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Abstract

This paper settles event-triggered synchronization and H,, synchronization matters for two types of coupled delayed
reaction-diffusion memristive neural networks (CDRDMNNSs). First of all, several synchronization and H,, syn-
chronization conditions are acquired for CDRDMNNSs with state coupling in virtue of exploiting Lyapunov stability
theory in combination with proper controllers of the triggering event. Then, for CDRDMNNSs with spatial diffusion
coupling, event-triggered synchronization and H,, synchronization are investigated as well. Finally, the correctness
of the deduced synchronization and ., synchronization results is verified by two given numerical examples.
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1. Introduction

Recently, complex networks (CNs) have absorbed extensive attention from investigators because they are ubig-
uitous under the circumstance of our daily, for instance, public traffic networks, communication networks, social
networks and multi-agent systems [1, 2]. As a special type of CNs, coupled neural networks (CNNs) have been ap-
plied triumphantly in various domains, e.g., image encryption, pattern recognition and secure communication [3]-[5].
Actually, these extensive applications in a certain extent depend on CNNs’ behaviors of dynamics. It is understood
that synchronization is an interesting and significant dynamical behavior, and thus has acquired more and more atten-
tion. At present, many crucial synchronization results on this topic have been derived recently [6]-[11]. [6] solved the
synchronization problem of delayed CNNs and established some conditions to make sure of the synchronization of
the considered network. [9] firstly introduced normalized left eigenvector approach, thereby synchronization stability
criteria were established for coupled ODE:s.

It is well known that disturbance or noise are unavoidable and maybe lead the networks to unanticipated states or
destroy the synchronization in the real systems. Consequently, how to design disturbance attenuating synchronization
controllers and reduce the influence of external disturbance has increasingly become a popular academic topic. In
the past few years, H,, synchronization has proven to be an efficient strategy in order to reduce the impact of noise
or disturbance, and relevant H,, synchronization results have been established [12]-[15]. [12] dealt with the H,
synchronization problem of chaotic neural networks, and H,, synchronization criteria were presented. In [13], some
conditions for multi-weighted CNs with fixed and switching topologies were acquired to ensure H,, synchronization.

Note that the vast majority of synchronization result in above-mentioned works [6]-[15] have overlooked this
diffusive effect in the spatial domain. To the best of our knowledge, the diffusive effect should not be ignored in
cellular neural networks [16, 17], especially when electrons in a nonuniform electromagnetic domain are highly
running. Consequently, it is very important and worthwhile to study reaction-diffusion neural networks (RDNNs).
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So far, numerous significant synchronization results of coupled RDNNs (CRDNNs) have been reported [18]-[21].
Wang et al. [18] not only concerned the synchronization issue of CRDNNSs but also proposed some synchronization
criteria for the raised network. By means of designing applicable pinning controllers, several adequate conditions were
acquired for ensuring CRDNNSs realize synchronization in [21]. Furthermore, a number of scholars have discussed the
H,, synchronization problem for RDNNss [22]-[25]. Liu et al. [22, 23] addressed H,, synchronization of RDNNs, and
H,. synchronization criteria were presented. However, the study of H., synchronization for CRDNNs was conducted
by only few authors. In [24], adequate conditions were acquired for making sure that CRDNNSs achieve lag H
synchronization with the aid of Lyapunov functional strategy.

As we all know, Chua first put forward the notion of memristor in 1971. Compared with the traditional resistor,
the past dynamic history of memristor can be remembered since the number of this memristor relies on the quantity of
charge running through here. Thus, there are wide applications referred to the memristor in many domains involving
image processing, signal processing and optimization [26]-[28]. Moreover, by means of replacing resistor by the
memristor, memristive neural networks (MNNs) can show the neural transmission in the brain primely [29]. So far,
numerous significant and valuable research results for MNNs have been reported [30]-[33]. By exploiting control
theory and nonsmooth analysis, several Lagrange stability criteria reliant on the parameters of MNNs were derived
in [31]. In [33], some adequate conditions were acquired for ensuring MNNs exponential stabilization. However,
only a small number of works discussed the dynamical behaviors of coupled memristive neural networks (CMNN5s)
[34]-[37]. In [34], some new sufficient conditions were established to guarantee the periodicity and synchronization
of CMNNs with supremums. Wang and Shen [35] addressed exponential synchronization of CMNNs, and several
exponential synchronization criteria were derived. There is no doubt that the synchronization and H,, synchronization
results for CRDMNNSs have been reported so far.

