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Abstract

Distributed learning is a very effective divide-and-conquer strategy for dealing with big data. As distributed learning algorithms

become more and more mature, network security issues including the risk of privacy disclosure of personal sensitive data, have

attracted high attention and vigilance. Differential privacy is an important method that maximizes the accuracy of a data query

while minimizing the chance of identifying its records when querying from this data. The known differential privacy distributed

learning algorithms are based on variable perturbation and the variable perturbation method may be non-convergence and the

experimental results usually have large deviations. Therefore, in this article we consider differential privacy distributed learning

algorithm based on objective function perturbation. We first propose a new distributed logistic regression algorithm based on

objective function perturbation (DLR-OFP). We prove that the proposed DLR-OFP satisfies differential privacy, and obtain

a fast convergence rate by introducing a new acceleration factor for the gradient descent method. The numerical experiments

based on benchmark data show that the proposed DLR-OFP algorithm has fast convergence rate and good privacy protection

ability.
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Abstract

Distributed learning is a very effective divide-and-conquer strategy for
dealing with big data. As distributed learning algorithms become more
and more mature, network security issues including the risk of privacy
disclosure of personal sensitive data, have attracted high attention and
vigilance. Differential privacy is an important method that maximizes
the accuracy of a data query while minimizing the chance of identify-
ing its records when querying from this data. The known differential
privacy distributed learning algorithms are based on variable pertur-
bation and the variable perturbation method may be non-convergence
and the experimental results usually have large deviations. Therefore,
in this article we consider differential privacy distributed learning algo-
rithm based on objective function perturbation. We first propose a new
distributed logistic regression algorithm based on objective function per-
turbation (DLR-OFP). We prove that the proposed DLR-OFP satisfies
differential privacy, and obtain a fast convergence rate by introducing a
new acceleration factor for the gradient descent method. The numerical
experiments based on benchmark data show that the proposed DLR-OFP
algorithm has fast convergence rate and good privacy protection ability.

Keywords: distributed algorithms, approximation of functions, differential
privacy, logistic regression, objective function perturbation
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1 Introduction

With the development of machine learning, privacy protection has become
an inexorable requirement of information technology development under the
era of big data, and many researchers have paid close attention to the
protection of data privacy during data release [13]-[16] and query process-
ing [17]-[18]. Dwork [4] first introduced the concept of ε-differential privacy.
Different from the previously known privacy definitions proposed in [1]-[3],
ε-differential privacy defines a rigorous attack model without background-
independent knowledge, and it makes a quantitative representation of the
degree of privacy leakage, which can be realized to protect individual privacy
information while learning the overall law of a given data. A good algorithm
that satisfies differential privacy is usually need to satisfy both robustness, run-
ning speed and accuracy. Due to the complexity of designing such algorithms,
research on differential privacy-based machine learning algorithms has been
focused recently. Chaudhuri et al. [20] first proposed the privacy algorithm
based on output perturbation. Chaudhuri et al. [21] introduced the privacy
ERM algorithm based on objective function perturbation. Kifer et al. [22] pro-
posed an ERM-based differential privacy algorithm for the high-dimensional
setting. Abadi et al. [24] presented several methods of target perturbation
causal analysis. But for the case of big data, these algorithms above are usually
very time-consuming and the algorithmic hardware requirements are very high
since these algorithms above are batch learning. Thus Li et al. [25], Aldeen et
al. [26] considered the privacy preserving method based on distributed learning
since distributed learning is a promising way of dealing with the high demand
of large-scale and it reduces the algorithmic computational burden. Han et al.
[27] considered the idea of variable perturbation and proposed a distributed
projection gradient descent algorithm. Ji et al. [36] proposed the distributed
Newton-Raphson algorithm.

In particular, with the Alternating Direction Method of Multipliers
(ADMM), learning problem can be divided into several sub-problems solved
by agents independently and locally, and only intermediate parameters need
to be shared. For example, Zhang et al. [28] considered the methods of dual
variable perturbation and primal variable perturbation to provide dynamic dif-
ferential privacy. Zhang [29] proposed an improved distributed ADMM privacy
protection algorithm with variable perturbation, which greatly improves the
running speed of the algorithm introduced in [28]. Wang et al.[38] considered
the centralized ADMM method of distributed learning with variable pertur-
bation by improving the ADMM method used in [28] and [29]. Huang [35]
studied the centralized ADMM method of distributed learning with variable
perturbation by using the first order approximation of Lagrange function to
solve the ADMM. Wang and Zhang [10] considered the decentralized ADMM
method of distributed logistic regression by using variable perturbation such
that the distributed learning model can control the optimized target consis-
tency. These methods proposed in [10], [28], [29], [35], [38] are based on variable
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perturbation, and the method based on variable perturbation is usually non-
convergence, and the final algorithmic results usually have large deviation [39].
For the centralized ADMM method, there exists the risk that the information
of all distributed computer system will be compromised if the Fusion Center
(see Fig.1 of [38]) is attacked. In addition, although the decentralized ADMM
method is considered in [10], the added noise in [10] is dependent on sensi-
tivity, and the change of noise will be not obvious as the value of sensitivity
is smaller, which will result in the bad property of protection privacy for the
case of smaller sensitivity. Then a problem is posed:

How to design a distributed differential privacy protection algorithm based
on the ADMM method such that it not only has good privacy protection ability,
but also has fast convergence rate ?

To solve the problem above, we consider the decentralized distributed
ADMM algorithm with objective function perturbation and propose a new
distributed logistic regression algorithm based on objective function pertur-
bation (DLR-OFP), which is not dependent on sensitivity. We prove that the
proposed DLR-OFP algorithm satisfies ε-difference privacy. We introduce an
acceleration factor for the gradient descent method of DLR-OFP algorithm,
estimate the convergence rate and the change bound of the introduced acceler-
ation factor. We also present some numerical researches on the performance of
the proposed algorithm. The main contributions of this article are summarized
as follows:

• The proposed DLR-OFP is proved to satisfy ε-differential privacy.
• We introduce a new acceleration factor for the gradient descent method of

the proposed DLR-OFP and establish a fast convergence rate.
• The performance of the proposed algorithm are validated by experiments

for benchmark repository. As far as our knowledge, these researches are the
first works on distributed ADMM differential privacy protection.

This article is arranged as follows. Section 2 presents some notions and
definitions. In Section 3, the DLR-OFP algorithm is proposed. Section 4
presents the algorithmic performance of the proposed DLR-OFP. Section 5
gives the numerical experimental results. Section 6 gives some discussions on
the proposed algorithm. Section 7 summarizes this article.

2 Preliminaries

In this section, we present the definition of ε-differential privacy, the
decentralized distributed ADMM logistic regression, and some corresponding
notations and definitions.

2.1 ε-differential privacy

ε-differential privacy is a suitable concept that provides a strong guarantee
by removing or adding a single database item such that an adversary did
not distinguish an individual data point. ε-differential privacy has become the
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mainstream method of privacy security analysis [5]-[9], which is defined as
follows.

Definition 1 ([4], [40]) Given a randomized algorithm G, Tall is the set composed
of all possible outputs of G. Algorithm G is ε-differentially private if for any two
datasets D1, D2 that differ on one element and all subset T of Tall,

P[G(D1) ∈ T ]

P[G(D2) ∈ T ]
≤ eε, (1)

where P[G(D1) ∈ T ] represents the probability that the output G(D1) of Algorithm
G on D1 belongs to T , ε ≥ 0 is the privacy budget. Inequality (1) can be equivalently
stated as,

P[G(D1) = t]

P[G(D2) = t]
≤ eε, ∀t ∈ Tall,

where we define 0
0 to be 1.

