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Abstract

We investigate the global existence of small data solutions to the Cauchy problem for the semi-linear time fractional σ-evolution

equation models with nonlinearity of derivative type and memory. Based on the Lr - Lq estimates obtained in linear problem,

and combined with the global iteration method, the global existence of small data solutions is proved under certain conditions

of power p. Furthermore, we find that in the low-dimensional case, the limit of our conclusion can match the critical exponent

in classical results.
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1 INTRODUCTION

In this paper, we consider the Cauchy problem for the semi-linear time fractional 𝜎−evolution equations with nonlinearity of
derivative type and memory in the following form{

𝜕1+𝛼𝑡 𝑢 + (−Δ)𝜎𝑢 = 𝐹 (𝑢𝑡), 𝑡 ≥ 0, 𝑥 ∈ ℝ𝑛,
𝑢(0, 𝑥) = 𝑢0, 𝑢𝑡(0, 𝑥) = 𝑢1, 𝑥 ∈ ℝ𝑛,

(1)

where 𝛼 ∈ (0, 1), 𝜎 > 1, 𝑝 > 1. The function 𝐹 (𝑢𝑡) represents the power nonlinearities

|𝑢𝑡|𝑝 or

𝑡

∫
0

(𝑡 − 𝜏)−𝜇|𝑢𝑡(𝜏, 𝑥)|𝑝𝑑𝜏
for some 𝜇 ∈ (0, 1). Here 𝜕1+𝛼𝑡 𝑢 is the 1 + 𝛼 order Caputo fractional derivative of 𝑢(𝑥, 𝑡) with respect to 𝑡, defined by

𝜕𝑗+𝛼𝑡 𝑢(𝑡, 𝑥) = 𝐽 1−𝛼
0|𝑡 (𝜕𝑗+1𝑡 𝑢)(𝑡, 𝑥), (2)

for any 𝑗 ∈ ℕ, where

𝐽 𝛽0|𝑡𝑓 (𝑡) = 1
Γ(𝛽)

𝑡

∫
0

(𝑡 − 𝜏)𝛽−1𝑓 (𝜏)𝑑𝜏, 𝑡 > 0

is the Riemann-Liouville fractional integral, defined for 𝛽 > 0, and Γ(𝛽) represents the Gamma function. The operator (−Δ)𝜎 ,
is defined as follows

(−Δ)𝜎𝑢 = −1(|𝜉|2𝜎 𝑢̂), 𝑢̂(𝜉) =  (𝑢)(𝜉) ∶= ∫
𝑅𝑛

𝑒−𝑖𝜉𝑥𝑢𝑑𝑥. (3)

†Math Meth Appl Sci.
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Fractional calculus has attracted a lot of attention and achieved considerable results over the past decades, it can describe the
memory and inheritance of various material evolution processes, and reveal these properties neglected in integer calculus. This
kind of equation (1) is evolved from the classical wave equation, which is obtained by substituting the second-order time deriva-
tive with the fractional derivative of 1 + 𝛼 ∈ (1, 2) in form, it is usually used to describe the propagation of mechanical waves
in viscoelastic media with power-law characteristics and can describe the phenomenon between diffusion and wave propagation
models. In recent years, many researchers1−4 have paid attention to the well-posedness of solutions of this kind of problems.
However, as one might expect, when 𝛼 decreases to zero in (1), the existence of the second data 𝑢1 becomes unnatural, therefore
we cannot let the range of 𝛼 be too close to zero in this paper.

The Cauchy problem for classical wave equation with nonlinearity of derivative type has been studied by many scholars, and
there are abundant results for the following form{

𝜕2𝑡 𝑢 − Δ𝑢 = |𝑢𝑡|𝑝, 𝑡 ≥ 0, 𝑥 ∈ ℝ𝑛,
𝑢(0, 𝑥) = 𝑢0, 𝑢𝑡(0, 𝑥) = 𝑢1, 𝑥 ∈ ℝ𝑛.

(4)

Specifically, in the 1980s, Glassey5 proposed the conjecture that

𝑝𝐺𝑙𝑎(𝑛) = 1 + 2
𝑛 − 1

is the critical exponent for the Cauchy problem (4), it means that in the supercritical case 𝑝 > 𝑝𝐺𝑙𝑎, small data solutions exist
globally, meanwhile the global solutions dose not exist under proper assumptions about initial data in the case of 𝑝 ≤ 𝑝𝐺𝑙𝑎.
Kunio6 and Tzvetkov7 researched global existence and asymptotic behavior of solutions for general data as 𝑝 > 𝑝𝐺𝑙𝑎, in the case
of space dimension 𝑛 = 2, 3, respectively. Sideris and Thomas8 studied global behavior of solutions in 𝑛 = 3 for radial data and
Hidano et al9 proved existence of global solutions for all spatial dimensions. For higher dimension case 𝑛 ≥ 4, there are some
results for blow up and estimation of life span in Zhou10 as 𝑝 ≤ 𝑝𝐺𝑙𝑎.

Recently, D’Abbicco et al4 studied the Cauchy problem for the following semi-linear time fractional diffusion-wave equation{
𝜕1+𝛼𝑡 𝑢 − Δ𝑢 = |𝑢|𝑝, 𝑡 ≥ 0, 𝑥 ∈ ℝ𝑛,
𝑢(0, 𝑥) = 𝑢0, 𝑢𝑡(0, 𝑥) = 𝑢1, 𝑥 ∈ ℝ𝑛,

(5)

where 𝛼 ∈ (0, 1), 𝑝 > 1, they found two critical exponents corresponding to the equations when the second data 𝑢1 = 0 and
𝑢1 ≠ 0, the two critical exponents are

𝑝̃ = 1 + 2
𝑛 − 2 + 2(1 + 𝛼)−1

and 𝑝̄ = 1 + 2
𝑛 − 2(1 + 𝛼)−1

,

as we can see if 𝛼 → 0+, then 𝑝̃ tends to 1 + 2∕𝑛 which is the Fujita critical exponent.11 In addition, 𝑝̄ tends to 1 + 2∕(𝑛 − 1)
found by Kato12 as 𝛼 → 1−, it is interesting that the problem (5) can be related to the conclusion of the classical problems.

For the Cauchy problem of the semi-linear time fractional 𝜎-evolution equation{
𝜕1+𝛼𝑡 𝑢 + (−Δ)𝜎𝑢 + 𝑚2𝑢 = |𝑢|𝑝, 𝑡 ≥ 0, 𝑥 ∈ ℝ𝑛,
𝑢(0, 𝑥) = 𝑢0, 𝑢𝑡(0, 𝑥) = 0, 𝑥 ∈ ℝ𝑛,

(6)

where 𝛼 ∈ (0, 1), 𝜎 ≥ 1, 𝑚 ≥ 0 and 𝑝 > 1, Abdelatif and Michael2 considered the effect of the mass term on the global small
data solutions, then Abdelatif1 took the case where the nonlinear term is

𝑡

∫
0

(𝑡 − 𝜏)−𝜇|𝑢(𝜏, ⋅)|𝑝𝑑𝜏
for some 𝜇 ∈ (0, 1), and also studied the influence of the mass term on this model.

Inspired by the works mentioned above,1,2,4,5 here we attempt to study semi-linear time fractional 𝜎−evolution equation
models with new nonlinearities |𝑢𝑡|𝑝 and ∫ 𝑡

0 (𝑡 − 𝜏)−𝜇|𝑢𝑡(𝜏, 𝑥)|𝑝𝑑𝜏. Note that the second power nonlinearity is the Riemann-
Liouville fractional integral of |𝑢𝑡|𝑝, and we remark that

𝑡

∫
0

(𝑡 − 𝜏)−𝜇|𝑢𝑡(𝜏, ⋅)|𝑝𝑑𝜏 = Γ(1 − 𝜇)𝐽 1−𝜇
0|𝑡 |𝑢𝑡(𝑡, ⋅)|𝑝 (7)
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and

lim
𝜇→1−

𝑡

∫
0

(𝑡 − 𝜏)−𝜇|𝑢𝑡(𝜏, ⋅)|𝑝𝑑𝜏 = |𝑢𝑡(𝑡, ⋅)|𝑝, (8)

thus, the Cauchy problem (1) with nonlinear memory term studied in this paper can be transformed into a classical problem of
nonlinear term |𝑢𝑡|𝑝 as 𝜇 → 1−. It is of great significance to discuss the relationship between the properties of solutions of these
two models.

Our main goal is to investigate the influence of the nonlinear terms on the global small data solutions and then compare their
differences in the range of power 𝑝. The existence and uniqueness of global small data solutions to (1) may be proved by using
global iterative methods based on the contraction mapping principle under certain conditions.

Here are some notations that will be used frequently.
Notation. We denote by 𝐻𝑠,𝑝 the generalized Sobolev space

𝐻𝑠,𝑝 = {𝑢 ∈ 𝐿𝑝 ∶ ‖−1((1 + |𝜉|2) 𝑠2 𝑢̂)‖𝐿𝑝 < ∞} (9)

for any 𝑠 ≥ 0 and 𝑝 ∈ [1,∞]. Recall that 𝐻𝑠,𝑝 = 𝑊 𝑠,𝑝 if 𝑠 ∈ ℕ, and denote the norm of homogeneous Sobolev space‖𝑢‖𝐻̇𝑠,𝑝 = ‖∇𝑠𝑢‖𝐿𝑝 = ‖−1(|𝜉|𝑠𝑢̂)‖𝐿𝑝 .
We write 𝑓 ≲ 𝑔, implying that there exists a constant 𝐶 > 0, such that 𝑓 ≤ 𝐶𝑔.
In addition, the notation

𝛽(𝑟, 𝑞, 𝛼, 𝜎, 𝑛) = 𝑛(1 + 𝛼)
2𝜎

(1
𝑟
− 1
𝑞
) ∶= 𝛽𝑟,𝑞 (10)

will be used throughout this paper.
Now our main results can be stated as follows.