To our the best knowledge, numerous CNs under the natural state cannot be synchronized (H., synchronized)
through themselves in actual circumstances. Hence, the strategy of designing appropriate controllers is very neces-
sary and meaningful to ensure the CNs achieve synchronization and H,, synchronization. Up to now, the control
method based event-triggered mechanism has become increasingly prevalent. More specifically, event-triggered con-
trol is the distributed triggering mechanism which has received extensive attention since it can overcome a number
of consecutive control’s defects in system theory, and avoid some needless communication when data information is
exchanging. Therefore, many significant and interesting synchronization results for CNs with event-triggered con-
trol have been acquired recently [38]-[42]. In [39], several conditions were established for ensuring the CNs reach
synchronization based on event-triggered mechanism. By means of exploiting event-triggered control strategy, [40]
addressed the problem of synchronization for CNs, and presented some event-triggered synchronization criteria. By
now, only a few event-triggered synchronization results for CNNs have been derived [43, 44]. Through employing
event-triggered control and Lyapunov functional method, several passivity and synchronization criteria were acquired
for partially CNNs in [43]. Nevertheless, the issues of event-triggered H.,, synchronization and synchronization for
CDRDMNNSs have not been yet addressed.

Motivated by the aforementioned statements, we respectively study synchronization and H,, synchronization of
CDRDMNNSs with state coupling and spatial diffusion coupling via event-triggered control in this paper. The four
main contributions of the presented work are as follows:

1. First, two types of CDRDMNNSs models are proposed that the first type is CDRDMNNSs with state coupling and
the second one is CDRDMNNs with spatial diffusion coupling in virtue of an event-triggered approach. Compared
with [34]-[37], the considered model includes reaction-diffusion terms in this paper, named as CDRDMNNSs, which
is more general and complicated in many real networks.

2. By making use of Lyapunov functional and the appropriate event-driven strategy, some conditions are derived for
guaranteeing CDRDMNNs with state coupling realize synchronization. To our best knowledge, the majority of
works in existence investigated the synchronization issue of CNNs and CRDNNs by some conventional methods
[6]-[11], [18]-[21]. Nevertheless, the acquired synchronization results in our presented works are focused on a
discrete control strategy, i.e., event-triggered control is capable of taking great advantages on discontinuous control
approach to the full and decrease some superfluous communication when information is transmitted.

3. synchronization criteria for the discussed CDRDMNNSs are proposed. As we know, the external disturbance and
environmental noise are unavoidable and they are likely to lead the networks to unexpected states, and even break
the synchronization. In comparison to existing H, synchronization results [12]-[15], [22]-[25], the event-based
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mechanism is adopted to study H., synchronization of CDRDMNNS, and the event-triggered H., synchronization
problem for the proposed network is firstly solved in our paper.

4. The event-triggered synchronization and H,, synchronization for CDRDMNNs with spatial diffusion coupling are
discussed. Compared with synchronization results on CNs with triggering event [38]-[44], we study the event-
triggered synchronization and H., synchronization for CORDMNNSs with spatial diffusion coupling in this paper,
and these derived H., synchronization and synchronization results are less conservative and more general in our
presented work.

The framework of this remaining paper is displayed as follows. In Section 2, several necessary notations and lemmas
are introduced. In Section 3, we firstly propose the model of CDRDMNNSs with state coupling based on event-
triggered mechanism. Then, for CORDMNNSs with state coupling, event-triggered synchronization and H,, synchro-
nization criteria are derived respectively. Furthermore, we develop event-triggered synchronization and H,, synchro-
nization of the network with spatial diffusion coupling in Section 4. Section 5 provides two examples to show the
correctness of these acquired results. Current works are summarized in Section 6.