More generally, ε-differential privacy can be defined by requiring inequality
(1) to hold on D1 and D2 that are neighboring.

2.2 The distributed ADMM logistic regression

Let Dall = {D1 . . . , DJ} be a data set stored in J separate computers
that can communicate with each other. Let Nj be the neighborhood set of the
j-th computer, and E be the adjacency matrix of the distributed system of
J computers. If the i-th computer and the j-th computer can communicate
with each other, we set Eij = 1, otherwise Eij = 0. The local data stored

in the j-th (1 ≤ j ≤ J) computer is expressed as Dj = {xji , y
j
i }
nj

i=1 with

n =
∑J

j=1 nj , where xji ∈ Rp, yji ∈ {−1, 1}, nj are the input variable, the
corresponding label and the size of Dj , respectively. Wang and Zhang [10] used
the local variable {ωj}Jj=1 instead of the global variable ω (the definition of ω,
please see Equation (2) of [10]) in order to enable each computer to compute
independently of the global variables, where ωj ∈ Rp is the coefficient vector
of the j-th computer. The distributed logistic regression model introduced in
[10] is defined as follows:

min
{ωj}Jj=1

J∑
j=1

{ 1

n

nj∑
i=1

log(1 + exp(−yjiω
T
j x

j
i )) +

λ

2J
‖ωj‖22

}
, (2)

s.t. ωj = ωj′ , 1 ≤ j ≤ J, j′ ∈ Nj ,

where λ is a regularization parameter, ωTj is the transpose of ωj and ‖ωj‖2 is
the `2 norm of ωj . To turn the model (2) into the solution form of the ADMM
algorithm, new local auxiliary variables {Zj}Jj=1 in the regularization term of
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the model (2) are introduced. Then the model (2) is changed to be

min
{ωj}Jj=1,{Zj}Jj=1

1

n

J∑
j=1

nj∑
i=1

log(1 + exp(−yjiω
T
j x

j
i )) +

λ

2J

J∑
j=1

‖Zj‖22 , (3)

s.t. Zi − ωj = 0,∀i, j = 1, . . . , J.

To calculate the ADMM algorithm, Wang et al. [38] considered central-
ized ADMM algorithm and then they used a Fusion Center to receive and
process the coefficient vector ωj(1 ≤ j ≤ J) calculated by each computer in
each iteration process. Fusion Center is responsible for calculating the average
value ω of ω and sending ω to each computer for the next iteration. Differ-
ent from [38], Wang and Zhang [10] used the decentralized ADMM algorithm
such that their algorithm can effectively avoid the risk that the information
of distributed computer system will be compromised if the Fusion Center is
attacked. Thus the iteration termination condition of this algorithm in [10] has
changed. Namely, the final constraint condition Zi−ωj = 0 of the model (3) is
satisfied for any i and j (1 ≤ i, j ≤ J). Since the undirected graph is assumed
to be connected in [10], then the constraint condition of the model (3) can be
changed to be Zj = ωj for any j.

3 DLR-OFP algorithm

Different from [10, 25, 27, 30, 36], in this article we consider objective func-
tion perturbation method inspired by [37]. Namely, by modifying the model
(3), the proposed DLR-OFP can be stated as

min
{ωj}Jj=1,{Zj}Jj=1

J∑
j=1

[ 1

n

nj∑
i=1

log(1 + exp(−yjiω
T
j x

j
i )) +

bTj ωj

nj

]
+

λ

2J

J∑
j=1

‖Zj‖22,

s.t., Zi − ωj = 0,∀i, j = 1, . . . , J, (4)

where bj(1 ≤ j ≤ J) is the noise that added to the j-th computer. Inspired by
[20, 22], in this paper we assume that bj is proportional to h(bj) and the density
function of h(bj) is exp(− nεj

2nj
‖bj‖2), where εj is the privacy budget of the j-th

computer, ‖bj‖ is generated according to the distribution Γ(p, 2nj/nεj) and
the direction of bj uniformly at random.
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To solve the model (4), we convert the quadratic augmented Lagrangian
function of the model (4) to be the following form:

L(Z, ω, V ) := L({Zj}Jj=1, {ωj}Jj=1, {Vj}Jj=1)

=

J∑
j=1

[ 1

n

nj∑
i=1

log(1 + exp(−yjiω
T
j x

j
i )) +

bTj ωj

nj

]
+

λ

2J

J∑
j=1

‖Zj‖22

+
c

2

J∑
j=1

J∑
i=1

Eij
(
‖ Zi − ωj + Vij/c‖22 − ‖Vij/c‖

2
2

)
,

(5)

where Vj is the Lagrange multiplier of the j-th computer, Vji is the Lagrange
multiplier passed from the i-th computer to the j-th computer and c > 0 is a
pre-selected parameter [40].

To solve (5), we should update Z, ω, V , respectively. Let k = 1, ...,K be
the output loop mark number (see Algorithm 1) for the solution of (5), thus
we can divide it into the following three steps.

Step 1: Update Z. The Lagrangian function equation (5) can be divided
into J different sub-problems by the decomposability (5). For any 1 ≤ j ≤ J ,
we denote

Zj(k + 1) = arg min
Zj

λ

2J
‖ωj‖22 +

c

2

J∑
i=1

Eij

(
‖ Zj − ωi(k) + Vji/c‖22

)
, (6)

where ωi(k) be the coefficient vector of the i-th computer at the k-th iteration.
The solution to the optimization problem (6) can be stated as follows

Zj(k + 1) =

c
J∑
i=1

Eij(ωi(k)− Vji(k)/c)

c
J∑
i=1

Eij + λ/c

, (7)

where Vji(k) be the Lagrange multiplier passed from the i-th computer to the
j-th computer at the k-th iteration.

Step 2: Update the variable ω. The update of ωj can also be split into the
following J different sub-problems,

ωj(k + 1) = arg min
ωj

Lj

= arg min
ωj

[
1

n

nj∑
i=1

log(1 + exp(−yjiω
T
j x

j
i )) +

bTi ωj
nj

]

+
c

2

J∑
i=1

Eij(‖ Zi(k + 1)− ωj + Vij/c‖22).

(8)
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Equation (8) is solved by the help of the Nesterov acceleration method pro-
posed by Nesterov in [12]. Let m be the internal cycle mark number for the
solution equation (8). For m = 1, . . . ,M , we introduce an acceleration factor
ϕm in order to solve Equation (8). That is, set ϕ0 = 0, and for any m ≥ 1, set

ϕm =
1 +

√
1 + 4ϕ2

m−1

2
. (9)

Let γm = (1−ϕm)/ϕm+1 be the control factor satisfying −1 < γm < 0. Define
νm = ωm−1

j (k + 1)− α(∂Lj/∂ωj), where ωm−1
j (k + 1) is the coefficient vector

of the j-th computer at the m − 1-th internal cycle and the k + 1-th outer
cycle, α be the step length of the gradient descent and

∂Lj
∂ωj

=
1

n

nj∑
i=1

−yji x
j
i

1 + exp(−yjiωTj x
j
i )

+
bi
nj

− c

J∑
i=1

Eij
[
Zi(k + 1)− ωm−1

j (k + 1) + Vij(k)/c
]
.

Then we have

ωmj (k + 1) = (1− γm−1)νm + γm−1νm−1. (10)

Step 3: Update the Lagrange multiplier V ,

Vji(k + 1) = Vji(k) + c(Zj(k + 1)− ωi(k + 1)), i = 1, . . . , J. (11)

Now the DLR-OFP algorithm can be presented as follows:
In Algorithm 1, δ1 and δ2 are two technical parameters, which will be

discussed in Section 6. In Figure 1 we present the flow chart of Algorithm 1,
and in Figures 2(a)-2(b), we give an example of J computers connection and
the adjacency matrix for J = 5.