Theorem 1.1. Assume that 𝛼 ∈ (0, 1) and 𝜎 > 1+𝛼
2𝛼

. If 1 ≤ 𝑛 < 2𝜎𝛼
1+𝛼

and the exponent 𝑝 satisfies the condition

𝑝 > 𝑝̃ ∶= 1 + 2(1 + 𝜆)𝜎
𝑛(1 + 𝛼) − 2𝜆𝜎

, (11)

where 𝜆 ∈ (0, 1+𝛼
2𝜎

). Then there exists a positive enough small constant 𝜀 such that for any

(𝑢0, 𝑢1) ∈  .
= (𝐻𝑘,1 ∩𝐻𝑘,∞) × (𝐿1 ∩ 𝐿∞) (12)

satisfy ‖(𝑢0, 𝑢1)‖ = ‖𝑢0‖𝐻𝑘,1∩𝐻𝑘,∞ + ‖𝑢1‖𝐿1∩𝐿∞ ≤ 𝜀,

where 𝑘 = 2𝜎
1+𝛼

, that there exists a unique global solution

𝑢 ∈ 𝐶
(
[0,∞), 𝐻̇𝑘,1 ∩ 𝐻̇𝑘,∞) ∩ 𝐶1([0,∞), 𝐿1 ∩ 𝐿∞) (13)

to the Cauchy problem (1) with the nonlinear term 𝐹 (𝑢𝑡) = |𝑢𝑡|𝑝. Moreover, for any 𝑡 ≥ 0, the solution satisfies the following
estimates ‖𝑢𝑡‖𝐿𝑞 ≲ (1 + 𝑡)𝜆−𝛽1,𝑞‖(𝑢0, 𝑢1)‖, 𝑞 ∈ [1,∞], (14)

‖𝑢‖𝐻̇𝑘,𝑞 ≲ (1 + 𝑡)𝜆−𝛽1,𝑞‖(𝑢0, 𝑢1)‖, 𝑞 ∈ [1,∞]. (15)

Theorem 1.2. Assume that 𝛼 ∈ (0, 1) and 𝜎 > 1+𝛼
2𝛼

. If 𝑛 ≥ 2𝜎𝛼
1+𝛼

and the exponent 𝑝 satisfies the condition

𝑝 > 𝑝̄ ∶= 1 + 𝑛(1 + 𝛼)
2𝜎𝛼

. (16)

Then there exists a positive enough small constant 𝜀 such that for any

(𝑢0, 𝑢1) ∈  .
= (𝐻𝑘,𝑚 ∩𝐻𝑘,∞) × (𝐿𝑚 ∩ 𝐿∞) (17)

satisfy ‖(𝑢0, 𝑢1)‖ = ‖𝑢0‖𝐻𝑘,𝑚∩𝐻𝑘,∞ + ‖𝑢𝑚‖𝐿1∩𝐿∞ ≤ 𝜀,
the parameter 𝑚 > 1 is chosen as the solution to

𝑛
2𝜎𝑚

= 𝛼
1 + 𝛼

− 𝛿
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with a sufficiently small constant 𝛿 > 0, that there exists a unique global solution

𝑢 ∈ 𝐶
(
[0,∞), 𝐻̇𝑘,𝑚 ∩ 𝐻̇𝑘,∞) ∩ 𝐶1([0,∞), 𝐿𝑚 ∩ 𝐿∞) (18)

to the Cauchy problem (1) with the nonlinear term 𝐹 (𝑢𝑡) = |𝑢𝑡|𝑝. Moreover, for any 𝑡 ≥ 0, the solution satisfies the following
estimates ‖𝑢𝑡‖𝐿𝑞 ≲ (1 + 𝑡)𝛼−𝜂−𝛽𝑚,𝑞‖(𝑢0, 𝑢1)‖, 𝑞 ∈ [𝑚,∞], (19)

‖𝑢‖𝐻̇𝑘,𝑞 ≲ (1 + 𝑡)𝛼−𝜂−𝛽𝑚,𝑞‖(𝑢0, 𝑢1)‖, 𝑞 ∈ [𝑚,∞], (20)
where

0 < 𝜂 =
𝛼𝑝
𝑝 − 1

−
𝑛(1 + 𝛼)(𝑝 − 𝑚)
2𝜎𝑚(𝑝 − 1)

< 𝛼.

Remark 1.1. The condition 𝜎 > 1+𝛼
2𝛼

determines that 𝛼 can’t be too small, otherwise problem (1) will be meaningless. If
𝛼 → 1−, 𝜎 → 1+, we can see that 𝑝̃ → 𝑝𝐺𝑙𝑎(1) = ∞ as 𝜆 → 1− and 𝑛 = 1, while 𝑝̄ → 𝑝𝐺𝑙𝑎(2) = 3 as 𝑛 = 2, when
𝑛 ≥ 3, 𝑝̄ > 𝑝𝐺𝑙𝑎(𝑛). In other words, the limit of our conclusion matches the critical exponent in the classical problem (4) for the
low-dimensional case.
Theorem 1.3. Assume that 𝛼 ∈ (0, 1), 𝜇 ∈ (𝛼 − 1+𝛼

2𝜎
, 𝛼) and 𝜎 > 1+𝛼

2𝛼
. If 1 ≤ 𝑛 < 2𝜎𝛼

1+𝛼
and the exponent 𝑝 satisfies the condition

𝑝 > ̃̃𝑝 ∶= 1 +
2(1 + 𝛼 − 𝜇)𝜎

𝑛(1 + 𝛼) − 2(𝛼 − 𝜇)𝜎
. (21)

Then there exists a positive enough small constant 𝜀 such that for any

(𝑢0, 𝑢1) ∈  .
= (𝐻𝑘,1 ∩𝐻𝑘,∞) × (𝐿1 ∩ 𝐿∞) (22)

satisfy ‖(𝑢0, 𝑢1)‖ = ‖𝑢0‖𝐻𝑘,1∩𝐻𝑘,∞ + ‖𝑢1‖𝐿1∩𝐿∞ ≤ 𝜀,
that there exists a unique global solution

𝑢 ∈ 𝐶
(
[0,∞), 𝐻̇𝑘,1 ∩ 𝐻̇𝑘,∞) ∩ 𝐶1([0,∞), 𝐿1 ∩ 𝐿∞) (23)

to the Cauchy problem (1) with the nonlinear term 𝐹 (𝑢𝑡) = ∫ 𝑡
0 (𝑡 − 𝜏)−𝜇|𝑢𝑡(𝜏, 𝑥)|𝑝𝑑𝜏. Moreover, for any 𝑡 ≥ 0, the solution

satisfies the following estimates ‖𝑢𝑡‖𝐿𝑞 ≲ (1 + 𝑡)𝛼−𝜇−𝛽1,𝑞‖(𝑢0, 𝑢1)‖, 𝑞 ∈ [1,∞], (24)

‖𝑢‖𝐻̇𝑘,𝑞 ≲ (1 + 𝑡)𝛼−𝜇−𝛽1,𝑞‖(𝑢0, 𝑢1)‖, 𝑞 ∈ [1,∞]. (25)

Theorem 1.4. Assume that 𝛼 ∈ (0, 1), 𝜇 ∈ (𝛼, 1) and 𝜎 > 1+𝛼
2𝛼

. If 𝑛 ≥ 2𝜎𝛼
1+𝛼

and the exponent 𝑝 satisfies the condition

𝑝 > ̄̄𝑝 ∶= 1 +
2𝜎(1 − 𝜇) + 𝑛(1 + 𝛼)

2𝜎𝛼
. (26)

Then there exists a positive enough small constant 𝜀 such that for any

(𝑢0, 𝑢1) ∈  .
= (𝐻𝑘,𝑚 ∩𝐻𝑘,∞) × (𝐿𝑚 ∩ 𝐿∞) (27)

satisfy ‖(𝑢0, 𝑢1)‖ = ‖𝑢0‖𝐻𝑘,𝑚∩𝐻𝑘,∞ + ‖𝑢𝑚‖𝐿1∩𝐿∞ ≤ 𝜀,
the parameter 𝑚 > 1 is chosen as the solution to 𝑛

2𝜎𝑚
= 𝛼

1 + 𝛼
− 𝛿

with a sufficiently small constant 𝛿 > 0, that there exists a unique global solution

𝑢 ∈ 𝐶
(
[0,∞), 𝐻̇𝑘,𝑚 ∩ 𝐻̇𝑘,∞) ∩ 𝐶1([0,∞), 𝐿𝑚 ∩ 𝐿∞) (28)

to the Cauchy problem (1) with the nonlinear term 𝐹 (𝑢𝑡) = ∫ 𝑡
0 (𝑡 − 𝜏)−𝜇|𝑢𝑡(𝜏, 𝑥)|𝑝𝑑𝜏. Moreover, for any 𝑡 ≥ 0, the solution

satisfies the following estimates ‖𝑢𝑡‖𝐿𝑞 ≲ (1 + 𝑡)𝛼+1−𝜇−𝜉−𝛽𝑚,𝑞‖(𝑢0, 𝑢1)‖, 𝑞 ∈ [𝑚,∞], (29)
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‖𝑢‖𝐻̇𝑘,𝑞 ≲ (1 + 𝑡)𝛼+1−𝜇−𝜉−𝛽𝑚,𝑞‖(𝑢0, 𝑢1)‖, 𝑞 ∈ [𝑚,∞], (30)
where

0 < 𝜉 =
(𝛼 + 1 − 𝜇)𝑝

𝑝 − 1
−
𝑛(1 + 𝛼)(𝑝 − 𝑚)
2𝜎𝑚(𝑝 − 1)

< 𝛼 + 1 − 𝜇.

Remark 1.2. Compared with the homogeneous problem (see Remark 2.1) corresponding to problem (1), a loss of decay (1+𝑡)𝛼−𝜇
occurs in regard to the estimates (24)-(25). In addition, ̄̄𝑝 → 𝑝̄ as 𝜇 → 1−, at this time the decay rate in (29)-(30) is the same as
that in (19)-(20).