2. Preliminaries

Define a weighted connected digraph 7 = (g, v, H) with asetof nodes ¢ = {1,2,--- , N} and a set of edges v C ¢Xg.
(g, p) € vrepresents a directed edge in digraph 7. The set of neighbors of node g is denoted by N, = {p € ¢l(g, p) € v},
where p # g. The weighted adjacency matrix is defined as H = (H,,)yxy With nonnegative elements H,, = 0 and
H,, > 0 when p € N,. In addition, W > 0 (W = 0,W < 0, W < 0) denotes the symmetric matrix W is positive
(semi-positive, negative, semi-negative) definite. ® is the Kronecker product. The smallest (largest) eigenvalue of the
corresponding matrix is represented by A,,(:)(Ap(+)). Q = {m = (my,my,--- ,m,])TIImﬁl < @gp=12,---,n}is an
open bounded domain in R” with smooth boundary dQ. For e(m, t) = (ey(m, t), e2(m, 1), - - - , e,(m, )T € R",

lle(-, D)l = (L >k, r)dm)%.
i=1

Lemma 2.1. (See [45]) Define Q = {m = (my,my, -+ ,my)" mg| < @g.8=1,2,-- ,n}. Then,

2 2 Ow(m)\2
wi (m)dm<<pﬁL( o ) dm,

where w(m) € C'(Q) is a real-valued function and w(m)|sq = 0.

Lemma 2.2. (See [46]) For Yay,a; € R” and U € R™" > 0, we can get the inequality:

ZQITQZ < a/lTUal + QZTU_IQQ.

3. Event-triggered synchronization and #,, synchronization of CDRDMNNs with state coupling

3.1. Event-triggered synchronization

In this section, we consider the following CDRDMNNSs with state coupling which is given by:

z4(m.1)

Y7 e = Kzgm, 1)+ 1+ Ay, 0)f (zgm, 1) + ¥y, 1) + D(zgm, )8z 0m, 1)

+& Z[A”:l Joplzp(m, 1) + v (m, 1), (1
Zg(m,t) = 0, (m,t) € 0Q X [T, +00),
Z(m0) = 9,0m0), (m1)eQx[-1,0],

where ¢ = 1,2,--- ,N and z,(m, 1) = (zq1(m, 1), zo(m, 1), -+ , 2 (m, )T e R! denotes the state vector of gth neuron;
Yp = diag(yip, 28, - ,yig) € R¥ > 0;K = diag(ky, ko, -+ ,kp) € R > 0; the activation functions in neural network

q are denoted by f(zy(m, 1) = (fi(zg1(m, 1), folzga(m, 1), , filzg(m, )" € R and g(z,(m, 1) = (g1(zg1(m, 1 —
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1)), 82z (m, t — T2 (1), -+, g1zg(m, t — ()T € RS 1 = (I, L, -+, )T € R/ stands for the constant external
input; the global coupling strength is 0 < ¢ € R; the inner coupling matrix is given by I € R > 0; v,(m, 1) € R
and y,(m,t) € R! signify the controllers; J = (J4p)nxn 1s the coupling weight satisfying J,, = J,g > O(p # ¢q) if
there is a link from p-th node to g-th node, or else J,, = 0, and J,, = -N o J4p; In addition, the time varying delay
(0 = 1,2,--- 1) satisfies 0 < 7;() < 7,7 = maxj-1..,{7;} and 7, (t) < @j < 1; 9,0m,1) € C(Q % [-7,0])

is continuous and bounded; A(z,(1m,1) = (agn(zge(m, 1)) and D(zq(m 1) = (dgi(zge(m, 1)) are the feedback
connection weights, they are derived by memristors and can be defined as

Xon . Y .
ag(2gg(m, 1)) = D—g X Sighy,,  den(zge(m, 1)) = D_g X sign,
3 3

where g, h € {1,2,--- ,l},signgh = —1 when g = h, otherwise signgh = 1. Xgn, Yy represent the memductances of
memristors K, Ugp. Kgn and Uy, denote the memristors between f;,(z44(m, 1)) and z4,(m, t) as well as g4 (z4n(m, t —
74(1))) and z,4,(m, 1), respectively. By means of the voltage current characteristic of memristor, we can obtain

&gh’ |qu(m’ t)l g qu’ dgh’ |qu(m7 t)l < qu’
agh(zqg(m’ n) = { . oo (m. 1)| > dgh(zqg(m, n) = dv
Aghs 2qg(M, Xag» o> 245 (M, D > X 4g>

where the switching jumps y,e > 0, and g,h € {1,2,--- , I} and agp, dgp, c?gh, Jgh are constants.
For convenience, we define

[

A= d1ag(z alh,ZaZh,-u ,

h=1

2. = v N
a[h), Adgp = max{laghL Iaghl}a

M-~

=
~ I
—_

MN

2. = ¥ ~
2;,, Tt d[h), dgh = max{ldgh|a |dgh|}a

D= dlag(z &,

?

