Supporting Information for “Hierarchical planning with deep
reinforcement learning for three-dimensional navigation of
microrobots in blood vessels”

Yuguang Yang!, Michael A. Bevan', and Bo Li!

L Affiliation not available

July 31, 2022

Abstract

This supporting information includes supplemental figures, movies, additional results, and the key steps in the neural network
training algorithm.

Corresponding author Email: yyang60@jhu.edu (Y.Y.)  libome@tsinghua.edu (B.L.)

1 List of Supplemental Figures

e Fig. S1. The Actor-Critic architecture used to learn optimal control policies for the microrobot.

e Fig. S2. The approximate RBC shape we used to facilitate a fast collision check in the simulation.

e Fig. S3. Scheme of training and evaluation workflow. Efficient training is achieved by selecting
increasingly challenging tasks as motivated by curriculum learning.

e Fig. S4. Navigation and localization trajectories of microrobots in free space with different propulsion
rotation ratios.

e Fig. S5. Navigation and localization trajectories of microrobots in free space with different external
flow fields.

e Fig. S6. Navigation of microrobots in blood vessels with different external flow fields.

2 Supplemental Movies

e Movie S1. Navigation and localization of microrobots in free space with different external flow fields.

e Movie S2. Navigation of microrobots in blood vessels with different vessel diameter D and RBC volume
fraction f. Specifically, from left to right, D = 12um, f ~ 10%; D = 25um, f~10%; D = 50um, f 5%;
D = 50um, f~10%.

e Movie S3. Navigation of microrobots in curved blood vessels with varying cross-section diameter.

e Movie S4. Exhaustive spatial survey in a blood vessel. From left to right, the blood vessel has zero
RBCs, 5% RBCs, and "10% RBCs.


mailto:yyang60@jhu.edu
mailto:libome@tsinghua.edu

3 Supplemental Methods and Results

3.1 Actor-Critic deep convolution neural network architecture

3.1.1 Actor network

There are two inputs to the Actor network [Fig. S1]. The first input is the pixel-level binary sensory input of
30 x 30 x 30 cubic neighborhood centering on the microrobot and aligned with its self-propulsion direction p.
The second input is a six-dimensional vector as the concatenation of the target position in the microrobot’s
local coordinate frame and the self-propulsion direction p. The neighborhood sensory input first enters a
3D convolutional layer (LeCun et al., 1989, 2015; Maturana and Scherer, 2015) consisting of 32 filters with
kernel size 2 x 2 x 2, stride 1, and padding of 1, following a batch normalization layer (Loffe and Szegedy,
2015), a rectifier nonlinearity (Nair and Hinton, 2010) (i.e., max(0, x)) and a 2 x 2 x 2 maximum pooling
layer. The output then enters a second convolutional layer consisting of 64 filters and the same kernel, stride
and padding as the previous layer, followed similarly by a batch normalization layer, a rectifier nonlinearly,
and a maximum pooling layer. The local target coordinate first enters a fully connected layer consisting
of 32 units, followed by rectifier nonlinearity. Then the output from the target coordinate input and the
sensory input will merge and enter a fully connected layer of 64 units followed by rectifier nonlinearity. The
output layer is a fully-connected linear layer with two outputs associated with the choice of w; and wy. The
tanh nonlinearity is applied to constrain the two outputs.

3.1.2 Critic network

There are three inputs to the critic network [Fig. S1]. The first is the binary cubic image of the neighborhood
same as that in the Actor network. The neighborhood sensory input first enters a convolutional layer
consisting of 32 filters with kernel size 2 x 2 x 2, stride 1, and padding of 1, following a batch normalization
layer, a rectifier nonlinearity (i.e., max(0, x)) and a 2 X 2 x 2 maximum pooling layer. The output then
enters a second convolutional layer consisting of 64 filters and the same kernel, stride, and padding as the
previous layer, followed similarly by a batch normalization layer, a rectifier nonlinearly, and a maximum
pooling layer. The local proxy target and the self-propulsion director p will first concatenate with the action
output from the Actor network. The 8-dimensional concatenated vector then will enter a fully connected
layer consisting of 32 units followed by rectifier nonlinearity. Then the output from the target coordinate
input and the sensory input will merge and enter a fully connected layer of 64 units followed by rectifier
nonlinearity. The output layer is a fully-connected linear layer with one output as the ) value given input
of observation and action.