2 PRELIMINARIES

2.1 Linear estimates
We first consider the linear problem corresponding to problem (1){

𝜕1+𝛼𝑡 𝑢 + (−Δ)𝜎𝑢 = 𝑓 (𝑡, 𝑥), 𝑡 > 0, 𝑥 ∈ ℝ𝑛,
𝑢(0, 𝑥) = 𝑢0, 𝑢𝑡(0, 𝑥) = 𝑢1, 𝑥 ∈ ℝ𝑛,

(31)

and introduce some useful lemmas before deriving the 𝐿𝑟 − 𝐿𝑞 (1 ≤ 𝑟 ≤ 𝑞 ≤ ∞) estimate of the linear problem (31).
Lemma 2.1 (13). Let 𝛼 ∈ (0, 1), 𝑏1, 𝑏2, 𝜆 ∈ ℝ, then the following problem{

𝜕1+𝛼𝑡 𝑦 = 𝜆𝑦 + 𝑓 (𝑡), 𝑡 ≥ 0,
𝑦(0) = 𝑏1, 𝑦′(0) = 𝑏2

(32)

has a unique solution

𝑦(𝑡) = 𝑏1𝐸1+𝛼,1(𝜆𝑡1+𝛼) + 𝑏2𝑡𝐸1+𝛼,2(𝜆𝑡1+𝛼) +

𝑡

∫
0

(𝑡 − 𝜏)𝛼𝐸1+𝛼,1+𝛼(𝜆(𝑡 − 𝜏)1+𝛼)𝑓 (𝜏)𝑑𝜏, (33)

where 𝐸1+𝛼,𝛽 , 𝛽 = 1, 2, 1 + 𝛼, are the Mittag-Leffler functions

𝐸1+𝛼,𝛽(𝑧) =
∞∑
𝑘=0

𝑧𝑘

Γ(𝑘 + 𝛼𝑘 + 𝛽)
.

For the linear problem (31), by the Fourier transform in regard to 𝑥, we obtain{
𝜕1+𝛼𝑡 𝑢̂ + |𝜉|2𝜎 𝑢̂ = 𝑓 (𝑡, 𝜉), 𝑡 > 0, 𝑥 ∈ ℝ𝑛,
𝑢̂(0, 𝜉) = 𝑢0(𝜉), 𝑢𝑡(0, 𝜉) = 𝑢1(𝜉), 𝑥 ∈ ℝ𝑛.

(34)

Thanks to Lemma 2.1, the solution to (31) is given by

𝑢(𝑡, ⋅) = 𝑢lin(𝑡, ⋅) +𝑁𝑓, (35)

where the homogeneous and nonhomogeneous parts of the solution are defined by

𝑢lin(𝑡, ⋅) = 𝐺1+𝛼,1(𝑡, ⋅) ∗ 𝑢0 + 𝑡𝐺1+𝛼,2(𝑡, ⋅) ∗ 𝑢1 (36)

and

𝑁𝑓 =

𝑡

∫
0

(𝑡 − 𝜏)𝛼𝐺1+𝛼,1+𝛼(𝑡 − 𝜏, ⋅) ∗ 𝑓 (𝜏, ⋅)𝑑𝜏, (37)

here
𝐺1+𝛼,𝛽(𝑡, 𝑥) ∶= −1(𝐸1+𝛼,𝛽(−𝑡1+𝛼|𝜉|2𝜎)). (38)

And 𝐺1+𝛼,𝛽(𝑡, 𝑥), 𝛽 = 1, 2, 1 + 𝛼, have the following property.
Lemma 2.2 (4). The following estimate holds for any 𝑡 > 0

‖∇𝛾𝐺1+𝛼,𝛽(𝑡, ⋅)‖𝐿𝑝 ≲ 𝑡− 𝑛(1+𝛼)
2𝜎

(1− 1
𝑝
)− (1+𝛼)𝛾

2𝜎 , (39)
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where 𝛾 ≥ 0, provided that
𝑛
2𝜎

(1 − 1
𝑝
) +

𝛾
2𝜎

<

{
1, 𝛽 = 1, 2,
2, 𝛽 = 1 + 𝛼.

(40)

By virtue of Young’s inequality we can easily obtain‖𝑢lin‖𝐻̇𝛾,𝑞 ≲ 𝑡−𝛽𝑟,𝑞‖𝑢0‖𝐻̇𝛾,𝑟 + 𝑡1−𝛽𝑟,𝑞−
(1+𝛼)𝛾
2𝜎 ‖𝑢1‖𝐿𝑟 , 𝑡 > 0 (41)

for any 1 ≤ 𝑟 ≤ 𝑞 ≤ ∞, where 𝑛
2𝜎
( 1
𝑟
− 1

𝑞
) + 𝛾

2𝜎
< 1. Now let’s give an estimate of the solution to the linear problem (31).

Theorem 2.1. Let 𝑛 ≥ 1, 𝛼 ∈ (0, 1) and 𝜎 > 1, if 𝑢0 ∈ 𝐻𝑘,𝑟, 𝑢1 ∈ 𝐿𝑟, satisfying
𝑛
2𝜎

(1
𝑟
− 1
𝑞
) < 𝛼

1 + 𝛼
, 1 ≤ 𝑟 ≤ 𝑞 ≤ ∞, (42)

where 𝑘 = 2𝜎
1+𝛼

. Assume that ‖𝑓 (𝜏, ⋅)‖𝐿𝑟 ≤ 𝐾(1 + 𝑡)−𝜂 , ∀𝑡 ≥ 0 (43)
for some 𝐾 > 0 and 𝜂 ∈ ℝ. Then for ∀𝑡 > 0, the solution to (31) verifies the following estimate

‖(𝑢𝑡,∇𝑘𝑢)‖𝐿𝑞 ≲ 𝑡−𝛽𝑟,𝑞 (‖𝑢0‖𝐻𝑘,𝑟 + ‖𝑢1‖𝐿𝑟) + ⎧⎪⎨⎪⎩
𝐾(1 + 𝑡)𝛼−1−𝛽𝑟,𝑞 , 𝑖𝑓 𝜂 > 1,
𝐾(1 + 𝑡)𝛼−1−𝛽𝑟,𝑞 log(1 + 𝑡), 𝑖𝑓 𝜂 = 1,
𝐾(1 + 𝑡)𝛼−𝜂−𝛽𝑟,𝑞 , 𝑖𝑓 𝜂 < 1.

(44)

Remark 2.1. It’s obviously that in the case of lower dimensions 1 ≤ 𝑛 < 2𝜎𝛼
1+𝛼

, the condition (42) holds for any 1 ≤ 𝑟 ≤ 𝑞 ≤ ∞
and 𝜎 > 1+𝛼

2𝛼
, at this time we consider the solution of the homogeneous problem

𝑢 = 𝑢lin(𝑡, 𝑥) = 𝐺1+𝛼,1(𝑡, 𝑥) ∗ 𝑢0 + 𝑡𝐺1+𝛼,2(𝑡, 𝑥) ∗ 𝑢1. (45)

If (𝑢0, 𝑢1) ∈  (as defined in (12)), let 𝑟 = 𝑞 for 𝑡 ∈ [0, 1] and 𝑟 = 1 for 𝑡 ≥ 1 in (44) respectively, so that

‖(𝑢𝑡,∇𝑘𝑢)‖𝐿𝑞 ≲{‖𝑢0‖𝐻𝑘,𝑞 + ‖𝑢1‖𝐿𝑞 , 𝑡 ∈ [0, 1],
𝑡−𝛽1,𝑞 (‖𝑢0‖𝐻𝑘,1 + ‖𝑢1‖𝐿1 ), 𝑡 ≥ 1,

(46)

combining the two kinds of situations in (46) one can obtain the following estimate‖(𝑢𝑡,∇𝑘𝑢)‖𝐿𝑞 ≲ (1 + 𝑡)−𝛽1,𝑞 (‖𝑢0‖𝐻𝑘,1∩𝐻𝑘,𝑞 + ‖𝑢1‖𝐿1∩𝐿𝑞 ), ∀𝑞 ∈ [1,∞], 𝑡 ≥ 0. (47)

Remark 2.2. In the case of higher dimensions 𝑛 ≥ 2𝜎𝛼
1+𝛼

, the condition (42) holds for any 1 < 𝑚 ≤ 𝑟 ≤ 𝑞 ≤ ∞ and 𝜎 > 1+𝛼
2𝛼

,
where the parameter 𝑚 is chosen as the solution to

𝑛
2𝜎𝑚

= 𝛼
1 + 𝛼

− 𝛿 (48)

with a sufficiently small constant 𝛿 > 0. We now also consider the solution of the homogeneous problem (45), if (𝑢0, 𝑢1) ∈ 
(as defined in (17)), let 𝑟 = 𝑞 for 𝑡 ∈ [0, 1] and 𝑟 = 𝑚 for 𝑡 ≥ 1 in (31) respectively, so that

‖(𝑢𝑡,∇𝑘𝑢)‖𝐿𝑞 ≲{‖𝑢0‖𝐻𝑘,𝑞 + ‖𝑢1‖𝐿𝑞 , 𝑡 ∈ [0, 1],
𝑡−𝛽𝑚,𝑞 (‖𝑢0‖𝐻𝑘,𝑚 + ‖𝑢1‖𝐿𝑚 ), 𝑡 ≥ 1,

(49)

and this leads to the estimate‖(𝑢𝑡,∇𝑘𝑢)‖𝐿𝑞 ≲ (1 + 𝑡)−𝛽𝑚,𝑞 (‖𝑢0‖𝐻𝑘,𝑚∩𝐻𝑘,𝑞 + ‖𝑢1‖𝐿𝑚∩𝐿𝑞 ), ∀𝑞 ∈ [𝑚,∞], 𝑡 ≥ 0. (50)

Here the assumption 𝑢0 ∈ 𝐻𝑘,𝑟 in Theorem 2.1 is to ensure that estimates (47) and (50) are non-singular at 𝑡 = 0 when 𝑟 = 𝑞.

