have

< e T (fleoMe T [ |(Bu(s)) — Ma)s |7 dads
qg—r—2
t ¢ T ¢
+cig [ (s —7)eoMe fQ(ﬁ(u(s))ZM2) \g(z, t)|*dzds)
U _coM. T+12(t_3) q t —chq:iIQ(t_S) 2d d
<cn fT € |u(s)|qd8 + fT € 2 fQ(ﬁ(u(s))2M2) |g(x,t)| T 3)
(4.21)
Using (4.3), we obtain
Jo [(B(w) — My) |71 da
o—8(t=7) . o—dt t s
< 612[ q—r—2 |uT|ri§ + q—v"l—2 + q—r—2 ffoo 66 |g<x7 S) %dS (422)
(oM, "1 —5)(t— T) coM, "Tt (t—1)  coM, "T!
o=
2 tr 7 f [° e lg(x,r)|3drds).

C9M2

Obviously, for any € > 0, p > r + 2, there exist M > 0, g < t, for any My > M, 7 < 79,

JACTE

/ ((Blu]) — M).)Hide < e. (4.24)
Q(B(u)>M)

we have
M), |7 ide < e. (4.23)

Hence

Repeat the same step above, mulitplying (1.1) with [(3(w) + Ms)_ |71 2(8(u) + Ms)_,
we get

(\B(U(t))! — M)™ide <, (4.25)

u +M27 ﬁ(u) S _M27

Combining (4.24) and 4 25), we have

fQ(\B(u)\zm\/f) |B<U(t))|ﬂ?dx
= fQ(\ﬂ(U)\zzM)(W(U(tm — M + M)ﬁdx
< e13(Jagaqz2mn (18] = M)™Tdr + Jegsuiz2mn M1 dx)
< ei3(Joaayzan 1B ®)] — M)1dz + Jasyzan (18u@)] — M) dz)

where (8(u) + Ms) -

< cu4€.
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Thanks to (4.17), we conclude

/ |u(t)|%dx < c5e.
Q(fu(t)[=M)

Hence, the (2) of Theorem 2.2 is satisfied, which say that the process is pullback
w-D-limit compact in L?((2).

For p = r + 2, the constant M, ™" = 1, the above prove can not obtain the right

hand side of (4.22) tend to 0. For our purpose, we add another condition,
Ve > 0,36 > 0,Ve C Q,me < 9,Vt € R,/|g(x,t)|2d:r < €. (4.26)

Using (4.13) and (4.17), we get

PO m(@(8(w)] > Ma)) < / 1B de < too.

2 2(|6(u) |2 12)
We find that there exists M > 0, for any My > M, m(Q(|B(u)| > Ms)) < ¢, using (4.19)

and the previous proof method, we also get

/ |u(t)|%dx < cyge,
Qfu(t)|=M)

which say that the process is pullback w-D-limit compact in L?(2), so we have the
following theorem.

Theorem 4.4 Assume that the conditions (1.2)-(1.5) are satisfied, g(x,t) satisfy (4.2)
and (4.26), ¢ = r + 2. Then the process U(t,T) generated by (1.1) exists a pullback D-
attractor in L($2).
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