3.2 RBC approximation and collision dynamics

During the simulation process, we need to perform a collision check and compute sensory input on the fly.
In every integration time step, we evolve the microrobot state (r(t), p(¢))using the equation of motion [Eq.
(1) in the main text] for an integration time step of Dt. Then we perform a collision check between the
new position of microrobot r(t + At) and an approximate RBC shape [Fig. S2]. If the new position of
microrobot r(t + At) collides with an RBC, we set its position back to the previous one r(t). However,
we still need to update its orientation. This approximation is reasonable because the robot-RBC collision
is not the dominant factor that affects the navigation process. In the new position, we construct the 3D
binary sensory matrix, if the pixel center is inside an approximate RBC, that pixel will take values 1 and 0
otherwise.

3.3 Training algorithms and procedures

The algorithm we used to train the agent is the deep deterministic policy gradient algorithm (Lillicrap et al.,
2015) plus the hindsight experience replay data augmentation (Andrychowicz et al., 2017) and scheduled



multi-stage learning following the idea of curriculum learning (Florensa et al., 2017). The whole training
and evaluation pipeline is depicted in Fig. S3. At the beginning of each episode, the initial robot state
and the target position are randomly generated in such a way that their distance gradually increases from a
small value. More formally, let D(k)denote the maximum distance between the generated initial microrobot
position and the target position at training episode k, which is given by

D(k) = Sim x (Te + (Te — Ts) exp(—k/Ta)

where S, is the maximum of width and height of the training environment (at free space we set S, =
20a=), Ty is the initial threshold, T, is the final threshold, and Ty is the threshold decay parameter. Then
during the training process, the neural network gradually learns control strategies of increasing difficulties
(in terms of initial distance to the target).

To alleviate the exploration-exploitation dilemma, during the training process, we added noises to the actions
from Actor network to enhance the exploration in the state and policy space. The noise is sampled from an
Ornstein—Uhlenbeck (OU) process (on each dimension) given by

dn = —a(m — n)dt + coudB;

where « is the reversion parameter, m is the mean level parameter, ooy is the volatility parameter, and By
is the standard Brownian motion process.

In the @ function formulation, we set the discount factor v to 0.99 to encourage the microrobot to seek
rewards in the long run and R is the instant reward function, where R is set equal to 1 for all states that
are within a threshold distance 1 to the target, and 0 otherwise.

The blood environments used for training include

Cylindrical blood vessel (Radius 50, Height = 100), RBC volume fraction 5%;
Cylindrical blood vessel (Radius 50, Height = 100), RBC volume fraction 10%;
Cylindrical blood vessel (Radius 25, Height = 100), RBC volume fraction 10%;
Cylindrical blood vessel (Radius 12, Height = 100), RBC volume fraction 10%;
Cylindrical blood vessel (Radius 50, Height = 100), no RBC.

There are two loss functions we used to train the Actor network and the Critic network, respectively.
By minimizing the loss function associated with the Critic network, the Critic network is optimized to
approximate the optimal @ function; By minimizing the loss function associated with the Actor network,
the Actor network optimizes the approximated w. The complete algorithm is given below.

Algorithm: deep deterministic policy gradient with hindsight experience replay
Initialize replay memory M to capacity Nz
Initialize Actor network p with random weight #* and critic network @ with random weights %
Initialize target Actor network p/ and critic network Q' with random weights 6" and 69’
For episode 1, ..., NE do

Initialize particle state sO and target position

Obtain initial observation ¢(s1)

For n =1, ..., maxStep do

Select an action a,, from Actor network plus an additional perturbation sample from an OU process.