To have a better understanding Algorithm 1, we present some remarks.

Remark 1 (i) To calculate ADMM algorithm, Wang et al. [38] used the Fusion
Center to receive and process the coefficient vector ω calculated by each computer in
each iteration process. In [35], Huang et al. considered the centralized ADMM algo-
rithm and used the aggregator to receive and process ω from all distributed computers.
Different from [38] and [35], Algorithm 1 is based on the decentralized ADMM in
order to avoid effectively the risk that all distributed computer information will be
compromised if the Fusion Center is attacked.

(ii) These algorithms introduced in [10] [28], [29], [35] and [38] are based on vari-
able perturbation. While Algorithm 1 is based on objective function perturbation since
the variable perturbation method may be non-convergence, and the final experimental
results usually have large deviation.
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Algorithm 1 : LDAMSS

Input: Dataset Dall = {D1, . . . , DJ}, pre-selected parameter value c,
gradient drop step length α, maximum number M of inner
cycle and maximum number K of outer cycle, two significance
constants δ1 and δ2.

Output: ω∗ = 1
J

∑J
j=1 ωj(K).

1: For all j ∈ J , letting ω(0) = (0, . . . , 0)T , Z(0) = (0, . . . , 0)T ,

V (0) = (0, . . . , 0)T , n =
∑J

j=1 nj
2: Each computer run independently Generate noise vectors bj ∼

exp(− nεj
2nj
‖bj‖2)

3: While k ≤ K
4: Using the arithmetic equation (7) to update Zj(k + 1) and

transmit the results to the neighbor computer
5: Whilem ≤M
6: Using the arithmetic equation (8) to update ωmj (k + 1) and

transmit the results to the neighbor computer
7: If ‖ωmj (k + 1)− ωm−1

j (k + 1)‖ < δ1
8: stop iterating
9: Letting ωj(k + 1) = ωMj (k + 1) and transmit the results to the

neighbor computer
10: Using the arithmetic equation (11) to update Vji(k + 1) and

transmit the results to the neighbor computer
11: If ‖ωj(k + 1)− Zj(k + 1)‖ < δ2
12: stop the loop.

(iii) Although Algorithm 1 and the algorithms proposed in [10], [28] and [29] are
based on the decentralized ADMM method, the difference between Algorithm 1 and
these algorithms proposed in [10], [28] and [29] are obvious: First, the added noise
of the algorithms proposed in [10], [28] and [29] is dependent on sensitivity while
in Algorithm 1 we assume that the noise does not depend on the sensitivity (see
Definition 2 of [20]) since the method that the added noise is dependent on sensitivity
may result in the bad protection privacy for the case of smaller sensitivity (the change
of the added noise will be not obvious as the value of sensitivity is smaller). Second,
in Algorithm 1, we introduce an acceleration factor ϕm in the iteration process of
ADMM method inspired by the idea from the Nesterov acceleration method [12] to
improve the convergence speed of the gradient descent method.

4 Estimating the algorithmic performance

In this section, we present some theoretical studies on the performance
of the proposed DLR-OFP algorithm. We first prove that the DLR-OFP
algorithm satisfies differential privacy, and estimate the convergence rate
of the proposed DLR-OFP algorithm. We also establish the bound on the
change of weight vector ωj obtained by the j-th computer for the gradient
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Fig. 1 Flow chart of Algorithm 1

(a) (b)

Fig. 2 An example for J = 5 (a): connection instance of J computers (b): the adjacent
matrix of J = 5

descent method with acceleration factor ϕm. The main tools are the following
definitions of β-smooth, p-strongly convex.

Definition 2 [41] Suppose f is differentiable, and its gradient 5f exists at each
point in the domain. Let x1, x2 be any two constants in the domain of function f .
The function f is called to be ξ-strongly convex if f satisfies

f(x1) ≥ f(x2) +5f(x2)T (x1 − x2) +
ξ

2
‖ x1 − x2‖22 .

In addition, let β ≥ 0, the function f is called to be β-smooth if the inequality

‖ 5f(x1)−5f(x2)‖2 ≤ β ‖ x1 − x2‖2
holds true.
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Theorem 1 We assume that ‖x‖2 ≤ 1 for any input x ∈ Dall. Let G be the set of

all possible outputs during the algorithm iteration for a given Dall, D = {Dj}Jj=1

and D′ = {Dj ′}Jj=1 be two data sets of Dall, where Dj and Dj
′ be two neighboring

data sets. Then the proposed DLR-OFP algorithm A satisfies ε-differential privacy
with ε =

∑J
j=1 εj . Namely,

P ({A(k)}Kk=1 ∈ G‖D)

P ({A(k)}Kk=1 ∈ G‖D′)
≤ eε,

where ε ≥ 0 is the privacy budget, A(k) is the k-th time outer cycle output of
algorithm A and K is defined in Algorithm 1.

The proof of Theorem 1 is shown in Appendix A. In Algorithm 1, we
introduce the Nesterov acceleration method in the process of gradient descent.
Inspired by the idea from [12], we can easily obtain the following convergence
rate of the proposed DLR-OFP algorithm for the case of single computer by
making use of the similar proof method of [12].

Theorem 2 Let ω0 be the initial coefficient vector of gradient descent, ω∗ be the
coefficient vector output after gradient descent training, and ωT ′ be the coefficient
vector of the T ′-th gradient descent. If the objective function f is a β-smooth convex
function and the step length η satisfies η = 1/β, then the acceleration method used
in Algorithm 1 has the following convergence rate

f(ωT ′)− f(ω∗) ≤ 2β ‖ω0 − ω∗‖2

T ′2
.

Further, if f is also ξ-strongly convex, then we have

f(ωT ′)− f(ω∗) ≤ ξ + β

2
e
− T ′√

Q
∥∥ ω0 − ω∗

∥∥2
,

where Q = β/ξ, β, ξ are defined in Definition 2.

For the acceleration factor ϕm defined in (9), we have

Theorem 3 Letm be the cycle label of gradient descent, and u be a positive constant
satisfying 1

2 ≤ u ≤
2
5 . If m ≥ 3, then the following bound holds true.

m

2
+ u log2m ≤ ϕm ≤

m

2
+

5 log2m

2
. (12)

The proof of Theorem 3 is proved in Appendix B. For any two neighboring
data sets D1, D2 , let L = L(Z, ω, V ), L(Z, ω, V ) is defined in (5). If L satisfies
‖∂L/∂ω‖ ≤ c1, then we have

‖∂Lj
∂ω∗j

− ∂Lj
∂ωj
‖ ≤ 2c1,
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where ∂Lj/∂ωj is defined in (10), ω∗j and ωj be the corresponding weight vec-
tors generated by the gradient descent method with D1 and D2 in Algorithm
1. Thus, we have the following bound on the difference of the weight vectors
of D1 and D2 is valid.

Theorem 4 For any neighboring data sets D1 and D2, let ω∗j and ωj be the corre-
sponding weight vectors generated by the gradient descent method with D1 and D2

in Algorithm 1, respectively. If 4 ≤ m ≤M , we have

max
D1,D2

‖ω∗j − ωj‖ ≤ c1M
2/2.

The proof of Theorem 4 is shown in Appendix B. To give a better showing
these results obtained in Theorems 1-4, we give the following remarks.

