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Abstract

This paper proposes a joint optimization method for the imaging algorithm and sampling scheme of sparse spotlight syhthetic

aperture radar (SAR) imaging based on deep convolutional neural networks. Traditional compressed sensing (CS) based sparse

SAR imaging has been widely studied. Deep learning and sparse unfolding networks have been introduced into sparse SAR

imaging, but most current works focus only on the imaging stage and simply adopt the conventional uniform or random down-

sampling scheme. Considering that the imaging quality also depends on the sampling pattern besides the imaging algorithm,

this paper introduces a learning-based strategy to jointly optimize the sampling scheme and the imaging network parameters

of the reconstruction module. In a deep learning-based image reconstruction scheme, joint and continuous optimization of the

sampling patterns and convolutional neural network parameters is achieved to improve the image quality. Simulation results

based on real SAR image dataset illustrate the effectiveness and superiority of the proposed framework.
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Data-driven sampling pattern design for
sparse spotlight SAR imaging

Yao Zhao, Wenkun Huang, Xiangyin Quan, Wing-Kuen Ling
and Zhe Zhang �

This paper proposes a joint optimization method for the imaging
algorithm and sampling scheme of sparse spotlight syhthetic aperture
radar (SAR) imaging based on deep convolutional neural networks.
Traditional compressed sensing (CS) based sparse SAR imaging has
been widely studied. Deep learning and sparse unfolding networks have
been introduced into sparse SAR imaging, but most current works focus
only on the imaging stage and simply adopt the conventional uniform or
random down-sampling scheme. Considering that the imaging quality
also depends on the sampling pattern besides the imaging algorithm,
this paper introduces a learning-based strategy to jointly optimize
the sampling scheme and the imaging network parameters of the
reconstruction module. In a deep learning-based image reconstruction
scheme, joint and continuous optimization of the sampling patterns
and convolutional neural network parameters is achieved to improve
the image quality. Simulation results based on real SAR image dataset
illustrate the effectiveness and superiority of the proposed framework.

Introduction: As an important microwave imaging technique, synthetic
aperture radar (SAR) has been widely known for its all-time, all-weather
and high-resolution abilities, and has been widely used in remote sensing
applications [1]. As a research focus, sparse signal processing techniques
were introduced into SAR imaging since 2007 [2]. It has been shown
that if the scene is sparse and the system satisfies certain constraints,
the observation scene can be reconstructed with high resolution using
regularization techniques, and the observation matrix of SAR systems
used in the sparse recovery is constructed from the transmitted signal
and the geometric relationship between the radar and the target scene.
However, the empirically-chosen parameters used in canonical sparse
SAR imaging methods in terms of sampling scheme, threshold and
iteration stepsize and iteration times limit the imaging performance. In
real applications, optimizing such parameters used to be difficult and
time-consuming.

In recent years, deep network based methods have been applied to
the sparse SAR imaging [3–7] tackling the reconstruction parameters
including the iteration stepsize, threshold, etc for an accelerated
computation. For example, Yonel et al [3] proposed a structure-specific
passive SAR imaging network based on an iterative soft thresholding
algorithm (ISTA). Reference [6] proposed two parametric methods
for SAR super-resolution imaging based on ADMM and deep neural
network. Reference [7] established a target-oriented SAR imaging
method via Deep MF-ADMM-Net, which improved the signal-to-clutter
ratio (SCR) of the reconstructed image. Researches show that the deep
network-based approaches can reconstruct the SAR images effectively
with optimized parameters learned from data. However, the above
mentioned deep network based approaches does not deal with the
sampling parameters, specifically, sampling schemes in the sparse SAR
imaging.

In this letter, we treat the sparse spotlight SAR image recovery as
an optimization problem using a deep learning prior regularization with
the sampling scheme as a parameter that can be learned from data.
The proposed deep network is superior to existing deep learning based
sparse SAR imaging works which are simply uniformly or randomly
downsampled for a sparse reconstruction. Furthermore, the presented
method enables a smaller convolutional neural network architecture,
making it possible to work with limited dataset size, which is usually
critical in SAR imaging context.