Execute action a,, using simulation and observe new state s,1 and reward r(s;,41)



Generate observation state ¢(s,+1) at state s,41

Store transition (¢(sn), an, 7(Sn+1), (Sn+1) in replay memory M

Store extra hindsight experience in M every H step

Sample random mini-batch transitions (¢(s;),a;,r(sj41), #(sj+1)) of size B from M

Set target value y;: If sjijarrives at the target, y;, = r(s;); else y; = r(s;) +

YQ' (P(5541,arg max, (¢(s;41),v)

Perform a gradient descent step on (y; — Q(¢(s;)), a;)?*to update the critic network parameters 6%

Update the actor network using the sampled policy gradient:

Voud = % > VaQ(s,a | 6?)

Update the target networks:

End For
End For

Training Parameters

Training episode, Ny = ~80000
Minibatch size, B=64

Replay memory size, N»;=500000
Target network update frequency C'=100
Discount factor v=0.99

Learning rate a=0.00001

Soft update parameter 5=0.01

OU process m, s,a=0,0.5,0.15

Target generation T, 1., T3=0.3,1,10000
Max step in an episode, maxStep=100

Sensor window size W =11, pixel resolution U=2.5

‘sfsi,afp‘(si)VQ”M<s ‘ 9#) |Si

09" = BO% + (1 — B)9Y
o = Bor + (1 — B)or

3.4 Simulation setup and performance evaluation

3.4.1 Sensory input construction

The local neighborhood sensory input is obtained by first constructing a cube of width W = 11 centering on
the microrobot and aligned with its orientation and then extracting a W x W x W binary 3D image with a
pixel resolution of U = 2a (1 when there is an overlap with an RBC and 0 otherwise). Target positions are
represented in local coordinate system of the motor. RBC is modeled by biconcave shape (Das et al., 2019)
with random position and orientation. The RBCs generated in the simulation have diameters randomly
sampled between 6um and 8um. We employed an approximate RBC shape to enable fast computation of

sensory input and collision dynamics.



3.4.2 Local sensor design consideration

Both Actor and Critic neural networks employ 3D convolution neural layers to process local sensory infor-
mation, represented by a W x W x W binary 3D image (W = 11) with a pixel resolution of U = 2a.

The designed sensor for the local neighborhood has the following considerations. A large vision field allows
the microrobot to detect obstacles early and take paths that avoid clashing with obstacles. A large vision
field also captures the rich configuration that allows the learning of better and more robust navigation
strategies. However, a significant large vision field contains information not essential for local path planning,
which increases the learning computational cost and sensor hardware design difficulties. In terms of sensor
resolution, high resolution will increase the computation cost while low resolution may disable robots to
detect small trapping features of an RBC.

1.1.3 Curved vessel geometry

The central axis of the curved vessel is characterized by a 3D parameteric curve function (z., Y., 2.) given
by ,where L controls the length of the vessel (e.g., L = 500a). The section radius R, of the vessel is varying
around the axis line, which is given by ,where R,,4 controls its average radius. We have considered two cases
in Fig. 4 (H) and (I) in main text, where we use the same k; = 0.05a71, ko = 0.02a71, Ry = 10a, Ravg =
25a, L = 500a, but with R; = 5a for (H) and Ry = 15afor (I).

3.5 Control policy mapping under perturbations

By exploiting symmetry existing in the system, we can reuse the control policy p obtained at one set of
hyperparameters (v}, vy,,,) to another hyperparameter setting (vsp, Umas) and save the re-training cost. We
can write the control policy 7(r,r, p, #(s); Vsp, Vmaz)as a function of observational variables r’,r, p, ¢(s),
which characterize the system state and the hyperparameters vsp and wp,q., Which specify the physical

parameters of the microrobot.