Remark 2 Wang et al. [10] proved that the distributed variable perturbation ADMM
algorithm introduced in [10] satisfies ε-difference privacy and analyzed the conver-
gence rate of their proposed three-step ADMM algorithm. In [35], Huang et al. proved
that their distributed variable perturbation ADMM algorithm with time-varying noise
satisfied (ε, δ)-difference privacy. In [38], Wang et al. not only considered the cen-
tralized ADMM distributed logistic regression algorithm and proved the convergence
property of their proposed algorithm, but also given the bound of the accumulated
difference, and obtained the bound on the final solved classifier ωj .

Different from [10], [35] and [38], in Theorems 1-4, we not only consider the
decentralized ADMM distributed algorithm with objective function perturbation, prove
the proposed DLR-OFP algorithm satisfies difference privacy (see Theorem 1), but
also we establish the fast convergence rate of Nesterov acceleration method used in
gradient descent (see Theorem 2), obtain the bound of the acceleration factor ϕm
(see Theorem 3) and the bound the change of sensitivity during gradient descent (see
Theorem 4). In particular, By Theorem 3, we can find that the obtained convergence
rate of the gradient descent method is 1/T 2, which improves the known convergence
rate 1/T established in [10] and [38]. As far as our knowledge, these results presented
in Theorems 1-4 are the first works on the distributed ADMM with objective function
perturbation.

5 Experiments results

We give the numerical researches on the performance of the proposed DLR-
OFP algorithm from the kaggle platform including 9 data sets: telescope 1,
wine 2, rain 3, phishing 4, sensor 5, trojan 6, hedge 7, android 8, anti 9, are

1https://www.kaggle.com/abhinand05/magic-gamma-telescope-dataset
2https://www.kaggle.com/hufe09/winequality
3https://www.kaggle.com/jsphyg/weather-dataset-rattle-package
4https://www.kaggle.com/eswarchandt/phishing-website-detector
5https://www.kaggle.com/nphantawee/pump-sensor-data
6https://www.kaggle.com/subhajournal/trojan-detection/code
7https://www.kaggle.com/datasicencelab/hedge-fund-x-financial-modeling-challenge
8https://www.kaggle.com/saurabhshahane/android-permission-dataset
9https://www.kaggle.com/rafay12/anti-freeze-protein-classification
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the public datasets for differential privacy ([10], [35], [38]). For each data set,
we remove non-numerical features and randomly separate it into a training set
Dtrain and a test set Dtest according to the ratio of 7:3. The information of
these data sets are summarized in Table 1.

Table 1 9 Public Datasets

Dataset attributes data size positive cases negative cases

telescope 10 19020 6688 12332
wine 11 6497 4898 1599
rain 18 142194 63757 65536
phishing 30 11054 6157 4897
sensor 51 220313 205836 14477
trojan 80 177482 90683 86799
hedge 88 10000 4994 5006
android 177 29999 20000 9999
anti 840 10823 1330 9493

Now we briefly describe our experimental procedures as follows:
(i) We first pre-processed 9 data sets as follows: For every data set, we first

combine the multiple CSV files into a single file, and we removed non-numeric
columns, empty columns and columns with data numbers from the given data
set, set all defaults and values marked NA to be 0, and change the classification
label to be 1 or −1. We normalized all the data sets except phishing and
android data by using the Z-score standardization method in order to prevent
possible numerical overflow problem in the numerical calculations.

(ii) We set the adjacency matrix E of distributed computer to be 1J∗J .

Since ε =
∑J

j=1 εj (see Theorem 1), for simplicity, we assume that ε1 = · · · =
εJ = ε∗, where εj(1 ≤ j ≤ J) is the privacy budget of the j-th computer.

(iii) For a given training set Dtrain, we train our algorithm (Algorithm
1), DLP algorithm [10], PPD algorithm [38] and B-ADMM algorithm [31],
respectively and obtain the corresponding classifiers. We test them on the
same test set Dtest. We combine Dtrain with Dtest, and redivide into another
new training set D′train and another new test set D′test randomly. The sizes of
D′train and D′test are same as that of Dtrain and Dtest, respectively. We repeat
the above procedures 10 times and compute the corresponding accuracy, the
mean-square error (MSE) and the total time. The regulation parameter λ of
DLR-OFP algorithm is chosen by 5-fold cross validation.

5.1 Comparisons with the algorithms introduced in [10],
[31] and [38]

In this section, we compare the proposed algorithm with three distributed
differential privacy algorithms proposed in [10], [31] and [38]. In Tables 2-4,
we present the experimental results on accuracy, MSE and the total time of
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Table 2 Accuracy (%) of DLR-OFP, DLP, PPD and B-ADMM for J = 10, c = 0.1,
α = 0.3, K = 80, M = 100, ε∗ = 0.16

Dataset
Accuracy (%)

B-ADMM DLP PPD DLR-OFP
telescope 65.25±1.13 70.86±1.21 72.97±0.58 77.45±0.17
wine 98.65±0.50 99.27±0.55 90.70±0.98 99.62±0.60
rain 86.57±0.41 84.18±0.28 77.31±0.56 88.87±0.31
phishing 82.60±3.87 81.02±4.52 75.62±0.53 84.67±0.36
sensor 81.07±1.63 86.36±1.61 83.56±1.23 88.62±1.07
trojan 71.94±2.27 73.33±1.94 68.01±1.75 76.41±2.16
hedge 71.86±0.87 82.79±0.71 59.76±0.81 88.62±0.64
android 70.24±1.67 72.42±1.62 66.67±1.16 71.61±1.28
anti 65.66±2.88 67.21±2.18 69.39±0.45 86.75±0.91

Table 3 MSE of DLR-OFP, DLP, PPD and B-ADMM for J = 10, c = 0.1, α = 0.3,
K = 80, M = 100, ε∗ = 0.16

Dataset
MSE

B-ADMM DLP PPD DLR-OFP
telescope 0.3250±0.0028 0.3179±0.0027 0.5794±0.0032 0.2964±0.0046
wine 0.8941±0.0026 0.9052±0.0061 0.9020±0.0042 0.8943±0.0035
rain 0.8486±0.0297 0.8335±0.0315 0.7854±0.0440 0.6895±0.0276
phishing 0.5958±0.0291 0.6031±0.0280 0.5513±0.0256 0.5780±0.0116
sensor 0.5942±0.0147 0.6788±0.0115 0.8513±0.0170 0.4159±0.0301
trojan 0.5139±0.0307 0.4300±0.0156 0.4600±0.0224 0.2738±0.0188
hedge 0.4612±0.0143 0.4365±0.0344 0.5332±0.0304 0.3813±0.0058
android 0.6651±0.0061 0.6651±0.0087 0.6651±0.0069 0.6649±0.0062
anti 0.6914±0.0138 0.6924±0.0123 0.6757±0.0088 0.6418±0.0080

Table 4 Total time (s) of DLR-OFP, DLP, PPD and B-ADMM for c = 0.1, α = 0.3,
K = 80, M = 100, ε∗ = 0.16

Dataset
Total time (s)

B-ADMM DLP PPD DLR-OFP
telescope 616.0 342.1 385.1 314.0
wine 372.0 202.0 198.3 102.2
rain 1821.0 1335.8 1153.7 791.7
phishing 462.7 224.5 324.5 186.6
sensor 2796.5 2001.5 1716.0 803.7
trojan 3217.0 3031.0 1522.6 1289.7
hedge 649.1 402.4 338.4 302.8
android 592.4 730.1 479.3 297.4
anti 975.2 772.6 759.7 442.0
Sum of time 11501.9 9042.0 6877.6 4530.1

the proposed DLR-OFP algorithm, DLP [10], PPD [38] and B-ADMM algo-
rithm with output disturbance [31] for the case of J = 10, c = 0.1, α = 0.3,
K = 80, M = 100. Here J is the number of distributed computers, c is the con-
stant of the Lagrange function (5), α is the step of gradient descent, K is the
maximum number of the outer cycle, M is the maximum number of the inner
cycle. Meanwhile, inspired by references [10] and [35], we select the privacy

budget ε =
∑J

j=1 εj = 1.6, ε1 = · · · = εJ = ε∗ = 0.16. All the experimental
results are based on a virtual machine with ubuntu16 in our experiment by
using VMWare (2-Nuclear Processor, 8G RAM) and the distributed computer
system is simulated by using the Hadoop pseudo-distributed setup.