2.2 Proof of Theorem 2.1.
The following two properties of Mittag-Leffler are important in our proof.

Lemma 2.3 (13). For the Mittag-Leffler function, the following formula holds

𝜕𝑛𝑧(𝑧
𝛽−1𝐸1+𝛼,𝛽(𝜆𝑧𝛼+1)) = 𝑧𝛽−𝑛−1𝐸1+𝛼,𝛽−𝑛(𝜆𝑧𝛼+1)
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for any 𝑧 > 0, 𝑛 ∈ ℕ.
Lemma 2.4 (14). If 𝜌 ∈ (1∕3, 1), 𝛽 ∈ ℝ, and 𝑚 ∈ ℕ with 𝑚 ≥ 𝜌𝛽 − 1, then

𝐸1∕𝜌,𝛽(−𝑧1∕𝜌) = 2𝜌𝑧1−𝛽𝑒𝑧 cos(𝜋𝜌) cos
(
𝑧 sin(𝜋𝜌) − 𝜋𝜌(𝛽 − 1)

)
+

𝑚∑
𝑘=1

(−1)𝑘−1

Γ(𝛽 − 𝑘∕𝜌)
𝑧−𝑘∕𝜌 + Ω𝑚

(51)

holds for any 𝑧 > 0, where

Ω𝑚(𝑧) =
(−1)𝑚𝑧1−𝛽

𝜋
(
𝐼1,𝑚 sin

(
𝜋(𝛽 − (𝑚 + 1)∕𝜌)

)
+ 𝐼2,𝑚 sin

(
𝜋(𝛽 − 𝑚∕𝜌)

))
and

𝐼𝑗,𝑚(𝑧) =

∞

∫
0

𝑠(𝑚+𝑗)∕𝜌−𝛽

𝑠2∕𝜌 + 2 cos(𝜋∕𝜌)𝑠1∕𝜌 + 1
𝑒−𝑧𝑠𝑑𝑠.

Here we note that for any 𝑧 ∈ (0,∞), 𝐼𝑗,𝑚(𝑧) is uniformly bounded
∞

∫
0

𝑠(𝑚+𝑗)∕𝜌−𝛽

𝑠2∕𝜌 + 2 cos(𝜋∕𝜌)𝑠1∕𝜌 + 1
𝑑𝑠 < ∞ (52)

if and only if
−1 < 𝑚 + 𝑗 − 1 + 𝜌(1 − 𝛽) < 1. (53)

From Lemma 2.3 and 𝑢 in (35) is the solution to (31), we can estimate the time-derivatives of the solution

𝑢𝑡 = 𝑢lin𝑡 (𝑡, ⋅) +

𝑡

∫
0

(𝑡 − 𝜏)𝛼−1𝐺1+𝛼,𝛼(𝑡 − 𝜏, ⋅) ∗ 𝑓 (𝜏, ⋅)𝑑𝜏, (54)

where
𝑢lin𝑡 (𝑡, ⋅) = 𝑡−1𝐺1+𝛼,0(𝑡, ⋅) ∗ 𝑢0 + 𝐺1+𝛼,1(𝑡, ⋅) ∗ 𝑢1. (55)

The estimate for 𝐺1+𝛼,1(𝑡, ⋅) can be derived from (39) provided that 𝑛
2𝜎
(1 − 1

𝑝
) < 1, now we are going to perform the 𝐿𝑟 −𝐿𝑞

estimate of 𝑢𝑡 for any 1 ≤ 𝑟 ≤ 𝑞 ≤ ∞.
Lemma 2.5 (15). Let 𝑓 ∈ 𝐿𝑝(ℝ𝑛) is a radial function for some 𝑝 ∈ [1, 2]. Then the inverse Fourier transform

−1(𝑓 )(𝑥) =

∞

∫
0

𝑔(𝑟)𝑟𝑛−1𝐽 𝑛
2
−1(𝑟|𝑥|)𝑑𝑟, 𝑔(|𝑥|) ∶= 𝑓 (𝑥) (56)

is also a radial function, where the modified Bessel function 𝐽𝜇(𝑠) is defined by 𝐽𝜇(𝑠) ∶=
𝐽𝜇(𝑠)
𝑠𝜇

and the Bessel function 𝐽𝜇 has
the following form

𝐽𝜇(𝑠) =
∞∑
𝑘=0

(−1)𝑘

𝑘!Γ(𝑘 + 𝜇 + 1)
( 𝑠
2
)2𝑘+𝜇,

where 𝜇 cannot be a negative integer.
We introduce the following two estimates of the oscillating integrals.

Proposition 2.1 (16). For all dimensions 𝑛, the estimate

‖−1(|𝜉|𝑎𝑒−𝑐|𝜉|2𝑚𝑡)‖𝐿𝑝(ℝ𝑛) ≲ (𝑐𝑡)−
𝑎
2𝑚

− 𝑛
2𝑚

(1− 1
𝑝
) (57)

holds for any 𝑚 ∈ (0,∞), 𝑝 ∈ [1,∞], 𝑡 > 0. The parameters 𝑎 and 𝑐 are required to be non-negative and positive, respectively.
Proposition 2.2 (16). For all dimensions 𝑛, let 𝑎 ≥ 0, 𝑐1 > 0 and real 𝑐2 ≠ 0, then the estimate

‖−1(|𝜉|𝑎𝑒−𝑐1|𝜉|2𝑚𝑡 cos(𝑐2|𝜉|2𝑚𝑡))‖𝐿𝑝(ℝ𝑛) ≲ 𝑡
− 𝑎

2𝑚
− 𝑛

2𝑚
(1− 1

𝑝
) (58)

holds for any 𝑚 ∈ (0,∞), 𝑝 ∈ [1,∞], 𝑡 > 0.
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Taking 𝜌 = 1
1+𝛼

∈ (1∕3, 1), 𝑧 = 𝑡|𝜉|2𝜎𝜌, 𝑚 = 0, applying Lemma 2.4, we have‖𝐺1+𝛼,𝛼(𝑡, 𝑥)‖𝐿𝑝 = ‖−1(𝐸1+𝛼,𝛼(−𝑡1+𝛼|𝜉|2𝜎))‖𝐿𝑝
≲ ‖−1((𝑡|𝜉|2𝜎𝜌)1−𝛼𝑒𝑡|𝜉|2𝜎𝜌 cos(𝜋𝜌) cos (𝑡|𝜉|2𝜎𝜌 sin(𝜋𝜌) − 𝜋𝜌(𝛼 − 1)

))‖𝐿𝑝
+ ‖−1((𝑡|𝜉|2𝜎𝜌)1−𝛼 ∞

∫
0

𝑠2∕𝜌−𝛼

𝑠2∕𝜌 + 2 cos(𝜋∕𝜌)𝑠1∕𝜌 + 1
𝑒−𝑡𝑠|𝜉|2𝜎𝜌𝑑𝑠)‖𝐿𝑝 . (59)

From Proposition 2.2, the following polynomial type decay estimate holds

‖−1((𝑡|𝜉|2𝜎𝜌)1−𝛼𝑒𝑡|𝜉|2𝜎𝜌 cos(𝜋𝜌) cos (𝑡|𝜉|2𝜎𝜌 sin(𝜋𝜌) − 𝜋𝜌(𝛼 − 1)
))‖𝐿𝑝 ≲ 𝑡− 𝑛(1+𝛼)

2𝜎
(1− 1

𝑝
). (60)

According to Lemma 2.5, we get

−1
( ∞

∫
0

𝑠2∕𝜌−𝛼

𝑠2∕𝜌 + 2 cos(𝜋∕𝜌)𝑠1∕𝜌 + 1
(𝑡|𝜉|2𝜎𝜌)1−𝛼𝑒−𝑡𝑠|𝜉|2𝜎𝜌𝑑𝑠)(𝑡, 𝑥)

=

∞

∫
0

( ∞

∫
0

𝑠2∕𝜌−𝛼

𝑠2∕𝜌 + 2 cos(𝜋∕𝜌)𝑠1∕𝜌 + 1
(𝑡𝑟2𝜎𝜌)1−𝛼𝑒−𝑡𝑠𝑟2𝜎𝜌𝑟𝑛−1𝐽 𝑛

2
−1(𝑟|𝑥|)𝑑𝑟)𝑑𝑠

=

∞

∫
0

𝑠2∕𝜌−𝛼

𝑠2∕𝜌 + 2 cos(𝜋∕𝜌)𝑠1∕𝜌 + 1

( ∞

∫
0

(𝑡𝑟2𝜎𝜌)1−𝛼𝑒−𝑡𝑠𝑟2𝜎𝜌𝑟𝑛−1𝐽 𝑛
2
−1(𝑟|𝑥|)𝑑𝑟)𝑑𝑠

=

∞

∫
0

𝑠2∕𝜌−𝛼

𝑠2∕𝜌 + 2 cos(𝜋∕𝜌)𝑠1∕𝜌 + 1

(
−1((𝑡|𝜉|2𝜎𝜌)1−𝛼𝑒−𝑡𝑠|𝜉|2𝜎𝜌)(𝑡, 𝑥))𝑑𝑠.