=1

-
—_

= (Ggn)ixi> g = Agh — Qgnl, D = (dgn)ixi> dgn = |dgi — dgnl.

Suppose the functions fj(-) and g;(-)(j = 1,2,---,[) are globally Lipschitz continuous, i.e., there exist 0 < y; €
R,0<¢; €R,0<y; €R,0< ¢, €R such that

IfiCun) = fiQu2)l < @jlun = pal, 1f5G01

g J’j»
lgi(u) — gi(u)l < djlur — pal, g ()]

<
< ¢

for all py, uo, u € R.
Assume the equilibrium solution of (1) is z*(m) = (z}(m), z5(m), - - ,z;(m))" € R/, and it dynamics

aZZ*(m) * * * * *
Z Y — Kz'(m) + A(z'(m)) f(z" (m)) + D(z"(m))g(z"(m)) + I = 0
In addition, the control inputs v,(m, 1) and y,(m, t) are designed for network (1) as follows:

{ va(m,t) = & ¥ pen, Hop(zg(m, 1) — z,(m, 1)), )

Yq(m, 1) —sign(zy(m, 1) = 2" (M)A + D),

where & > 0,0 = (1,2, ,W €RL$ = (B1.d2. -+ . d)" € R and sign(zy(m. 1) — z°(m)) = diag(sign(z1 (m. 1) -
zj(m)), sign(zg2(m, 1) = Zy(m)), - -+ , sign(zgi(m, 1) = z; (m))) € R™.

Let {tq}°° be a sequence of incremental event-triggered time, where vy > tZ. According to the sample data and
event- trlggered strategy, v,(im, f) can be rewritten as follows:

vg(m,1) =& Z Hyp(zy(m, 11) = z,(m, 1)), 3)

PEN,



in which H = (H,,)nxy denotes the coupling matrix and meets Hy, = 0, Hy, > 0 when p € N, t € [¢],1] ), the state
of node q at tZ is represented by z,(m, t,‘f), where tZ corresponds to the event-triggered instant of node ¢g. Similar as the
result [15], for any ¢’ € R > 0, Zeno behavior does not display as #{,, — 1} > o'

Let the measure error of triggering event be 7,(m, 1) = z4(m, t]) — zy(m, 7). For t € [¢],#] ) and 6 € R > 0, the
event-triggered condition is designed as follows:

oy =inf{r o> gm0l > 6] D Hp(egtm, ) = zpom, )|} )

PEN,

For the error vector e (m, t) = z,(m, 1) — 2*(m) = (eq1(m, 1), ep(m, 1), - - , eq(m, )7, we have

6eq(m N &
Z + A(zg(m, t))f(eq(m D) + D(z,(m, t))g(eq(m 1) — Key(m, 1) + [A(zy(m, 1))

N
— A m)]f(Z"(m)) + [D(zg(m, 1)) — D(z" (m))]g(z" (m)) + & Z Jgpl'ep(m, 1)

p=1

— sign(e,(m, O)AY + D) + & Z Hgy,(e,(m, t/i,(z)) —ep(m, t]’;(t))), (&)
PEN,

whereg = 1,2,--- ,N ;f(eq(m, 1) = f(zg(m, 1)) = f(2"(m)), &(eq(m, 1)) = g(z4(m,1))—g(z"(m)) and e,(m, 1) = (eq1(m, 1—
T1(0), eqa(m, t — 72(1)), - eqz(m, t—1ON e[, tZ +1)- Bach node g collects its adjacent state at time ¢ with regard

to the point of similar time tk Py where k,(t) = arg maxk*{t,‘(’* <t

As my(m,t) = z4(m, t (t)) Z4(m, t), we can derive from (5) that
5] <
im0 . Sy, ZEAD g om0 g, 1) + Dizom, 0)3 e 1) = Kegom, 1) + [Alzgm, )
B=1