From Tables 2-4, we can find that for J = 10, c = 0.1, α = 0.3, K = 80,
M = 100, ε∗ = 0.16, all the means of accuracies of DLR-OFP algorithm are
better than that of other three algorithms except android data set. The means
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Table 5 Wilcoxon tests of DLR-OFP, B-ADMM, DLP and PPD for c = 0.1, α = 0.3,
K = 80, M = 100, ε∗ = 0.16.

Metrics Comparison R− R+ Hypothesis(α = 0.05) Selected

Accuracy
B-ADMM vs DLR-OFP 0 45 Rejected DLR-OFP

DLP vs DLR-OFP 2 43 Rejected DLR-OFP
PPD vs DLR-OFP 0 45 Rejected DLR-OFP

MSE
B-ADMM vs DLR-OFP 39.5 5.5 No Rejected B-ADMM

DLP vs DLR-OFP 40 5 Rejected DLR-OFP
PPD vs DLR-OFP 42 3 Rejected DLR-OFP

of MSE of DLR-OFP algorithm are better than that of other three algorithms
except at most two data sets (phishing and anti). In addition, the total time
of DLR-OFP algorithm is also less than that of other three algorithms.

By the means of accuracy presented in Table 2, we use Wilcoxon signed-
rank test [23] to check whether there is a significant difference between
the proposed DLR-OFP algorithm and B-ADMM, DLP, PPD in Table 5,
respectively.

By Table 5, we can find that in terms of accuracy, there is significant differ-
ence between DLR-OFP algorithm and B-ADMM, DLP, PPD, respectively. In
terms of MSE, there is also significant difference between DLR-OFP algorithm
and DLP, PPD, respectively.

In addition, to have a better showing the performance of the proposed
DLR-OFP algorithm, we also compare the experimental results of DLR-OFP
algorithm with B-ADMM, DLP, PPD for different ε with c = 0.1, α = 0.3,
K = 80, M = 100 in Figures 1-3. All the experimental results are based on
10-times repeated experiments.

By Figures 3-5, we can find that for different ε∗, all the accuracies of DLR-
OFP algorithm are better than that of other three algorithms, all the MSEs
of DLR-OFP algorithm are better than that of other three algorithms. In
addition, the total time of DLR-OFP algorithm is less than that of other three
algorithms. In particular, Figure 3 shows that with the increase of ε∗, the
accuracy of DLR-OFP algorithm has a tendency of increase. Figure 4 shows
that with the increase of ε∗, the MSE of DLR-OFP algorithm has a tendency
of decrease. Figure 5 shows that with the increase of ε∗, the total time of the
four algorithms does not change significantly. In Section 6, we will give some
discussions on the choices of J , c, α, K, M , δ1, δ2 for DLR-OFP algorithm.

5.2 Comparisons with FM algorithm introduced in [37]

The proposed DLR-OFP algorithm is a distributed differential privacy algo-
rithm based on objective function perturbation and difference privacy. In [37],
Xu et al. proposed FM differential privacy algorithm by considering the achiev-
ing differential privacy in vertically partitioned multiparty based on objective
function perturbation and (ε, δ)-difference privacy. Since ε-difference privacy
is also (ε, δ)-difference privacy with δ = 0. In this section we compare DLR-
OFP algorithm based on c = 0.1, α = 0.3, K = 80, M = 100, ε∗ = 0.16 with
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(a) anti (b) sensor (c) wine

(d) phishing (e) trojan (f) android

(g) telescope (h) hedge (i) rain

Fig. 3 Accuracy (%) of DLR-OFP, B-ADMM, DLP and PPD for different ε∗ with c = 0.1,
α = 0.3, K = 80, M = 100

FM algorithm based on δ = 0, ε = 1.6 since in this paper the privacy budgets
ε and ε∗ satisfy ε =

∑J
j=1 εj and ε1 = · · · = εJ = ε∗. FM algorithm introduced

in [37] is not distributed algorithm, we replicated this algorithm on PyCharm
Community. We present the experimental results on accuracy, MSE and the
total time in Table 6, which are based on 10-times repeated experiments.

In Table 7, we use Wilcoxon signed-rank test [23] to check whether there
is a significant difference between DLR-OFP algorithm and FM by the means
of Accuracy and MSE presented in Table 6, respectively.

By Table 7, we can find that in terms of Accuracy and MSE, there is no
significant difference between DLR-OFP algorithm and FM algorithm intro-
duced in [37]. But the sum of the total time of DLR-OFP algorithm is less
than that of FM algorithm.
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(a) anti (b) sensor (c) wine

(d) phishing (e) trojan (f) android

(g) telescope (h) hedge (i) rain

Fig. 4 MSE of four algorithms for different ε∗ with c = 0.1, α = 0.3, K = 80, M = 100

6 Discussions

In this section, we give some useful discussions on the choices of J , c, α,
K, M , δ1, δ2 for DLR-OFP algorithm. All the experimental results are based
on 10-times repeated experiments.

6.1 Choice of J

To select the number of distributed computers, we use some data sets to
conduct pre-experiment on distributed ADMM algorithm without disturbance.
In Table 8, we present the experimental results of distributed ADMM algo-
rithm for different J with c = 0.1, α = 0.3, K = 80, M = 100, δ1 = δ2 = 10−3,
where J is chosen from (5, 10, 20, 50, 100).

By Table 8, we can find that as the number of distributed computers
increases, the total time increases significantly. To have a trade-off between
accuracy, MSE and the total time, we set J = 10 for the proposed algorithm.
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(a) anti (b) sensor (c) wine

(d) phishing (e) trojan (f) android

(g) telescope (h) hedge (i) rain

Fig. 5 Total time of four algorithms for different ε∗ with c = 0.1, α = 0.3, K = 80, M = 100

6.2 Choice of c

In Algorithm 1, c is a constant of Lagrange function. For the choice of c,
we use some data sets to conduct pre-experiment on DLR-OFP algorithm. In
Table 9, we present the experimental results of distributed ADMM algorithm
for different c with J = 10, α = 0.3, K = 80, M = 100, δ1 = δ2 = 10−3, where
c is chosen from (0.01, 0.1, 0.5, 1). Since the accuracy value of DLR-OFP have
a tendency of decrease while the total time of DLR-OFP has a tendency of
increase as c increase. To have a trade-off between accuracy and the total time,
we set c = 0.3 for the proposed algorithm.