Now we discuss two scenarios where we can reuse a control policy p obtained at one set of hyperparameters
(Vip» Vmaz)-  Since the microrobot is constantly propelling and the rotation decision w ultimately affect
the trajectory’s minimum radius of curvature vsp/vmaz, without loss of generality, we consider the policy
mapping when Ry, # RZ,, where R}, = vip/w},,,. As the rotational decision on w aims to proactively
adjust directions, a mimicking strategy is that a microrobot with hyperparameter R,,, mimics the trajectory
of the baseline microrobot with hyperparameter R}, as much as feasible, until the rotation reaches its
limitation wy,q,. The policy mapping in terms of magnitude of (wq,ws) under hyperparameter R can be

expressed as

w (R,
w; = min (wmax(*W)USP) yi=1,2,
Usp
where w;(R},,) is the magnitude of in-plane rotation (¢ = 1) and out-of-plane rotation (¢ = 2) from control

policy learned under hyperparameter R}, .

Now consider there is an ambient flow field (or any other external force causing a constant drift of microrobot),
whose velocity is characterized by vy, that modifies the velocity of the microrobot. The deterministic
velocity of the microrobot now is the sum of original propulsion velocity vgp X p and the dirft velocity
vy. Equivalently, we can define a modified propulsion direction py and the corresponding modified self-
propulsion speed vgp, s via

VSP,t
USP, f

)

Vsps = Usp - P + Vi, Usp,f = ||Vsp||, ps =



We can treat a microrobot under external flow field as if a microrobot without external flow field but with
a modified hyperparameter (vgp,f, Wmaz). Accordingly, the new control policy with flow field is now given
by m(rt,r, p, #(5); Vsp £, Umaz ), Where we can employ Eq. to reuse the policy.

3.6 Estimate shortest path distance

We estimate the shortest path distance between arbitrary two points in the blood environment [Fig. 6 in
main text] using an approximate graph algorithm. We first created a set of 3D lattice points, with a step
size of a in z, y, and z directions, respectively, to span the space of the test environments. We then remove
lattice points that are outside the vessel or are overlapping with RBCs (we assume lattice point has a radius
of a, same size as the microrobot). We then construct a weighted K-nearest neighbor graph (K=26), where
each lattice point is a graph node, nodes are connected by edges if they are within the 26 nearest neighbors,
and the edge weight is the distance between the connected nodes. Given a start point and a target, we
associate them with the nearest lattice points in the graph and then use the Dijkstra algorithm to compute
their shortest distance in the graph. The computed shortest path distance in the graph is used as the
approximate the shortest path distance between the query points.

3.7 Additional results

3.7.1 Free space navigation under different hyperparameters

In Fig. S4, we tested the policy mapping formula [Eq. (S3)] under different hyperparameter settings.
The neural network is trained under one hyperparameter setting R}, = 1). The mapped policies are still
effective under other hyperparameters R, = 2 and R, = 4. Note that here we only need to consider the
case Ry, > RY,, since Eq. (3) says that rotational decisions remain unchanged when R,,, < R}, .

vw?

3.7.2 Free space navigation under flow fields

In Fig. S5, we tested the policy mapping formula [Eq. (S3) and (S4)] under different hyperparameter
settings. The neural network is trained under one hyperparameter setting (R, = 1) and no external flow
field. The mapped policies are still effective under external flow fields vy = 0.5vgp and vy = 0.8vgp.

3.7.3 Blood vessel navigation under flow fields

In Fig. S6, we tested the policy mapping formula [Eq. (S3) and (S4)] under the external flow field when a
microrobot is navigating inside a blood vessel with RBCs. When external flow fields are small (v; < 0.5vgp)
and RBCs are dilute (e.g., 5% ), the mapping formula can enable the microrobot to achieve targets without
getting frequent traps. When external flow fields are large, microrobots can get trapped easily. This is
because the existence of RBCs breaks space symmetry and therefore the correct policy in a crowded RBC
environment is beyond the simple formula in Eq. (S3) and (S4).



‘ Actor network = \

s —|—

|
|
|
|
|
|
|
|
|
|

Action a "6)

\
Sensory input

Target rt
¢(s)

0 (rt,s,a) —||—

target position & robot state

— Q"
(s) o . —

3D Convolutional Fully connected

Figure 1: Fig. S1. The Actor-Critic architecture used to learn optimal control policies for the microrobot.