N
— A m)]f(Z"(m)) + [D(zg(m, 1)) — D(z" (m))1g(z" (m)) + & Z Jgpl'ep(m, 1)
p=1

+e Y Hyp(eg(m, 1) = epm, 1) + 7, (m, 1) = 7,(m, 1)) = sign(eg(m, 0)(AJ + D). (6)
PEN,

By means of the event-triggered condition (4), we have

g, Ol <6|| D Hopleqm f ) = epm il )|

PEN,
H > Hypleq(m. 1)~ e(m, z))” H > Hoyp(my(om. 1) = m,(m. z))H
PEN, PEN
<O] 3" Hop|egtm, 0| + Z Hap|lepm, o[+ > Hopl[mam, ]| + > Hop|ptm, 1)
PEN, PEN, PEN,
<26h(|le(m, 1| + |l (m, t)||), @)

where h = max{¥ ,cn, Hypls e(m, 1) = (e] (m, 1), €} (m, 1), -+ , ey (m, )" and n(m, 1) = (] (m, 1), 75 (m, 1), - - - , 7}, (m, ).
Then,

ll(m, DIl <26Nh(lle(m, DI + |lx(m, D).

Finally,

26Nh
< T AAAL 9 b
llr(m. DIl < T gp et Dl @®)
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where 0 < 6 < 2Nh
Furthermore, we define

1 1

. . . 1
\P = dlag(d’%, ¢%9 Tt d’[z)’ (D = dlag((b%, ¢%9 Tt ¢12)’ L= dlag( ) s " )
l-w 1-w 1 -y

Remark 1. As we know, Chua first put forward the concept of memristor. In fact, the memristor takes place the of
resistor that can be used to simulate the human brain in neural networks since it has great performance [29]. Up to
date, lots of significant and worthwhile synchronization results on MNNs have been obtained [30]-[33]. But just a
few results on the dynamical behaviors of CMNNSs have been reported [34]-[37]. Unfortunately, the synchronization
and H,, synchronization of CDRDMNNSs have not been studied. As far as we know, our paper is the first to address
the H,, synchronization and synchronization of CDRDMNN:Ss in this present work.

Theorem 3.1. The network (1) reaches event-triggered synchronization under the controller (2) if there exist a matrix
P = diag(p, p2,-+- ., p1) € R>! > 0 and a constant 0 < 6 < ﬁ such that

INn®O, +&J (P +TP) <0, )

where @ = - 31| épyﬁ —2PK + PX(A+ D) + ¥ + OL + 26P* + 4sNW(1 + ({25550 and h = max{3 ,en, Hop}-

Proof. Select the following candidate functional for network (6):

N I 2 N
lop !
V() = E E ! f fez-(m, s)dmds + E feT(m,t)Pe (m, t)ydm. (10)
prs i l-@; JirjJa ¥ =l ve ! !

Take the Dini derivative of V (), one can get

D+Vt—2N 7 m, np 20 +N -0 2 (m, t)d.
(0= ;fgeq(m,) 5 am Zzl_wjfgeqj(m,)m

VL g1 = ()

1
- Zl——wj fg e2,(m. 1 = T(t)dm

T 8zeq(m, 1) N . .
fg eq OmOP( ) Y= 5=+ Alzym, 0)f(eqm, ) + [AGzy(m, 1) = AE ()L (m)
q=1 B=1 B

+ [D(zq(m, 1)) — D(z"(m))]g(z" (m)) + & Z JgpTep(m, 1) — Keg(m, 1) + D(z4(m, 1))g(eq(m, 1))
p=1

+e Z Hyp(ey(m, 1) — e,(m,t) + my(m, 1) — mt,(m, 1)) — sign(e,(m, ))(Ag + Dé))dm

PEN,

N N
£y f el (m. YO Ley(m., ydm ~ f e, 1) Deg(m, Ndm.
g=1v% g=1 7%

In light of the boundary condition and Green’s formula,

a € t a € t
Zfeqf(m p L e D eq (m ) Zf eqa;:;l )) dm, (1)
p=1

whereg =1,2,--- ,N,e = 1,2,--- 1. Then,

N 1
Zf eI (m, t)Pzn: Yﬁa e”(m t)dm = Zn: >, Zpeyeﬁfgeqe(m’ 0%"’"