6.3 Choice of α

For the step size α of gradient descent, we present the experimental results
of distributed ADMM algorithm for various α with J = 10, c = 0.1, K = 80,
M = 100, δ1 = δ2 = 10−3 in Table 10, where α is chosen from (0.1, 0.3, 0.5, 1).
Since the accuracy value of DLR-OFP have a tendency of decrease while the

total time of DLR-OFP has a tendency of increase as α increase. To have a
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Table 6 Experimental results of FM with δ = 0, ε = 1.6 and DLR-OFP algorithm with
c = 0.1, α = 0.3, K = 80, M = 100, ε∗ = 0.16

Accuracy(%) MSE Total time(s)

telescope 81.60±0.97 77.45±0.17 0.3516±0.0559 0.2964±0.0046 173.5 314.0
wine 96.91±2.02 99.62±0.60 0.7539±0.1009 0.8943±0.0035 88.7 102.2
rain 87.95±1.56 88.87±0.31 0.2243±0.0278 0.6895±0.0276 899.2 791.7
phishing 86.43±0.61 84.67±0.36 0.5570±0.0793 0.5780±0.0116 380.5 186.6
sensor 88.09±1.95 88.62±1.07 0.9332±0.1401 0.4159±0.0301 1047.6 803.7
trojan 65.56±1.42 76.41±2.16 0.5109±0.0671 0.2738±0.0188 1864.0 1289.7
hedge 79.99±3.27 88.62±0.64 0.4994±0.0665 0.3813±0.0058 241.3 302.8
android 74.33±1.37 71.61±1.28 0.6667±0.0861 0.6649±0.0062 284.8 297.4
anti 87.82±4.35 86.75±0.91 0.2434±0.0314 0.6414±0.0080 300.9 442.0
Sum / / / / 5280.5 4536.4

Table 7 Wilcoxon Rank test for FM algorithm and DLR-OFP algorithm

Metrics Comparison R− R+ Hypothesis(α = 0.05) Selected

Accuracy DLR-OFP vs FM 23 22 No Rejected DLR-OFP

MSE DLR-OFP vs FM 20 25 No Rejected DLR-OFP

Table 8 Experimental results of distributed ADMM for different J with c = 0.1,
α = 0.3,K = 80, M = 100, δ1 = δ2 = 10−3

Accuracy J=5 J=10 J=20 J=50 J=100

rain 90.15±0.25 88.87±0.31 88.51±0.30 85.77±0.89 84.30±1.85
anti 89.17±0.95 86.75±0.91 85.29±0.97 81.13±1.35 74.86±4.36

MSE J=5 J=10 J=20 J=50 J=100

rain 0.6538±0.0187 0.6895±0.0276 0.6956±0.0270 0.7404±0.0381 0.7607±0.0726
anti 0.6282±0.0082 0.6414±0.0080 0.6498±0.0103 0.6639±0.0173 0.7022±0.0427

Total time J=5 J=10 J=20 J=50 J=100

rain 1116 992 1363 2637 4949
anti 631 628 788 1071 2956

trade-off between accuracy and the total time, we set α = 0.3 for the proposed
algorithm.

6.4 Choice of K

In Table 11, we present the experimental results of distributed ADMM
algorithm for different number K of external cycle with J = 10, c = 0.1,
α = 0.3, M = 100, δ1 = δ2 = 10−3, where K is chosen from (50, 80, 100).

Since the accuracy value of DLR-OFP have a tendency of increase while
the total time of DLR-OFP has a tendency of increase as α increase. To have a
trade-off between accuracy and the total time, we set K = 80 for the proposed
algorithm.
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Table 9 Experimental results for J = 10, α = 0.3, K = 80, M = 100, δ1 = δ2 = 10−3

Accuracy c=0.01 c=0.1 c=0.5 c=1

rain 88.38±0.61 88.87±0.31 87.70±0.58 87.66±0.41
anti 84.85±0.36 86.75±0.91 84.84±1.02 87.69±0.95

MSE c=0.01 c=0.1 c=0.5 c=1

rain 0.6824±0.173 0.6895±0.0276 0.6589±0.0311 0.6590±0.0287
anti 0.6293±0.0064 0.6414±0.0080 0.6290±0.0109 0.6445±0.0152

Total time c=0.01 c=0.1 c=0.5 c=1

rain 794.3 791.7 795 821.6
anti 448.7 442.0 458.3 471.2

Table 10 Experimental results of distributed ADMM algorithm for different α with
J = 10, c = 0.1, K = 80, M = 100, δ1 = δ2 = 10−3

Accuracy α=0.1 α=0.3 α=0.5 α=1

rain 89.36±0.29 88.87±0.31 88.12±0.43 87.78±0.69
anti 87.31±0.86 86.75±0.91 85.72±1.21 85.39±1.33

MSE α=0.1 α=0.3 α=0.5 α=1

rain 0.6939±0.0145 0.6895±0.0276 0.6802±0.0292 0.6746±0.0372
anti 0.6392±0.0084 0.6414±0.0080 0.6413±0.0149 0.6353±0.0175

Total time α=0.1 α=0.3 α=0.5 α=1

rain 1066.2 791.7 815.4 861.1
anti 613.5 442.0 436.8 497.5

6.5 Choice of M

To select the number of internal cycles, we use some data sets to conduct
pre-experiment on DLR-OFP algorithm. In Table 12, we present the exper-
imental results of distributed ADMM algorithm for different M of internal
cycles with J = 10, α = 0.3, K = 80, M = 100, δ1 = δ2 = 10−3, where M is
chosen from (50, 100, 200). Since the accuracy value of DLR-OFP have a ten-
dency of increase while the total time of DLR-OFP has a tendency of increase
as α increase. To have a trade-off between accuracy and the total time, we set
M = 100 for the proposed algorithm.

6.6 Choices of δ1, δ2

For the two constants δ1 and δ2, we present the experimental results
of distributed ADMM algorithm for various δ1, δ2 with J = 10, c = 0.1,
K = 100, M = 200 in Table 13 and 14, where δ1, δ2 are chosen from
(10−2, 10−3, 10−4, 10−5).
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Table 11 Experimental results of distributed ADMM algorithm for different K with
J = 10, c = 0.1, α = 0.3, M = 100, δ1 = δ2 = 10−3

Accuracy K=50 K=80 K=100

rain 81.35±1.25 88.87±0.31 88.79±0.40
anti 79.67±3.57 86.75±0.91 86.64±1.41

MSE K=50 K=80 K=100

rain 0.6183±0.0405 0.6895±0.0276 0.6911±0.0290
anti 0.6285±0.0115 0.6414±0.0080 0.6426± 0.072

Total time K=50 K=80 K=100

rain 689.4 791.7 792.5
anti 394.8 442.0 454.3

Table 12 Experimental results of distributed ADMM algorithm for different M with
J = 10, c = 0.1, α = 0.3,K = 80, δ1 = δ2 = 10−3

Accuracy M=50 M=100 M=200

rain 79.98±1.73 88.87±0.31 88.98±0.28
anti 83.25±1.46 86.75±0.91 86.73±0.83

MSE M=50 M=100 M=200

rain 0.5985±0.0456 0.6895±0.0276 0.6936±0.0266
anti 0.6285±0.0197 0.6414±0.0080 0.6436±0.0083

Total time M=50 M=100 M=200

rain 733 791.7 840.5
anti 406.7 442.0 476.1

Tables 13-14 show that the accuracy value of DLR-OFP have a tendency
of increase while the total time of DLR-OFP has a tendency of significant
increase as δ1 and δ2 decrease. To have a trade-off between accuracy and the
total time, and inspired by references [10], we set δ1 = δ2 = 10−3 for the
proposed algorithm.