(61)

And using Proposition 2.1, the estimate

‖−1((𝑡|𝜉|2𝜎𝜌)1−𝛼𝑒−𝑡𝑠|𝜉|2𝜎𝜌)‖𝐿𝑝 ≲ 𝑠−1+𝛼− 𝑛(1+𝛼)
2𝜎

(1− 1
𝑝
)𝑡−

𝑛(1+𝛼)
2𝜎

(1− 1
𝑝
) (62)

holds, (61) and (62) imply that

‖−1((𝑡|𝜉|2𝜎𝜌)1−𝛼 ∞

∫
0

𝑠2∕𝜌−𝛼

𝑠2∕𝜌 + 2 cos(𝜋∕𝜌)𝑠1∕𝜌 + 1
𝑒−𝑡𝑠|𝜉|2𝜎𝜌𝑑𝑠)‖𝐿𝑝

≲ 𝑡−
𝑛(1+𝛼)
2𝜎

(1− 1
𝑝
)

∞

∫
0

𝑠2∕𝜌−1−
𝑛(1+𝛼)
2𝜎

(1− 1
𝑝
)

𝑠2∕𝜌 + 2 cos(𝜋∕𝜌)𝑠1∕𝜌 + 1
𝑑𝑠 ≲ 𝑡−

𝑛(1+𝛼)
2𝜎

(1− 1
𝑝
),

(63)

where
𝑛
2𝜎

(1 − 1
𝑝
) < 2.

Thus, from (59), (60) and (63) we can obtain

‖𝐺1+𝛼,𝛼(𝑡, 𝑥)‖𝐿𝑝 ≲ 𝑡− 𝑛(1+𝛼)
2𝜎

(1− 1
𝑝
). (64)

For the operator 𝐺1+𝛼,0(𝑡, ⋅), in particular, since (−Δ)
𝜎

1+𝛼 𝑢0 ∈ 𝐿𝑟 for some 𝑟 ∈ [1, 𝑞], we have

‖(−Δ)− 𝜎
1+𝛼𝐺1+𝛼,0(𝑡, 𝑥)‖𝐿𝑝 = ‖−1(|𝜉|− 2𝜎

1+𝛼𝐸1+𝛼,0(−𝑡1+𝛼|𝜉|2𝜎))‖𝐿𝑝
≲ ‖−1(𝑡𝑒𝑡|𝜉|2𝜎𝜌 cos(𝜋𝜌) cos (𝑡|𝜉|2𝜎𝜌 sin(𝜋𝜌) + 𝜋𝜌))‖𝐿𝑝
+ ‖−1(𝑡 ∞

∫
0

𝑠1∕𝜌

𝑠2∕𝜌 + 2 cos(𝜋∕𝜌)𝑠1∕𝜌 + 1
𝑒−𝑡𝑠|𝜉|2𝜎𝜌𝑑𝑠)‖𝐿𝑝 ,

(65)

by taking 𝑚 = 0. From Proposition 2.1 and Proposition 2.2, the following estimates hold

‖−1(𝑡𝑒𝑡|𝜉|2𝜎𝜌 cos(𝜋𝜌) cos (𝑡|𝜉|2𝜎𝜌 sin(𝜋𝜌) + 𝜋𝜌))‖𝐿𝑝 ≲ 𝑡1− 𝑛(1+𝛼)
2𝜎

(1− 1
𝑝
), (66)

and ‖−1(𝑡𝑒−𝑡𝑠|𝜉|2𝜎𝜌)‖𝐿𝑝 ≲ 𝑠− 𝑛(1+𝛼)
2𝜎

(1− 1
𝑝
)𝑡1−

𝑛(1+𝛼)
2𝜎

(1− 1
𝑝
). (67)
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Combining lemma 2.5 and (67), we get

‖−1(𝑡 ∞

∫
0

𝑠1∕𝜌

𝑠2∕𝜌 + 2 cos(𝜋∕𝜌)𝑠1∕𝜌 + 1
𝑒−𝑡𝑠|𝜉|2𝜎𝜌𝑑𝑠)‖𝐿𝑝

≲ 𝑡1−
𝑛(1+𝛼)
2𝜎

(1− 1
𝑝
)

∞

∫
0

𝑠1∕𝜌−
𝑛(1+𝛼)
2𝜎

(1− 1
𝑝
)

𝑠2∕𝜌 + 2 cos(𝜋∕𝜌)𝑠1∕𝜌 + 1
𝑑𝑠 ≲ 𝑡1−

𝑛(1+𝛼)
2𝜎

(1− 1
𝑝
),

(68)

where
𝑛
2𝜎

(1 − 1
𝑝
) < 1 + 1

1 + 𝛼
.

Thus, from (65), (66) and (68) we have ‖𝐺1+𝛼,0(𝑡, 𝑥)‖𝐿𝑝 ≲ 𝑡1− 𝑛(1+𝛼)
2𝜎

(1− 1
𝑝
). (69)

In virtue of Young’s inequality, the following estimate of the homogeneous problem holds‖𝑢lin𝑡 ‖𝐿𝑞 ≲ 𝑡−𝛽𝑟,𝑞 (‖(−Δ) 𝜎
1+𝛼 𝑢0‖𝐿𝑟 + ‖𝑢1‖𝐿𝑟 ) ≲ 𝑡−𝛽𝑟,𝑞 (‖𝑢0‖𝐻𝑘,𝑟 + ‖𝑢1‖𝐿𝑟), (70)

for any 1 ≤ 𝑟 ≤ 𝑞 ≤ ∞, 𝑡 > 0, provided that
𝑛
2𝜎

(1
𝑟
− 1
𝑞
) < 1.

Next we consider the estimate of

(𝑁𝑓 )𝑡 ∶=

𝑡

∫
0

(𝑡 − 𝜏)𝛼−1𝐺1+𝛼,𝛼(𝑡 − 𝜏, ⋅) ∗ 𝑓 (𝜏, ⋅)𝑑𝜏, (71)

and

∇𝛾𝑁𝑓 ∶=

𝑡

∫
0

(𝑡 − 𝜏)𝛼∇𝛾𝐺1+𝛼,1+𝛼(𝑡 − 𝜏, ⋅) ∗ 𝑓 (𝜏, ⋅)𝑑𝜏, 𝛾 ≥ 0. (72)

The following estimate will be used frequently later in our proofs.
Lemma 2.6 (4). Let 𝑎 < 1 and 𝑏 ∈ ℝ. Then there exists a constant 𝐶 = 𝐶(𝑎, 𝑏) > 0, the following estimate holds

𝑡

∫
0

(𝑡 − 𝜏)−𝑎(1 + 𝜏)−𝑏𝑑𝜏 ≤
⎧⎪⎨⎪⎩
𝐶(1 + 𝑡)−𝑎, 𝑖𝑓 𝑎 < 1 < 𝑏,
𝐶(1 + 𝑡)−𝑎 log(1 + 𝑡), 𝑖𝑓 𝑎 < 1 = 𝑏,
𝐶(1 + 𝑡)−𝑎+1−𝑏, 𝑖𝑓 𝑎, 𝑏 < 1

(73)

for all 𝑡 > 0.
Thanks to (64) and Lemma 2.2, if 𝑓 (𝜏, ⋅) ∈ 𝐿𝑟, we have

‖(𝑁𝑓 )𝑡‖𝐿𝑞 ≲ 𝑡

∫
0

(𝑡 − 𝜏)𝛼−1−𝛽𝑟,𝑞‖𝑓 (𝜏, ⋅)‖𝐿𝑟𝑑𝜏, (74)

and

‖∇𝛾𝑁𝑓‖𝐿𝑞 ≲ 𝑡

∫
0

(𝑡 − 𝜏)𝛼−
(1+𝛼)𝛾
2𝜎

−𝛽𝑟,𝑞‖𝑓 (𝜏, ⋅)‖𝐿𝑟𝑑𝜏. (75)

Due to ‖𝑓 (𝜏, ⋅)‖𝐿𝑟 ≤ 𝐾(1 + 𝑡)−𝜂 , ∀𝑡 ≥ 0 (76)
for some 𝐾 > 0 and 𝜂 ∈ ℝ, then the following estimate holds

‖((𝑁𝑓 )𝑡,∇𝑘𝑁𝑓
)‖𝐿𝑞 ≲ ⎧⎪⎨⎪⎩

𝐾(1 + 𝑡)𝛼−1−𝛽𝑟,𝑞 , 𝑖𝑓 𝜂 > 1,
𝐾(1 + 𝑡)𝛼−1−𝛽𝑟,𝑞 log(1 + 𝑡), 𝑖𝑓 𝜂 = 1,
𝐾(1 + 𝑡)𝛼−𝜂−𝛽𝑟,𝑞 , 𝑖𝑓 𝜂 < 1.

(77)

From Lemma 2.6, it is not difficult to see that the inequality (77) is only holds if the condition
𝑛
2𝜎

(1
𝑟
− 1
𝑞
) < 𝛼

1 + 𝛼
, 1 ≤ 𝑟 ≤ 𝑞 ≤ ∞ (78)

is satisfied. Thus, we obtain the 𝐿𝑟 − 𝐿𝑞 (1 ≤ 𝑟 ≤ 𝑞 ≤ ∞) estimate (44) of the linear problem (31).
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3 PROOF OF THE GLOBAL EXISTENCE RESULTS

We first give a brief description of the global iteration method introduced by Li.17
For a given space 𝑋, it is equipped with a finite norm ‖ ⋅ ‖𝑋 related to the decay rates for the solution to (31), then the global

iteration method will be carried out through the following framework.
By (35), a solution 𝑢 ∈ 𝑋 to the linear problem (31) satisfies the equality

𝑢(𝑡, 𝑥) ∶= 𝑢lin(𝑡, 𝑥) +𝑁𝑢 (79)

in 𝑋, where we select 𝑓 (𝜏, 𝑥) = 𝐹 (𝑢𝑡) in (37). In particular, if we get‖𝑢‖𝑋 ≲ 𝜀 + ‖𝑢‖𝑝𝑋 , (80)

and ‖𝑁𝑢 −𝑁𝑣‖𝑋 ≲ ‖𝑢 − 𝑣‖𝑋(‖𝑢‖𝑝−1𝑋 + ‖𝑣‖𝑝−1𝑋 ). (81)
By Banach fixed point theory, and from (80) one can see that 𝑢lin +𝑁𝑢 is a mapping of 𝑋 to itself for small data as 𝑢lin ∈ 𝑋
and 𝑝 > 1, and that estimates (80)-(81) determine a unique solution 𝑢 to (79) exists globally. Then local and global existence
results are obtained simultaneously.