L& dege(m, 1)
=—/;ZZPEM fg( egmn; )zdm

g=1 e=1
n N
0 Lt 0 t
2o [ (P oy
521 g=1 Q amﬁ 61’)1[3
Then, we obtain
N 1 2 n
0e,(m, 1) Oe(m, t) de(m, t)
2 "m, )P Y Yo——""dm = — f Iy ® 2PY,
;Leq(m : ﬂ; om " ,BZ:; Q( Omyg )(N® » Omg a

It is not difficult to find a real matrix IT € RNV
Iy®2PYs =TI"IL

Thus,

(ae(m, 1) )T(IN ©2PY)) ('Jea(m, 1) =(6(He(m, ) )T 0(Ile(m, 1)) -

(9mﬁ m/; (9mﬁ (9mﬁ

Let o(m,t) = Ile(m,t), for (m,t) € 0Q X [T, +00). In terms of the boundary condition in (1), we deduce o(m, t) =
Ile(m, t) = 0. Based on Lemma 2.1, one has

n

51 L2
Z ag (m, ) Tag(m D g > Z - f o" (m.Do(m, nydm = " = f ¢! (m, 1)(Iy ® PYg)e(m, t)dm.
6m5 (9mﬁ = (pﬁ B=1 "Dﬁ Q

Therefore,

n n
2 Z f el(m, t)PZ Yﬁa eq(m Dam < - > s% fg e (m, 0)(Iy ® PYp)e(m, t)dm. (12)
B=17p

Moreover, it follows from Lemma 2.2 that

N

M-~
M~

N
23 fg e} (m, YPA(zy(m, 1) f(e(m, ))dm =2 P fQ 44 (1, Dagi(2qg(m, 1) fi(eqa(m, ))dm
g=1

1

<
I
oy
I
>
~ 1l

/[<\)
M=
M\

pgaghf(;|qu(mst)”fh(eqh(m’t))wm

=

I
oo

1l

1

fﬂpg gyeqq(m, dm + ZZ[% e2,m, ydm

=1 qlh

N
M= S
NG
M-

=S
Il
3‘

=1

oa

N
MZ

f T (m, )P*Ae,(m, t)dm+Z f ¢! (m. 1)Pe,(m, H)dm

=
I

el (m, H[Iy ® (P*A + ¥)le(m, f)dm. (13)

Il
5

Similarly, we have

N 1 l
2 Z f e} (m, )PD(z(m, 1)@(e,(m, D)dm =2 Z Z D pe fg g, Dy (2gg(m, D)n(egn(m, t = Th(1)))dm
g=1 g=

1 h=1
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N |
<2 Z Z Z Pedgh f legg(m, Dlgn(egn(m, t — T,(0)))|ldm
g=1 g=1 h=1 Q
N 1 1 N I
<2202 f Pedgpesgm Ddm+ ) ) f Pheq(m, 1 = Tu(0)dm
g=1 g=1 =1 Y€ =1 Je

N
M=

N
LeqT(m, 1)P*De,(m, t)dm+ZLeq(m, t)T(Deq(m, t)dm
g=1

£~
1l

I
iPM=
5

eq(m, t)T(Deq(m, tHdm + erT(m, Dy ® (PZD)]e(m, Hdm. (14)

B
1]

Furthermore,

N
2> fg e} (m, OYPIA(z,(m, 1)) = Az () £ (m))dm
g=1

N I 1
=23 3 > f 4, (@ (2ge(m, 1)) = agn(zy(m) fi(Z5(m))dm

g=1 g=1 h=1 Q
N 1 1
<23 pelag = dgilin f legg(m, )ldm
g=1 g=1 h=1 Q
N
<ZZ f leg(m, H\PAgdm. (15)
g=1 %

Similarly, one has

N
23" [ m0PLDGym. 1) = DL Gn)lg(z ndm
g=1

1

M-~

N
=22 Ps f eqg(m, 1)(dgn(2qg(m, 1)) = dei(zy(m)))gn(z),(m))dm
g=1 g=1 h=1 Q
N 1 !
<2V pdes s [ lesgtm.dm
g=1 g=1 h=1 Q
N
<2 L le,(m, )|PDddm. (16)

_
1l
—_

In addition, we have

N
22 f el (m, 1)Pe Z H,,(e,(m, 1) — e,(m, ))dm
=1v%

PEN,
N N
<> f eh (m, D)ePeq(m,0dm + )" ell 3" Hypleq(m, 1) = ep(m, )|
q=1 Q q=1 PEN,
N 2 N
< e D Hpllegom, ol + " Hplle,(m,0)l) + f e (m, &P e, (m, Hydm
q=1  peN, PeN, g=1vQ