7 Conclusions

Different to the previous algorithms with distributed privacy protection
based on variable perturbation, in this paper we focused on the distributed
machine learning algorithms with privacy protection based on objective func-
tion perturbation. We used differential privacy to limit the risk of potential
information exposure to individual records. In this article, we proposed a new
distributed objective function perturbation logistic regression algorithm. The-
oretically, we analyzed the theoretical advantages of our algorithm compared
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Table 13 Experimental results of distributed ADMM algorithm for different δ1 with
J = 10, c = 0.1, α = 0.3, K = 100, M = 200, δ2 = 10−3

Accuracy δ1 = 10−2 δ1 = 10−3 δ1 = 10−4 δ1 = 10−5

rain 86.26±1.91 88.96±0.86 89.59±1.05 90.32±0.69
anti 84.58±2.10 86.86±1.09 87.19±0.75 87.49±0.77

MSE δ1 = 10−2 δ1 = 10−3 δ1 = 10−4 δ1 = 10−5

rain 0.6939±0.0287 0.6875±0.0264 0.6792±0.0313 0.6584±0.0208
anti 0.6629±0.0225 0.6326±0.0109 0.6257±0.0094 0.6195±0.0071

Total time δ1 = 10−2 δ1 = 10−3 δ1 = 10−4 δ1 = 10−5

rain 796.1 860.4 951.7 1378.2
anti 448.3 479.7 550.8 727.5

Table 14 Experimental results of distributed ADMM algorithm for different δ2 with
J = 10, c = 0.1, α = 0.3, K = 100, M = 200, δ1 = 10−3

Accuracy δ2 = 10−2 δ2 = 10−3 δ2 = 10−4 δ2 = 10−5

rain 86.31±1.19 88.96±0.86 89.81±0.76 90.57±0.82
anti 84.40±1.68 86.86±1.09 87.11±0.93 87.83±0.67

MSE δ2 = 10−2 δ2 = 10−3 δ2 = 10−4 δ2 = 10−5

rain 0.7027±0.0347 0.6875±0.0264 0.6806±0.0215 0.6754±0.0129
anti 0.6571±0.0200 0.6326±0.0109 0.6246±0.0116 0.6148±0.0063

Total time δ2 = 10−2 δ2 = 10−3 δ2 = 10−4 δ2 = 10−5

rain 812.8 860.4 976.4 1187.5
anti 454.8 479.7 520.1 625.3

to these existing algorithms: We not only proved that our algorithm satis-
fies ε-differential privacy, obtained the fast convergence rate O(1/T 2), which
improved the corresponding results on convergence rate O(1/T ) obtained in
[10] and [38], we but also given the estimation on the bound of the acceleration
factor ϕm related to gradient descent and weight vector ω. To our knowledge,
these theoretical studies are the first works of distributed privacy protection
based on objective function perturbation. Experimental results demonstrated
that our algorithm can efficiently process distributed storage data and protect
its privacy: the proposed algorithm not only has better learning performance
(e.g., accuracy, MSE), but also has less total time compared to the previously
known privacy protection algorithms.

On the base of current work, there are severe problems under us consid-
eration such as studying the learning performance of our proposed DLR-OFP
algorithm for the case of multi-class classification, RBF kernels and so on.
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Appendix A

In this section, we prove our main results presented in Section 4.

Lemma 1 [10] Let L(Z, ω, V ) = L({Zj}Jj=1, {ωj}
J
j=1, {Vj}

J
j=1) be the quadratic

augmented Lagrangian function. Let c > max{2Lf/M ′, LfM ′, β/M} be the constant
in L(Z, ω, V ). The sequences generated by the ADMM algorithm proposed in Section
3 converge to the local minimum point of L(Z, ω, V ). Where c is the constant of
lagrange function defined in Algorithm 1, M represents the minimum strictly positive
eigenvalue of matrix ATA, M ′ represents the minimum strictly positive eigenvalue
of matrix BTB, and A, B defined in equation 5 of [10].

Proof of Theorem 1: By Lemma 1, we come to prove that our algorithm
A satisfies ε-differential privacy. For Dall, since G is the set of all possible
outputs during the algorithm iteration. D = {Dj}Jj=1, D′ = {Dj

′}Jj=1 are two

datasets in Dall, For any j, Dj and Dj
′ are a pair of neighboring data sets

differ on one element.

Dj = {(x1, y1), . . . , (xnj−1, ynj−1), (aj , y)},
Dj
′ = {(x1, y1), . . . , (xnj−1, ynj−1), (a′j , y

′)}.

Let ε =
∑J

j=1 εj, we should prove

P (A(‖)Kk=1 ∈ G‖D)

P (A(k)Kk=1 ∈ G‖D′)
≤ eε.

It follows that our algorithm A provides ε-differential privacy for the variables
Z(k) and ω(k):

P ({Z(k), ω(k)}Kk=1 ∈ G‖D)

P ({Z(k), ω(k)}Kk=1 ∈ G‖D′)
≤ eε.
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The left side of the above inequality can be written to be

P ({Z(k), ω(k)}Kk=1 ∈ G‖D)

P ({Z(k), ω(k)}Kk=1 ∈ G‖D′)

=
P ({Z(0), ω(0)} ∈ G(0)‖D)

P ({Z(0), ω(0)} ∈ G(0)‖D′)

·
K∏
k=1

P ({Z(k), ω(k)} ∈ G(k)‖{Z(r), ω(r)}k−1
r=0 , D)

P ({Z(k), ω(k)} ∈ G(k)‖{Z(r), ω(r)}k−1
r=0 , D

′)

(a)
=

J∏
j=1

K∏
k=1

P ({Zj(k), ωj(k)} ∈ Gj(k)‖{Zj(r), ωj(r)}k−1
r=0 , Dj)

P ({Zj(k), ωj(k)} ∈ Gj(k)‖{Zj(r), ωj(r)}k−1
r=0 , D

′
j)

(b)
=

J∏
j=1

K∏
k=1

P (Zj(k) = Z∗j (k)‖{Zj(r), ωj(r)}k−1
r=0 , Dj)

P (Zj(k) = Z∗j (k)‖{Zj(r), ωj(r)}k−1
r=0 , Dj

′)

·
P (ωj(k) = ω∗j (k)‖{Zj(r), ωj(r)}k−1

r=0 , Z
∗
j (k), Dj)

P (ωj(k) = ω∗j (k)‖{Zj(r), ωj(r)}k−1
r=0 , Z

∗
j (k), Dj

′)
.

Equation (a) is because that at the beginning of the iteration, we have ω(0) =
(0, . . . , 0)T and Z(0) = (0, . . . , 0)T . Hence, for any two datasets D and D′,
P ({Z(0),ω(0)}∈G(0)‖D)
P ({Z(0),ω(0)}∈G(0)‖D′) is constant 1. We consider the first term of Equation (b),

P (Zj(k) = Z∗j (k)‖{Zj(r), ωj(r)}k−1
r=0 , Dj)

P (Zj(k) = Z∗j (k)‖{Zj(r), ωj(r)}k−1
r=0 , Dj

′)
.

According to Equation (7), we have that when the algorithm updates variable
Zj(k) to Zj(k + 1), the update of Zj(k + 1) has nothing to do with the data
set, but only depends on ωj(k) and Vji(k) in the previous k-th iteration. So the
value of the above formula term is always 1.

Now we consider the second term of Equation (b),

P (ωj(k) = ω∗j (k)‖{Zj(r), ωj(r)}k−1
r=0 , Z

∗
j (k), Dj)

P (ωj(k) = ω∗j (k)‖{Zj(r), ωj(r)}k−1
r=0 , Z

∗
j (k), Dj

′)
.

According to the rules for updating ωj(k), we can rewrite the relationship
between bj and ωj as follows:

bj = nj{(1/α− ct)[(1− γm−1)ωm−1
j (k + 1) + γm−1ω

m−2
j (k + 1)]

+
1

n

nj∑
i=1

yji x
j
i

1 + exp(−yjiωTj x
j
i )

+ c

J∑
j=1

Eij(Zi(k + 1) + Vji(k)/c)− ωmj (k + 1)/α},

where the constant t is the degree of the j-th computer in the connected
undirected graph.