3.1 Proof of Theorem 1.1.
We define the space

𝑋 = {𝑢 ∣ 𝑢 ∈ 𝐶
(
[0,∞), 𝐻̇𝑘,1 ∩ 𝐻̇𝑘,∞) ∩ 𝐶1([0,∞), 𝐿1 ∩ 𝐿∞), ‖𝑢‖𝑋 < 𝑀} (82)

with the norm ‖𝑢‖𝑋 = sup
𝑡≥0 (1 + 𝑡)

−𝜆{‖𝑢𝑡‖𝐿1 + (1 + 𝑡)𝛽1,∞‖𝑢𝑡‖𝐿∞ + ‖𝑢‖𝐻̇𝑘,1 + (1 + 𝑡)𝛽1,∞‖𝑢‖𝐻̇𝑘,∞}, (83)

where 𝛽1,∞ = 𝑛(1+𝛼)
2𝜎

, 𝑀 > 0.
For any 𝑢 ∈ 𝑋, consider the following mapping

𝜙 ∶ 𝑋 → 𝑋, 𝜙𝑢 ∶= 𝑢lin(𝑡, 𝑥) +𝑁𝑢.

We shall prove that ‖𝜙𝑢‖𝑋 ≲ ‖(𝑢0, 𝑢1)‖ + ‖𝑢‖𝑝𝑋 , (84)
and ‖𝜙𝑢 − 𝜙𝑣‖𝑋 ≲ ‖𝑢 − 𝑣‖𝑋(‖𝑢‖𝑝−1𝑋 + ‖𝑣‖𝑝−1𝑋 ). (85)
For the proof of (84), after taking into consideration the estimate (47), we have‖𝑢lin‖𝑋 = sup

𝑡≥0 (1 + 𝑡)
−𝜆{‖𝑢lin𝑡 ‖𝐿1 + (1 + 𝑡)𝛽1,∞‖𝑢lin𝑡 ‖𝐿∞

+ ‖𝑢lin‖𝐻̇𝑘,1 + (1 + 𝑡)𝛽1,∞‖𝑢lin‖𝐻̇𝑘,∞}
≲ ‖(𝑢0, 𝑢1)‖.

(86)

It remains to prove that ‖𝑁𝑢‖𝑋 ≲ ‖𝑢‖𝑝𝑋 . If 𝑢 ∈ 𝑋, then by interpolation one can get the following estimate‖𝑢𝑡‖𝐿𝑞 ≲ (1 + 𝑡)𝜆−𝛽1,𝑞‖𝑢‖𝑋 , 𝑞 ∈ [1,∞]. (87)

Consequently, ‖|𝑢𝑡|𝑝‖𝐿1 ≲ ‖𝑢𝑡‖𝑝𝐿𝑝 ≲ (1 + 𝑡)−(𝛽1,𝑝−𝜆)𝑝‖𝑢‖𝑝𝑋 , (88)
notice that (𝛽1,𝑝 − 𝜆)𝑝 > 1 if and only if

𝑝 > 1 + 2(1 + 𝜆)𝜎
𝑛(1 + 𝛼) − 2𝜆𝜎

.

We now apply Theorem 2.1 to the nonlinear part of the solution. Taking 𝑟 = 1, 𝑓 (𝜏, 𝑥) = |𝑢𝑡|𝑝 and 𝐾 = 𝑐‖𝑢‖𝑝𝑋 , for some
𝑐 > 0, and thanks to (88), ‖((𝑁𝑢)𝑡,∇𝑘𝑁𝑢

)‖𝐿𝑞 ≲ (1 + 𝑡)𝛼−1−𝛽1,𝑞‖𝑢‖𝑝𝑋 ≲ (1 + 𝑡)𝛼−1−𝛽1,𝑞+𝜆‖𝑢‖𝑝𝑋 , (89)
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let 𝑞 = 1,∞, respectively, thus ‖𝑁𝑢‖𝑋 ≲ ‖𝑢‖𝑝𝑋 . (90)
Finally, it remains to show (85). By Hölder’s inequality, for 𝑢, 𝑣 ∈ 𝑋, then‖|𝑢𝑡|𝑝 − |𝑣𝑡|𝑝‖𝐿1 ≲ ‖|𝑢𝑡 − 𝑣𝑡|(|𝑢𝑡|𝑝−1 + |𝑣𝑡|𝑝−1)‖𝐿1

≲ ‖𝑢𝑡 − 𝑣𝑡‖𝐿𝑝‖|𝑢𝑡|𝑝−1 + |𝑣𝑡|𝑝−1‖𝐿 𝑝
𝑝−1

≲ ‖𝑢𝑡 − 𝑣𝑡‖𝐿𝑝(‖𝑢𝑡‖𝑝−1𝐿𝑚𝑝 + ‖𝑣𝑡‖𝑝−1𝐿𝑚𝑝 )

≲ (1 + 𝑡)−(𝛽1,𝑝−𝜆)𝑝‖𝑢 − 𝑣‖𝑋(‖𝑢‖𝑝−1𝑋 + ‖𝑣‖𝑝−1𝑋 ).

(91)

Hence, ‖(𝑁𝑢)𝑡 − (𝑁𝑣)𝑡‖𝐿𝑞 ≲ (1 + 𝑡)𝛼−1−𝛽1,𝑞+𝜆‖𝑢 − 𝑣‖𝑋(‖𝑢‖𝑝−1𝑋 + ‖𝑣‖𝑝−1𝑋 ), (92)

‖∇𝑘(𝑁𝑢 −𝑁𝑣)‖𝐿𝑞 ≲ (1 + 𝑡)𝛼−1−𝛽1,𝑞+𝜆‖𝑢 − 𝑣‖𝑋(‖𝑢‖𝑝−1𝑋 + ‖𝑣‖𝑝−1𝑋 ), (93)
let 𝑞 = 1,∞, respectively, (92) and (93) lead to‖𝜙𝑢 − 𝜙𝑣‖𝑋 = ‖𝑁𝑢 −𝑁𝑣‖𝑋 ≲ ‖𝑢 − 𝑣‖𝑋(‖𝑢‖𝑝−1𝑋 + ‖𝑣‖𝑝−1𝑋 ). (94)

Then we may conclude a unique global solution

𝑢 ∈ 𝐶
(
[0,∞), 𝐻̇𝑘,1 ∩ 𝐻̇𝑘,∞) ∩ 𝐶1([0,∞), 𝐿1 ∩ 𝐿∞). (95)

The proof is completed.

3.2 Proof of Theorem 1.2.
We now define the space

𝑋 = {𝑢 ∣ 𝑢 ∈ 𝐶
(
[0,∞), 𝐻̇𝑘,𝑚 ∩ 𝐻̇𝑘,∞) ∩ 𝐶1([0,∞), 𝐿𝑚 ∩ 𝐿∞), ‖𝑢‖𝑋 < 𝑀̃} (96)

with the norm ‖𝑢‖𝑋 = sup
𝑡≥0 (1 + 𝑡)

𝜂−𝛼{‖𝑢𝑡‖𝐿𝑚 + (1 + 𝑡)𝛽𝑚,∞‖𝑢𝑡‖𝐿∞ + ‖𝑢‖𝐻̇𝑘,𝑚 + (1 + 𝑡)𝛽𝑚,∞‖𝑢‖𝐻̇𝑘,∞}, (97)

where 𝛽𝑚,∞ = 𝑛(1+𝛼)
2𝜎𝑚

, 𝜂 = 𝛼𝑝
𝑝−1

− 𝑛(1+𝛼)(𝑝−𝑚)
2𝜎𝑚(𝑝−1)

> 0 , 𝑀̃ > 0. Notice that 𝜂 < 𝛼 if and only if

𝑝 > 1 + 𝑛(1 + 𝛼)
2𝜎𝛼

for sufficiently small constant 𝛿 → 0+ in (48).
For any 𝑢 ∈ 𝑋, consider the mapping

𝜓 ∶ 𝑋 → 𝑋, 𝜓𝑢 ∶= 𝑢lin(𝑡, 𝑥) +𝑁𝑢.

We shall prove that ‖𝜓𝑢‖𝑋 ≲ ‖(𝑢0, 𝑢1)‖ + ‖𝑢‖𝑝𝑋 , (98)
and ‖𝜓𝑢 − 𝜓𝑣‖𝑋 ≲ ‖𝑢 − 𝑣‖𝑋(‖𝑢‖𝑝−1𝑋 + ‖𝑣‖𝑝−1𝑋 ). (99)
For the proof of (98), by means of the estimate (50), we have‖𝑢lin‖𝑋 = sup

𝑡≥0 (1 + 𝑡)
𝜂−𝛼{‖𝑢lin𝑡 ‖𝐿𝑚 + (1 + 𝑡)𝛽𝑚,∞‖𝑢lin𝑡 ‖𝐿∞

+ ‖𝑢lin‖𝐻̇𝑘,𝑚 + (1 + 𝑡)𝛽𝑚,∞‖𝑢lin‖𝐻̇𝑘,∞}
≲ ‖(𝑢0, 𝑢1)‖.