Existing works on deep network based sparse SAR imaging usually
directly inherit the canonical uniform or random down-sampling
schemes. Due to the fact that the imaging quality of sparse SAR
depends largely on its sampling scheme, this paper adopts a joint
optimization on the sampling and imaging method. Such approach has
been already applied in MRI and other fields [8]. Classical sparse
SAR imaging inherits a uniform downsampling scheme, but uniform
downsampling will markedly increase the ambiguity effect cased by the
spectrum aliasing. State-of-the-art sparse SAR imaging methods mostly
use random downsampling in order to reduce ambiguity [9]. However,
random downsampling is usually not optimal, either.

In order to achieve the optimal sampling scheme, a straightforward
approach is to optimize the discrete sampling locations under
some specific reconstruction algorithms. This optimization problem’s
searching space tends to be very large and its computational complexity
is usually very high. Unlike the above strategies, our work transform
the discrete sampling locations into a continuous domain to reduce
the searching space. Our approach also decouples the two-dimensional
sampling along azimuth and range directions to two separate one-
dimensional samplings, which markedly reduce the computational
complexity.

SAR Imaging Model: Take the spotlight SAR system as an example, the
echo of the observation scene Ω is

ω(K, θ) =

∫∫
(x,y)∈Ω

r(x, y) exp {−j2K (x cos θ + y sin θ)} dxdy. (1)

where ω(K, θ) is the SAR echo data; r(x, y) is the reflectivity function
of the observation scene at location (x, y); x and y refer to the position
of the range and the azimuth directions on the imaging scene; K is the
wave number; and θ is the azimuth angle.

According to the projection-slice theorem, Eq. (1) can be considered
as a two-dimensional Fourier transform of the scattering function. When
the scene is discretized into cells in both directions and stacking the
backscattering coefficients into a vector, we achieve the sparse SAR
imaging model in a matrix-form

ω=AΘ(r) + n, (2)

where ω is the measured ehco data vector; r is the is the vector of
the lexicographically ordered sparse discretised spatial scattering image
of the observation area Ω; AΘ is the compressive sensing-based SAR
measurement matrix; and n is the additive noise vector of the radar
system. The Θ represents the sample location when downsampling is
exploited.

The 2D FFT method is very straight forward in spotlight SAR
imaging, so AΘ can be seen as the operator of 2D Fourier transform
computed at the sampling locations Θ. Given Fourier data lying on a polar
grid, two-dimensional interpolation techniques are used to derive values
on a Cartesian grid. Once data are available on a Cartesian grid, the data
are windowed and a 2D IFFT is performed to obtain spatial domain data,
also on a Cartesian grid. Several techniques exist to accomplish polar-to-
Cartesian reformatting [10].

Proposed Method: In this paper, we adopt a joint optimized sampling
scheme and reconstruction algorithm to achieve a strong coupling
between the reconstruction algorithm and the specific sampling pattern.
These schemes pose the reconstruction as an optimization problem of the
form

r̂{Θ,Φ}= arg min
r
‖ω −AΘ(r)‖22 +RΦ(r). (3)

Here RΦ(r) is a regularization penalty, and canonical regularization
based algorithms are widely used for the recovery of images from heavily
downsampled measurements.

Deep learning-based regularized image reconstruction: Tackling
the model (2), we treat the image reconstruction as a regularization
optimization scheme and use a deep learning approach instead of
the traditional fixed prior regularization to learn parameters from data
samples with optimization sampling scheme as

r̂{Θ,Φ}= arg min
r
‖ω −AΘ(r)‖22 + λ ‖CΦ(r)‖2F , (4)

where CΦ(r) is a convolutional neuron network (CNN) used to extract
the “non-ideal” components from the reconstructed SAR image. In the
context of sparse SAR imaging, the “non-ideal” components usually refer
to the deviation from an ideal and clean sparse SAR image , commonly
consists of noise, downsampled ambiguities and other perturbations
that can be suppressed by canonical shrinkage operations in traditional
sparse SAR imaging. CΦ(r) depends on the learned parameters Φ which
represents the features of non-ideal components. It can be expressed as

CΦ(r) = (I −DΦ)(r) = r −DΦ(r), (5)

where DΦ is a network to remove the non-ideal components from
the image. That is, if r is contaminated with non-ideal components,
the ‖CΦ(r)‖2F tends to be large hence yields a solution with minimal
non-ideal components. λ here is a trainable regularization parameter

ELECTRONICS LETTERS Vol. 00 No. 00



to balance the fidelity term ‖ω −AΘ(r)‖22 and the regularization term
‖CΦ(r)‖2F .