A B
Figure 2: Fig. S2. (A) Biconcave shape of RBC. (B) To enable fast collision check in the simulation, we
approximate a biconcave shaped RBC by a geometric shape whose cross-section is the two trapezoids glued

together by their top. The approximate shape has the same diameter and the same thickness on both the
thickest and thinnest part .



Data -
L Data Training
generation: transformation (stochastic Model
exploration& & radient Final model evaluation &
exploitation in . g analysis
tasks augmentation escent)

[ Select more challenging tasks ]

Figure 3: Fig. S3. Scheme of training and evaluation workflow. Efficient training is achieved by selecting
increasingly challenging tasks as motivated by curriculum learning.

Figure 4: Fig. S4. Navigation and localization trajectories (200 control steps or 20 t) of microrobots with
different propulsion rotation ratio Ry, = vsp/Umas With Ry =1 (A, D, G), Ry, = 2 (B, E, H), and
Ry =4 (C, F, I). The targets are arranged like Fig. 3 in the main text. (A-C) Representative trajectories
of robots navigating to different targets. (D-F) Representative trajectories of the microrobot around the
target located at (-30, -30, -30); (G-I) The distance vs. time between the microrobot and the target located
at (-30, -30, -30).



0 10 20 30 40 50 0 5 10 15 20 0 10 20 30 40 50
t t t

Figure 5: Fig. S5. Navigation and localization trajectories (500 control steps or 50 t) of microrobots under
different external flow fields with vy =0 (A, D, G), vy = 0.5vgp (B, E, H), and vy = 0.8vgp (C, F, I). The
targets are arranged like Fig. 3 in the main text. (A-C) Representative trajectories of robots navigating to
different targets. (D—F) Representative trajectories of the microrobot around the target located at (-30, -30,
-30); (G-I) the distance vs. time between the microrobot and the target located at (-30, -30, -30).



trapped

Figure 6: Fig. S6. Navigation trajectories of microrobots in a blood vessel with external flow field. At
vy = 0.8vgp, microrobots frequently get trapped.

10



Supplementary Movie S1

Figure 7: Movie S1. Navigation and localization of microrobots in free space with different external flow
fields.

Supplementary Movie S2

Figure 8: Movie S2. Navigation of microrobots in blood vessels with different vessel diameter D and RBC
volume fraction f. Specifically, from left to right, D = 12um, f ~ 10%; D = 25um, f~10%; D = 50um,
f75%; D = 50um, f~10%.

Supplementary Movie S3

Figure 9: Movie S3. Navigation of microrobots in curved blood vessels with varying cross-section diameter.

Supplementary Movie S4

Figure 10: Movie S4. Exhaustive spatial survey in a blood vessel. From left to right, the blood vessel has
zero RBCs, 5% RBCs, and "10% RBCs.

References

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob McGrew,
Josh Tobin, OpenAl Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. In Proceedings
of the Advances in Neural Information Processing Systems, 2017.

Sudip Das, Shivraj D Deshmukh, and Rochish M Thaokar. Deformation of a biconcave-discoid capsule in
extensional flow and electric field. Journal of Fluid Mechanics, 860:115-144, 2019.

Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Reverse curriculum
generation for reinforcement learning. In Conference on Robot Learning, pages 482-495. PMLR, 2017.

Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson, Richard Howard, Wayne Hubbard, and
Lawrence Jackel. Handwritten digit recognition with a back-propagation network. Advances in Neural
Information Processing Systems, 2, 1989.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436-444, 2015.

11



Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint
arXiw:1509.02971, 2015.

Sergey Loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International Conference on Machine Learning, pages 448-456. PMLR, 2015.

Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional neural network for real-time object
recognition. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
922-928. TEEE, 2015.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the Proceedings of the 27th International Conference on Machine Learning, 2010.

12