(100)

It remains to prove that ‖𝑁𝑢‖𝑋 ≲ ‖𝑢‖𝑝𝑋 . If 𝑢 ∈ 𝑋, then by interpolation one can get the following estimate‖𝑢𝑡‖𝐿𝑞 ≲ (1 + 𝑡)𝛼−𝜂−𝛽𝑚,𝑞‖𝑢‖𝑋 , 𝑞 ∈ [𝑚,∞]. (101)

Consequently, ‖|𝑢𝑡|𝑝‖𝐿𝑚 ≲ ‖𝑢𝑡‖𝑝𝐿𝑚𝑝 ≲ (1 + 𝑡)−(𝜂−𝛼+𝛽𝑚,𝑚𝑝)𝑝‖𝑢‖𝑝𝑋
≲ (1 + 𝑡)−(𝜂−𝛼+𝛽𝑚,𝑝)𝑝‖𝑢‖𝑝𝑋 (102)
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due to 𝛽𝑚,𝑚𝑝 > 𝛽𝑚,𝑝, note that
0 < (𝜂 − 𝛼 + 𝛽𝑚,𝑝)𝑝 = 𝜂 < 𝛼 < 1. (103)

For the nonlinear part of the solution, similar to the proof in Theorem 1.1 except that set 𝑟 = 𝑚, from (102),‖((𝑁𝑢)𝑡,∇𝑘𝑁𝑢
)‖𝐿𝑞 ≲ (1 + 𝑡)𝛼−𝜂−𝛽𝑚,𝑞‖𝑢‖𝑝𝑋 , (104)

let 𝑞 = 𝑚,∞, respectively, thus ‖𝑁𝑢‖𝑋 ≲ ‖𝑢‖𝑝𝑋 . (105)
Finally, it remains to show (99). By Hölder’s inequality, for 𝑢, 𝑣 ∈ 𝑋, then‖|𝑢𝑡|𝑝 − |𝑣𝑡|𝑝‖𝐿𝑚 ≲ ‖|𝑢𝑡 − 𝑣𝑡|(|𝑢𝑡|𝑝−1 + |𝑣𝑡|𝑝−1)‖𝐿𝑚

≲ ‖𝑢𝑡 − 𝑣𝑡‖𝐿𝑚𝑝‖|𝑢𝑡|𝑝−1 + |𝑣𝑡|𝑝−1‖𝐿 𝑚𝑝
𝑝−1

≲ ‖𝑢𝑡 − 𝑣𝑡‖𝐿𝑚𝑝 (‖𝑢𝑡‖𝑝−1𝐿𝑚𝑝 + ‖𝑣𝑡‖𝑝−1𝐿𝑚𝑝 )

≲ (1 + 𝑡)−(𝜂−𝛼+𝛽𝑚,𝑚𝑝)𝑝‖𝑢 − 𝑣‖𝑋(‖𝑢‖𝑝−1𝑋 + ‖𝑣‖𝑝−1𝑋 )

≲ (1 + 𝑡)−(𝜂−𝛼+𝛽𝑚,𝑝)𝑝‖𝑢 − 𝑣‖𝑋(‖𝑢‖𝑝−1𝑋 + ‖𝑣‖𝑝−1𝑋 ).

(106)

Hence, ‖(𝑁𝑢)𝑡 − (𝑁𝑣)𝑡‖𝐿𝑞 ≲ (1 + 𝑡)𝛼−𝜂−𝛽𝑚,𝑞‖𝑢 − 𝑣‖𝑋(‖𝑢‖𝑝−1𝑋 + ‖𝑣‖𝑝−1𝑋 ), (107)

‖∇𝑘(𝑁𝑢 −𝑁𝑣)‖𝐿𝑞 ≲ (1 + 𝑡)𝛼−𝜂−𝛽𝑚,𝑞‖𝑢 − 𝑣‖𝑋(‖𝑢‖𝑝−1𝑋 + ‖𝑣‖𝑝−1𝑋 ), (108)
let 𝑞 = 𝑚,∞, respectively, (107) and (108) lead to‖Φ𝑢 − Φ𝑣‖𝑋 = ‖𝑁𝑢 −𝑁𝑣‖𝑋 ≲ ‖𝑢 − 𝑣‖𝑋(‖𝑢‖𝑝−1𝑋 + ‖𝑣‖𝑝−1𝑋 ). (109)

Then we may conclude a unique global solution

𝑢 ∈ 𝐶
(
[0,∞), 𝐻̇𝑘,𝑚 ∩ 𝐻̇𝑘,∞) ∩ 𝐶1([0,∞), 𝐿𝑚 ∩ 𝐿∞). (110)

The proof is completed.

3.3 Proof of Theorem 1.3.
We define the space

𝑋 = {𝑢 ∣ 𝑢 ∈ 𝐶
(
[0,∞), 𝐻̇𝑘,1 ∩ 𝐻̇𝑘,∞) ∩ 𝐶1([0,∞), 𝐿1 ∩ 𝐿∞), ‖𝑢‖𝑋 < 𝑀} (111)

with the norm ‖𝑢‖𝑋 = sup
𝑡≥0 (1 + 𝑡)

𝜇−𝛼{‖𝑢𝑡‖𝐿1 + (1 + 𝑡)𝛽1,∞‖𝑢𝑡‖𝐿∞ + ‖𝑢‖𝐻̇𝑘,1 + (1 + 𝑡)𝛽1,∞‖𝑢‖𝐻̇𝑘,∞}. (112)
For any 𝑢 ∈ 𝑋, consider the mapping

Φ ∶ 𝑋 → 𝑋, Φ𝑢 ∶= 𝑢lin(𝑡, 𝑥) +𝑁𝑢.

We shall prove that ‖Φ𝑢‖𝑋 ≲ ‖(𝑢0, 𝑢1)‖ + ‖𝑢‖𝑝𝑋 , (113)
and ‖Φ𝑢 − Φ𝑣‖𝑋 ≲ ‖𝑢 − 𝑣‖𝑋(‖𝑢‖𝑝−1𝑋 + ‖𝑣‖𝑝−1𝑋 ). (114)
For the proof of (113), from the estimate (47), we have‖𝑢lin‖𝑋 = sup

𝑡≥0 (1 + 𝑡)
𝜇−𝛼{‖𝑢lin𝑡 ‖𝐿1 + (1 + 𝑡)𝛽1,∞‖𝑢lin𝑡 ‖𝐿∞

+ ‖𝑢lin‖𝐻̇𝑘,1 + (1 + 𝑡)𝛽1,∞‖𝑢lin‖𝐻̇𝑘,∞}
≲ ‖(𝑢0, 𝑢1)‖.

(115)

It remains to prove that ‖𝑁𝑢‖𝑋 ≲ ‖𝑢‖𝑝𝑋 . If 𝑢 ∈ 𝑋, then by interpolation one can get the following estimate‖𝑢𝑡‖𝐿𝑞 ≲ (1 + 𝑡)𝛼−𝜇−𝛽1,𝑞‖𝑢‖𝑋 , 𝑞 ∈ [1,∞]. (116)

Consequently, ‖|𝑢𝑡(𝑡, 𝑥)|𝑝‖𝐿1 ≲ ‖𝑢𝑡(𝑡, 𝑥)‖𝑝𝐿𝑝 ≲ (1 + 𝑡)−(𝜇−𝛼+𝛽1,𝑝)𝑝‖𝑢‖𝑝𝑋 , (117)
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notice that (𝜇 − 𝛼 + 𝛽1,𝑝)𝑝 > 1 if and only if

𝑝 > 1 +
2(1 + 𝛼 − 𝜇)𝜎

𝑛(1 + 𝛼) − 2(𝛼 − 𝜇)𝜎
.

We now apply Lemma 2.6 twice to the nonlinear part of the solution, for (74) and (75). Taking 𝑟 = 1, 𝑓 (𝜏, 𝑥) = ∫ 𝜏
0 (𝜏 −

𝑠)−𝜇|𝑢𝑡(𝑠, 𝑥)|𝑝𝑑𝑠 and 𝐾 = 𝑐‖𝑢‖𝑝𝑋 , for some 𝑐 > 0. Combine with (117), then

‖((𝑁𝑢)𝑡,∇𝑘𝑁𝑢
)‖𝐿𝑞 ≲ 𝑡

∫
0

(𝑡 − 𝜏)𝛼−1−𝛽1,𝑞‖𝑓 (𝜏, 𝑥)‖𝐿1𝑑𝜏

≲

𝑡

∫
0

(𝑡 − 𝜏)𝛼−1−𝛽1,𝑞
𝜏

∫
0

(𝜏 − 𝑠)−𝜇‖|𝑢𝑡(𝑠, 𝑥)|𝑝‖𝐿1𝑑𝑠𝑑𝜏

≲

𝑡

∫
0

(𝑡 − 𝜏)𝛼−1−𝛽1,𝑞
𝜏

∫
0

(𝜏 − 𝑠)−𝜇(1 + 𝑠)−(𝜇−𝛼+𝛽1,𝑝)𝑝‖𝑢‖𝑝𝑋𝑑𝑠𝑑𝜏
≲

𝑡

∫
0

(𝑡 − 𝜏)𝛼−1−𝛽1,𝑞 (1 + 𝜏)−𝜇𝑑𝜏‖𝑢‖𝑝𝑋
≲ (1 + 𝑡)𝛼−𝜇−𝛽1,𝑞‖𝑢‖𝑝𝑋 ,

(118)

let 𝑞 = 1,∞, respectively, thus ‖𝑁𝑢‖𝑋 ≲ ‖𝑢‖𝑝𝑋 . (119)
Finally, it remains to show (114). By Hölder’s inequality, for 𝑢, 𝑣 ∈ 𝑋,‖|𝑢𝑡|𝑝 − |𝑣𝑡|𝑝‖𝐿1 ≲ ‖|𝑢𝑡 − 𝑣𝑡|(|𝑢𝑡|𝑝−1 + |𝑣𝑡|𝑝−1)‖𝐿1

≲ ‖𝑢𝑡 − 𝑣𝑡‖𝐿𝑝‖|𝑢𝑡|𝑝−1 + |𝑣𝑡|𝑝−1‖𝐿 𝑝
𝑝−1

≲ ‖𝑢𝑡 − 𝑣𝑡‖𝐿𝑝(‖𝑢𝑡‖𝑝−1𝐿𝑝 + ‖𝑣𝑡‖𝑝−1𝐿𝑝 )

≲ (1 + 𝑡)−(𝜇−𝛼+𝛽1,𝑝)𝑝‖𝑢 − 𝑣‖𝑋(‖𝑢‖𝑝−1𝑋 + ‖𝑣‖𝑝−1𝑋 ).