The above optimization problem can be solved using an iterative
algorithm that alternates between a data consistency step and a denoising
step.

rn+1 = (AH
ΘAΘ + I)

−1
(zn +AH

Θω), (6)

zn+1 =DΦ(rn+1). (7)

The algorithm is initialized with z0 = 0. The proposed method is shown
in Figure 1. Unfolding the canonical iterative Eqs. (6-7), we obtain a deep
recursive network MΘ,Φ.

The framework alternates between a data consistency block QΘ and a
denoising blockDΦ. The data consistency blockQΘ works as the fidelity
term in (4) as defined in Eq. (6). It depends only on the sampling pattern.
The denoising blockDΦ works as the regularization term in (4) to remove
the non-ideal components, which is a convolutional neural network.

When zn is initialized, QΘ inverts the measured Fourier samples. In
this paper, QΘ is implemented by the conjugate gradient algorithm. QΘ

and weights of the CNN blockDΦ keep invariant during the iteration and
are shared by each unfolded layer.

Therefore, the solution to above optimization problem can be given by

r̂{Θ,Φ}=MΘ,Φ(AΘ(r)), (8)

where MΘ,Φ(AΘ(r)) is our proposed unfolded deep recursive network.

Fig. 1. Optimize network architecture for both sampling and reconstruction

Joint optimization strategy of reconstruction scheme and
sampling model: In this paper, we propose a CNN-based framework to
jointly optimize the denoising block DΦ and the data consistency block
QΘ. Specifically, the following optimization form is used to jointly learn
the sampling pattern Θ and the CNN parameters Φ from the training data.

{Θ∗,Φ∗}= arg min
Θ,Φ

N∑
i=1

∥∥MΘ,Φ(AΘ(ri))− ri
∥∥2

2
, (9)

where ri, i= 1, ..., N are different training images.
Modeling and parameterization of sampling methods: To reduce

the trainable parameter size, the two-dimensional sampling locations
that need to be trained can be replaced by a combination of
two one-dimensional sampling locations. Our approach of reducing
dimensionality of the search space by parameterizing the sampling
pattern is shown in Figure 2. Specifically, the following forms of
sampling patterns are considered.

Θ = Θa

⋂
Θr, (10)

where Θa and Θr are the one-dimensional sampling locations along the
azimuth and range directions, respectively. It is assumed here that the
readout direction is orthogonal to achieve a full sampling.

It can be seen that the positions kxi ; i= 1, ..., r and kyi ; i= 1, ..., a

are the unknown parameters to be trained, and this method can reduce
the number of trainable parameters from a× r to r + a , which greatly
improves the efficiency of parameter training.

Besides the benefit of reducing the parameter space size, the above
approach also simplifies the implementation of the sampling model.

Ignore the noise n, the forward model in equation (2) can be transformed
according to the Fourier transform as

ω=ArRA
H
a , (11)

whereR is a two-dimensional image andAr andAa are one-dimensional
Fourier transform operators as shown in Figure 2. Sampling operator
AΘr requires mr samples in the range direction and AΘa requires ma

samples in the azimuth direction, resulting in a total of M =mr ×ma

samples from N = P ×Q scene cells with a downsampling rate M/N .
Here, M is the number of samples collected by the radar system, N is
the total number of pixels in the reconstructed SAR image, and P,Q are
the number of pixels along the range and azimuth direction of the SAR
image, respectively.

Fig. 2. Diagram of sampling parameterization

It is worth noting that the Fourier transform is computed at the
continuous sampling locations ki and supported by Θ. The Θ and Φ

are trained via alternative stochastic gradient descent. In each training
iteration, the Φ is firstly fixed and Θ is updated, and then Φ is updated
with a fixed Θ. The proposed approach can also improve the efficiency
of training iterations by eliminating the need for a non-uniform Fourier
transform operator (NUFT).

Experiments and analysis of results: To demonstrate the effectiveness
and superiority of the proposed method, we used the MSTAR spotlight
SAR dataset [11] to conduct the experiment from a simulated dataset.

The experiments in this paper exploits the deep network shown in
Figure 1 with K = 5, where K is the number of network layers in
Fig. 1. The forward operator AΘ is implemented by one-dimensional
discrete Fourier transform that maps spatial locations to continuous-
domain Fourier samples specified by Θ as described in Figure 2. The
data consistency block QΘ is implemented using the conjugate gradient
algorithm with 10 iterations. The CNN block DΦ is implemented via a
UNET with 4 pooling and non-pooling layers and 3× 3 trainable filters.
The parameters of blocks QΘ and DΦ are then optimized to minimize
(9). Since SAR images are complex-valued, all networks are trained
using frequency domain complex-valued as input, and training losses are
computed on the complex images.