<&(2h)*Nlle(m, D)|I> + f el (m, ) (Iy ® eP*)e(m, )dm
Q

8



= f el (m, t)(Iy ® eP* + 4eNh>IL,y)e(m, H)dm. (17)
Q

From (8), one has

N

22 f el (m, 1)Pe Z Hyp(g(m. 1) = m,(m, 0))dm
PEN,
< fg el (m, Iy ® ePY)e(m, f)dm + fg 4eNh>7" (m, £)n(m, H)dm
< fg e’ (m, t)(4sNh2(%)zlw + Iy ® ePe(m, ydm. (18)
From (12)-(18), it is derived that
g o 20Nh 2
D'V < f ¢! m, Iy ®| Z : PYg - 2PK + PX(A + D) + ¥ + L + 26P” + 4eNh?(1 + (m) )

+&J® (PT + rP)}e(m, f)dm
<Elle(, DI, (19)

where 2 = Ay (Iy®[— 22:1 éPY,;—2PK+P2(A+D)+‘P+<1>L+23P2+48Nh2(1 +(2LB )]+ £J@(PT+TP)) < 0.

By means of (10) and (19), we have V() is bounded and monotonically decreasing. Hence, V(¢) asymptotically
approaches to a finite positive value. Based on (19), one can deduce

e 2 < 22Y0 (20)

=

Then, we can obtain lim,_, , fol lleC-, DII*dt > 0. Because the time delays 7(t) are bounded, we can get

al ¢;
lim f fe (m, s)dmds = 0.
f—+0o0 1 ¢ Tj(t)

g=1 j=1

Thus, we can derive lim,_, e Y pa fQ q(m HPe,(m, t)dm exists. In the next step, lim;_, Zq 1 fgeq (m, t)Pey(m, t)dm
= 0 will be proved. If not,

lim fﬂ ey (m,))Pey(m, )dm = £ > 0.
1

Next, there exists a positive scalar T satisfying

N

l
Zfeg(m,t)Peq(m, Hdm > —
g=1 v 2

when t > T, where T is a time interval based on the event-triggered time sequence. Therefore,

A
lleC-, DI > o 12T 1)

where x = A,;(P). On the basis of (19)-(21), one has

D'V() < — t>T. (22)



By integrating (22) with respect to ¢ over the time period T to J , it is easily derived that

17

3 Ef N ' tZ’H N}
j‘—m>flMMW=f NWWHJ‘lMMW+m+f DYV()dt
T 2K T T 1 4

¥ kq(9)

=V(tl) = V(D) + V() = V) +- + V) =V o)
=V(J) - V(T)
> - V(T), (23)

in which k¥’ = arg mink{tz > T} and ky(8) = arg maxk*{tz* < J}). In accordance with (23), one gets —V(T) <

. J = ..
limg_, 400 fT E—fdt = —oo0, this is unreasonable. Thus,

N
. T _
lim ; fg el (m, )Pe,(m, 1)dm = 0,

then lim;_,o|le,(-, 1)I| = O can be obatined. Hence, the network (1) reaches event-triggered synchronization under the
controller (2).

Remark 2. As one of unique classes of CNs, CNNs have been extensive attention owing to their potential and
wide application prospects in image encryption, pattern recognition, and secure communication [3]-[5]. Strictly s-
peaking, these successful applications mainly depend on CNNs’ behaviours of dynamics, especially synchronization.
Thus, synchronization has become an important research topic. In recent years, many crucial and meaningful syn-
chronization results for CNNs and CRDNNs have been acquired [6]-[11], [18]-[21]. Nevertheless, the considered
synchronization results in the above-mentioned works did not consider the memristor. As we know, the problem of
event-triggered synchronization for CDRDMNNSs has not been yet solved, thereby this promotes us to develop the
research work in our paper.