(120)

Hence, ‖(𝑁𝑢)𝑡 − (𝑁𝑣)𝑡‖𝐿𝑞 ≲ (1 + 𝑡)𝛼−𝜇−𝛽1,𝑞‖𝑢 − 𝑣‖𝑋(‖𝑢‖𝑝−1𝑋 + ‖𝑣‖𝑝−1𝑋 ), (121)

‖∇𝑘(𝑁𝑢 −𝑁𝑣)‖𝐿𝑞 ≲ (1 + 𝑡)𝛼−𝜇−𝛽1,𝑞‖𝑢 − 𝑣‖𝑋(‖𝑢‖𝑝−1𝑋 + ‖𝑣‖𝑝−1𝑋 ), (122)
let 𝑞 = 1,∞, respectively, (121) and (122) lead to‖Φ𝑢 − Φ𝑣‖𝑋 = ‖𝑁𝑢 −𝑁𝑣‖𝑋 ≲ ‖𝑢 − 𝑣‖𝑋(‖𝑢‖𝑝−1𝑋 + ‖𝑣‖𝑝−1𝑋 ). (123)

Then we may conclude a unique global solution

𝑢 ∈ 𝐶
(
[0,∞), 𝐻̇𝑘,1 ∩ 𝐻̇𝑘,∞) ∩ 𝐶1([0,∞), 𝐿1 ∩ 𝐿∞). (124)

The proof is completed.

3.4 Proof of Theorem 1.4.
We now define the space

𝑋 = {𝑢 ∣ 𝑢 ∈ 𝐶
(
[0,∞), 𝐻̇𝑘,𝑚 ∩ 𝐻̇𝑘,∞) ∩ 𝐶1([0,∞), 𝐿𝑚 ∩ 𝐿∞), ‖𝑢‖𝑋 < 𝑀̃} (125)

with the norm ‖𝑢‖𝑋 = sup
𝑡≥0 (1 + 𝑡)

𝜇−𝛼+𝜉−1{‖𝑢𝑡‖𝐿𝑚 + (1 + 𝑡)𝛽𝑚,∞‖𝑢𝑡‖𝐿∞

+ ‖𝑢‖𝐻̇𝑘,𝑚 + (1 + 𝑡)𝛽𝑚,∞‖𝑢‖𝐻̇𝑘,∞},
(126)
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where 𝜉 = (𝛼+1−𝜇)𝑝
𝑝−1

− 𝑛(1+𝛼)(𝑝−𝑚)
2𝜎𝑚(𝑝−1)

> 0, notice that 𝜉 < 𝛼 + 1 − 𝜇 if and only if

𝑝 > 1 +
2𝜎(1 − 𝜇) + 𝑛(1 + 𝛼)

2𝜎𝛼
for sufficiently small 𝛿 → 0+ in (48).

For any 𝑢 ∈ 𝑋, consider the following mapping

Ψ ∶ 𝑋 → 𝑋, Ψ𝑢 ∶= 𝑢lin(𝑡, 𝑥) +𝑁𝑢.

We shall prove that ‖Ψ𝑢‖𝑋 ≲ ‖(𝑢0, 𝑢1)‖ + ‖𝑢‖𝑝𝑋 , (127)
and ‖Ψ𝑢 − Ψ𝑣‖𝑋 ≲ ‖𝑢 − 𝑣‖𝑋(‖𝑢‖𝑝−1𝑋 + ‖𝑣‖𝑝−1𝑋 ). (128)
For the proof of (127), according to the the estimate (50), we have‖𝑢lin‖𝑋 = sup

𝑡≥0 (1 + 𝑡)
𝜇−𝛼+𝜉−1{‖𝑢lin𝑡 ‖𝐿𝑚 + (1 + 𝑡)𝛽𝑚,∞‖𝑢lin𝑡 ‖𝐿∞

+ ‖𝑢lin‖𝐻̇𝑘,𝑚 + (1 + 𝑡)𝛽𝑚,∞‖𝑢lin‖𝐻̇𝑘,∞}
≲ ‖(𝑢0, 𝑢1)‖.

(129)

It remains to prove that ‖𝑁𝑢‖𝑋 ≲ ‖𝑢‖𝑝𝑋 . If 𝑢 ∈ 𝑋, then by interpolation one can get the following estimate‖𝑢𝑡‖𝐿𝑞 ≲ (1 + 𝑡)𝛼+1−𝜇−𝜉−𝛽𝑚,𝑞‖𝑢‖𝑋 , 𝑞 ∈ [𝑚,∞]. (130)

Consequently, ‖|𝑢𝑡(𝑡, 𝑥)|𝑝‖𝐿𝑚 ≲ ‖𝑢𝑡(𝑡, 𝑥)‖𝑝𝐿𝑚𝑝 ≲ (1 + 𝑡)−(𝜇−𝛼+𝜉−1+𝛽𝑚,𝑚𝑝)𝑝‖𝑢‖𝑝𝑋
≲ (1 + 𝑡)−(𝜇−𝛼+𝜉−1+𝛽𝑚,𝑝)𝑝‖𝑢‖𝑝𝑋 . (131)

due to 𝛽𝑚,𝑚𝑝 > 𝛽𝑚,𝑝, note that
0 < (𝜇 − 𝛼 + 𝜉 − 1 + 𝛽𝑚,𝑝)𝑝 = 𝜉 < 𝛼 + 1 − 𝜇 < 1, (132)

since 𝜇 > 𝛼.
For the nonlinear part of the solution, similar to the proof in Theorem 1.3, by taking 𝑟 = 𝑚 in (74) and (75) and combine with

(131), then

‖((𝑁𝑢)𝑡,∇𝑘𝑁𝑢
)‖𝐿𝑞 ≲ 𝑡

∫
0

(𝑡 − 𝜏)𝛼−1−𝛽𝑚,𝑞‖𝑓 (𝜏, ⋅)‖𝐿𝑚𝑑𝜏
≲

𝑡

∫
0

(𝑡 − 𝜏)𝛼−1−𝛽𝑚,𝑞
𝜏

∫
0

(𝜏 − 𝑠)−𝜇‖|𝑢𝑡(𝑠, 𝑥)|𝑝‖𝐿𝑚𝑑𝑠𝑑𝜏
≲

𝑡

∫
0

(𝑡 − 𝜏)𝛼−1−𝛽𝑚,𝑞
𝜏

∫
0

(𝜏 − 𝑠)−𝜇(1 + 𝑠)−(𝜇−𝛼+𝜉−1+𝛽𝑚,𝑝)𝑝‖𝑢‖𝑝𝑋𝑑𝑠𝑑𝜏
≲

𝑡

∫
0

(𝑡 − 𝜏)𝛼−1−𝛽𝑚,𝑞 (1 + 𝜏)−𝜇+1−𝜉𝑑𝜏‖𝑢‖𝑝𝑋
≲ (1 + 𝑡)𝛼+1−𝜇−𝜉−𝛽𝑚,𝑞‖𝑢‖𝑝𝑋 ,

(133)

let 𝑞 = 𝑚,∞, respectively, thus ‖𝑁𝑢‖𝑋 ≲ ‖𝑢‖𝑝𝑋 . (134)
Finally, it remains to show (128). By Hölder’s inequality, for 𝑢, 𝑣 ∈ 𝑋,‖|𝑢𝑡|𝑝 − |𝑣𝑡|𝑝‖𝐿𝑚 ≲ ‖|𝑢𝑡 − 𝑣𝑡|(|𝑢𝑡|𝑝−1 + |𝑣𝑡|𝑝−1)‖𝐿𝑚

≲ ‖𝑢𝑡 − 𝑣𝑡‖𝐿𝑚𝑝‖|𝑢𝑡|𝑝−1 + |𝑣𝑡|𝑝−1‖𝐿 𝑚𝑝
𝑝−1

≲ ‖𝑢𝑡 − 𝑣𝑡‖𝐿𝑚𝑝(‖𝑢𝑡‖𝑝−1𝐿𝑚𝑝 + ‖𝑣𝑡‖𝑝−1𝐿𝑚𝑝 )

≲ (1 + 𝑡)−(𝜇−𝛼+𝜉−1+𝛽𝑚,𝑚𝑝)𝑝‖𝑢 − 𝑣‖𝑋(‖𝑢‖𝑝−1𝑋 + ‖𝑣‖𝑝−1𝑋 )

≲ (1 + 𝑡)−(𝜇−𝛼+𝜉−1+𝛽𝑚,𝑝)𝑝‖𝑢 − 𝑣‖𝑋(‖𝑢‖𝑝−1𝑋 + ‖𝑣‖𝑝−1𝑋 ).

(135)
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Hence, ‖(𝑁𝑢)𝑡 − (𝑁𝑣)𝑡‖𝐿𝑞 ≲ (1 + 𝑡)𝛼+1−𝜇−𝜉−𝛽𝑚,𝑞‖𝑢 − 𝑣‖𝑋(‖𝑢‖𝑝−1𝑋 + ‖𝑣‖𝑝−1𝑋 ), (136)

‖∇𝑘(𝑁𝑢 −𝑁𝑣)‖𝐿𝑞 ≲ (1 + 𝑡)𝛼+1−𝜇−𝜉−𝛽𝑚,𝑞‖𝑢 − 𝑣‖𝑋(‖𝑢‖𝑝−1𝑋 + ‖𝑣‖𝑝−1𝑋 ), (137)
let 𝑞 = 1,∞, respectively, (136) and (137) lead to‖Φ𝑢 − Φ𝑣‖𝑋 = ‖𝑁𝑢 −𝑁𝑣‖𝑋 ≲ ‖𝑢 − 𝑣‖𝑋(‖𝑢‖𝑝−1𝑋 + ‖𝑣‖𝑝−1𝑋 ). (138)

Then we may conclude a unique global solution

𝑢 ∈ 𝐶
(
[0,∞), 𝐻̇𝑘,1 ∩ 𝐻̇𝑘,∞) ∩ 𝐶1([0,∞), 𝐿1 ∩ 𝐿∞). (139)

The proof is completed.
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