In the experiment, three types of targets (BMP-2, BTR-70 and T-72)
are used, where the data with 17◦ dep. angle are used for training and
the data with 15◦ dep. angle are used for testing. The following is a
comparison of the reconstruction results of the proposed method, method
described by reference [3] with uniform and random sampling method,
and ISTA with uniform and random sampling method under the same
experiment setting.

Table 1: Comparison of the PSNR of different sampling schemes
down-sampling

ratio PSNR(dB)

uniform
sampling
(ISTA)

random
sampling
(ISTA)

uniform
sampling

(method in reference [3])

random
sampling

(method in reference [3])

proposed
method

75% 37.60 37.72 42.77 43.89 55.11
50% 36.71 37.36 38.70 38.36 51.09
25% 24.15 33.60 27.03 35.16 43.09

12.5% 22.99 26.82 26.32 33.36 38.29
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(a) (b) (c)

Fig. 3 Example of sampling schemes. (a)Uniform Sampling, (b)Random
Sampling and (c)Proposed Method.

Table 2: Comparison of the SSIM of different sampling schemes
down-sampling

ratio SSIM

uniform
sampling
(ISTA)

random
sampling
(ISTA)

uniform
sampling

(method in reference [3])

random
sampling

(method in reference [3])

proposed
method

75% 70.08% 70.97% 87.83% 89.39% 99.72%
50% 69.25% 69.47% 76.54% 78.25% 99.53%
25% 48.85% 59.96% 63.00% 71.18% 98.16%

12.5% 26.28% 30.75% 58.03% 70.82% 94.04%

From the experimental results in Table 1 and Table 2, it can be seen
that the proposed spotlight SAR imaging method, with jointly optimizing
on sampling and reconstruction, maintains high reconstruction accuracy
at down-sampling ratios of 75%, 50%, 25% and 12.5%. The peak signal-
to-noise ratio(PSNR) of the reconstructed images are all above 38dB,
and the structural similarities(SSIM) are all above 94% for our proposed
method. The reconstruction accuracy of the method in reference [3] is
better than that of ISTA for both uniform sampling and random sampling,
but worse than that of the method proposed in this paper. Further more,
when uniform sampling is used, although the reconstruction accuracy
of both the method in reference [3] and ISTA is better at down-
sampling ratio 75% and 50%, it is relatively poor at down-sampling ratio
below 50%, which shows that when the sampling rates decrease, the
reconstruction performance of uniform sampling also decreases.

The sampling patterns of the proposed method, random sampling
method and uniform sampling method are shown in Figure 3. It can be
seen that the proposed method samples more densely at low frequencies
and more sparsely at high frequencies, which is consistent with the
characteristics of the images used in the experiments. The imaging
example is shown in Figure 4, it can be seen that the proposed method
in this paper retains more details of the targets in the picture compared
with reference [3] and ISTA. And when uniform sampling is utilized,
the reconstructed images of both methods of reference [3] and ISTA are
visually worse.

(a) (b) (c)

(d) (e) (f)

Fig. 4 Example of imaging results and PSNR (down-sampling ratio:25%).
(a)Original Image, (b)Uniform Sampling (ISTA) : 24.75dB, (c)Uniform
Sampling (Method in Reference [3]) : 26.51dB, (d)Random Sampling (ISTA)
: 34.67dB, (e)Random Sampling (Method in Reference [3]) : 37.05dB and
(f)Proposed Method : 44.27dB.

Conclusion: Towards the problems of high computational cost and non-
optimized sampling schemes of traditional sparse SAR imaging, this
letter proposes a joint optimization method of continuous sampling
positions and reconstruction based on deep convolutional neural network.
Unlike existing works, we adopt the Fourier operators with continuously
defined sampling locations which do not require any approximations to
ensure the optimization of the sampling patterns. Experiments based on
small data sets in this paper demonstrate the benefits of the proposed joint
optimization strategy. Usage of parametric sampling patterns with fewer
parameters improves the convergence of the network in the presence
of limited size of dataset. Experimental results show that the proposed
method has significant advantages in the reconstruction performance.
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