Given {Zj(r), ωj(r)}k−1
r=0 and Z∗j (k). For any output ω∗j from our algorithm,

there is an unique bj that maps our input dataset to our output vector. The
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uniqueness holds because the loss and regularization functions are differentiable
everywhere.

Let gk(·, Dj): R
p → Rp be the mapping from bj to ωj(k) of the dataset Dj.

Let ω∗j be the solution of the minimization optimization problem for the two
neighboring dataset. Hence, we have

P (ωj(k) = ω∗j (k)‖{Zj(r), ωj(r)}k−1
r=0 , Z

∗
j (k), Dj)

P (ωj(k) = ω∗j (k)‖{Zj(r), ωj(r)}k−1
r=0 , Z

∗
j (k), Dj

′)

(c)
=

P (bj = g−1
k (ω∗j (k), Dj))

P (bj = g−1
k (ω∗j (k), Dj

′))
·
‖det(J(g−1

k (ω∗j (k), Dj)))‖
‖det(J(g−1

k (ω∗j (k), Dj
′)))‖

(d)
=

P (bj = g−1
k (ω∗j (k), Dj))

P (bj = g−1
k (ω∗j (k), Dj

′))
.

Equation (c) is follows that in the formula, g−1
k (ω∗j (k), Dj) is the mapping

from ω∗j (k) to bj(k), J(g−1
k (ω∗j (k), Dj)) is its Jacobian matrix. Equation (d)

is because that gk(bj , ·) is a linear function, so
‖det(J(g−1

k (ω∗j (k),Dj)))‖
‖det(J(g−1

k (ω∗j (k),Dj
′)))‖ = 1.

For a quantity bj that maps to dataset Dj, there exists a quantity bj
′ of

dataset Dj
′ such that the following statement is true:

bj − bj ′ =
nj
n

[ 1

1 + exp(yω∗Tj a)
− 1

1 + exp(y′ω∗Tj a′)

]
.

Because ‖a‖2 ≤ 1 and ‖a′‖2 ≤ 1 satisfying that 1
1+exp(yω∗Tj a)

≤ 1,

1
1+exp(y′ω∗Tj a′)

≤ 1. For any ω∗j , we have
∥∥bj − bj ′∥∥2

≤ 2nj/n. By the triangle

inequality we have ‖bj‖2 − 2nj/n ≤
∥∥bj ′∥∥2

≤ ‖bj‖2 + 2nj/n. Thus, we have

P (bj = g−1
k (ω∗j (k), Dj))

P (bj = g−1
k (ω∗j (k), Dj

′))
= exp(−nεj

2nj
(‖bj‖2 −

∥∥bj ′∥∥2
)) ≤ eεj .

And since the second iteration, the disturbance vector has been involved in the
subsequent calculation as a constant vector and no longer changes. Combining
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the above conclusions, we get

P ({Z(k), ω(k)}Kk=0 ∈ G‖D)

P ({Z(k), ω(k)}Kk=0 ∈ G‖D′)
=

J∏
j=1

K∏
k=1

P (Zj(k) = Z∗j (k)‖{Zj(r), ωj(r)}k−1
r=0 , Dj)

P (Zj(k) = Z∗j (k)‖{Zj(r), ωj(r)}k−1
r=0 , Dj

′)

·
P (ωj(k) = ω∗j (k)‖{Zj(r), ωj(r)}k−1

r=0 , Z
∗
j (k), Dj)

P (ωj(k) = ω∗j (k)‖{Zj(r), ωj(r)}k−1
r=0 , Z

∗
j (k), Dj

′)

=

J∏
j=1

P (ωj(k) = ω∗j (k)‖{Zj(r), ωj(r)}k−1
r=0 , Z

∗
j (k), Dj)

P (ωj(k) = ω∗j (k)‖{Zj(r), ωj(r)}k−1
r=0 , Z

∗
j (k), Dj

′)

≤
J∏
j=1

eεj = e
∑J

j=1 εj = eε,

which implies that Algorithm A satisfies ε-differential privacy. Then we
finished the proof of Theorem 1.

Appendix B

Proof of Theorem 3: Let m be the cycle label of gradient descent. For m ≥ 3,
we have

ϕm =
1 +

√
1 + 4ϕ2

m−1

2
=

1

2
+ ϕm−1(1 +

1

4ϕ2
m−1

)
1
2 .

We use Taylor expansion of the function (1+x)
1
2 to estimate the variable ϕm.

We have

1

2
+ ϕm−1

[
1 +

1

8ϕ2
m−1

− 1

128ϕ4
m−1

]
≤ ϕm ≤

1

2
+ ϕm−1

[
1 +

1

8ϕ2
m−1

]
.

Then for m ≥ 3, we have 1
8ϕ2

m−1
− 1

128ϕ4
m−1
≥ 1

9ϕ2
m−1

. Thus we have

1

2
+ ϕm−1 +

1

9ϕm−1
≤ ϕm ≤

1

2
+ ϕm−1 +

1

8ϕm−1
. (B.1)

Let u be a positive constant satisfying 1
2 ≤ u ≤ 2

5 , we prove Theorem 3
by mathematical induction. If m = 3, by plugging in the actual value of the
variable ϕ3, inequality (12) (see Theorem 3) holds for m = 3. For m ≥ 4, we
assume that inequality (12) holds for m− 1. We use then the definition (9) of
ϕm and inequality (B.1) to prove that inequality (12) holds for m.

According to the recursion, by using ϕm = (1 +
√

1 + 4ϕ2
m−1)/2 and the

estimate on the right hand side of inequality (B.1), we conclude that the
right of the above inequality (12) holds. According to the recursion, by using

ϕm = (1+
√

1 + 4ϕ2
m−1)/2 and the estimate on the left hand side of inequality

(B.1), we conclude that the left of the above inequality (12) holds.
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Proof of Theorem 4: let ωm∗j and ωmj be the corresponding weight vectors
generated by the gradient descent method in m-th iteration with D1 and D2 in
Algorithm 1, 1 ≤ m ≤M . Let Pm = ωm∗j − ωmj , Qm = Pm − Pm−1.We have

Qm = −(
∂Lj
∂ωm∗j

− ∂Lj
∂ωmj

)
[m−1∑
j=2

(

m−1∏
i=j

−1 + ϕi
ϕi+1

) + 1
]
.

According to Theorem 3, we have
∏m−1
i=j

−1+ϕi

ϕi+1
≤ j

m , which is because that

m−1∏
i=j

−1 + ϕi
ϕi+1

≤ j

j + 1

j + 1

j + 2
· · · m− 1

m
=

j

m
.

From the above inequality, we can have Qm ≤ −mc1. In fact,

Qm ≤ −(
∂Lj
∂ωm∗j

− ∂Lj
∂ωmj

)
[m−1∑
j=2

j

m
+ 1
]
≤ −2c1

[m−1∑
j=2

j

m
+ 1
]

= −mc1.

From above equation, we can write the recurrence of Pm as follows

Pm = Pm−1 +Qm = Pm−2 +Qm +Qm−1 = · · · = P2 +

m∑
t=3

Qt.

Use the estimation of the variable Qm, we have Pm = ωm∗j − ωmj = P2 +∑m
t=3Qt ≤ −c1m2/2. It follows that maxD1,D2 ‖ω∗j − ωj‖ ≤ c1M

2/2. Then
we finished the proof of Theorem 4.
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