Remark 3. The problem of event-triggered synchronization for CDRDMNNs becomes more complicated in this pa-
per since the memristive term is introduced to the considered model, it is obviously hard to be addressed by exploiting
the previous strategy of triggering event for CNNs without memristive term. Thus, a general event-triggered condition
(4) is designed for conquering this difficulty through making use of the own characteristic of the considered model,
which is improved significantly on existing event-triggered conditions. In addition, due to the original event-triggered
condition and the memristive term, some novel inequality techniques ought to be utilized in (7) and the testify of the
obtained synchronization conditions.

3.2. Event-triggered H, synchronization
The following CDRDMNNSs with state coupling is considered in this subsection:

an(m, t) — znl Yﬁ GZZq(m» t)

” — Kzg(m, 1) + A(zy(m, 1) f(z4(m, 1)) + I + y4(m, 1) + D(z4(m, 1))g(z4(m, 1))

amé

N
FEY TgpTep(m, 1) + vy(m, 1) + wy(m, 1), (24)
p=1

where z,(m, 1), Y, K, A(z,(m, 1)), f(z,(m, 1)), D(z,(m, 1)), g(z4(m, 1)), 1, &, J4p, T, v4(m, 1) and v,(m, 1) are denoted in (1);
wg(m, 1) = (wg1(m, 1), wp(m, 1), -+, wu(m, )T states the external disturbance and is square integrable, i.e., for any
R>t >0,

i
f fw(f(m, Nwy(m, ydmdt < +co.
0 Jo

10



Assume the equilibrium solution of (24) is z*(m) = (£} (m), Z3(m),- - ,z;(m))” € R, then

n
0
E Y, —;n - Kz"(m) + A(Z"(m)) f(z" (m)) + D(z"(m))g(z*(m)) + I = 0
=L

Let e (m,t) = z,(m, 1) — z"(m). Based on the event-triggered condition (4), the error system e,(m, t) of network (24)
can be described by:

dey(m, 1) & Hey(m,t A N
amd_y Yﬁ% + Alzglm, ) fem. 1)) + D(zy(m. 1))3(eq(m. 1)) ~ Ke,(m. 1)

—_— =

A(Zq(m 1) = A (m)] (2" (m)) + [D(zq(m, 1)) = D(z"(m))]g(z" (m))

+ & Z Jople,(m, 1) + & Z Hq,,(eq(m, 1) —ep(m,t) + my(m, 1) — mp(m, t))

p=1 PEN,
+ wy(m, t) — sign(ey(m, OAY + Do),

(25)
where t € [1Z, tZ 1) f(eq(m, 1) and g(e,(m, 1)) have the same meanings as those in system (5), ¢ = 1,2,--- , N.
Definition 3.1. For the network (24), we denote a nonnegative function V(-) satisfying

f, t,
f f el (m, He(m, Hdmdt <V(0) + 52 f f w(m, t)w(m, t)dmdt
0o Ja 0 Ja
forany 1, € [0, +00) and the disturbance attenuation level 5§ € R > 0, where w(m, 1) = (w] (m, 1), w} (m, 1), -, wi(m,0))".
Thus, network (24) can realize H,, synchronization under the controller (2).
Theorem 3.2. For the network (24), we suppose matrix P = diag(p1, p2,--- ,p;) € R>*! > 0 and two constants
0<6< 2Nh,6 > 0 satisfying
In®®, +&J@(PT +TP) <0, (26)

where © = — 3, ZPY[; 2PK + P*(A + D) + ¥ + ®L + (4eNh*(1 + (2827 + DI + 26 + £)P? and h =

max{} ,en, Hopl, then event-triggered H., synchronization can be realized under the controller (2).
Proof. The Lyapunov functional is defined as (10) for network (25), one obtains

n

D*V(r) <2 Z f el (m, P( Z Yﬁa e‘f(m D _ Key(m, 1) + AGzy(m, ) f(ey(m, ) + Dizy(m, 1)(eq(m.5)

+ [A(zg(m, 1)) — A ()] f (" (m)) + [D(z4(m, 1)) — D(z" (m))]g(z" (m)) + & Z Hyp(eq(m, 1)

PEN
N

—ep(m,t) + my(m, 1) — m,(m, 1) + & Z Jyple,(m, 1) — sign(e,(m, t))(Azp + D(;VS) + wy(m, t))dm
p=1

N N
+Zer(m,t)CDLeq(m,t)dm—Zfeq(m,t)T(Deq(m,t)dm.
g=1 v g=1 v

According to (12)-(18), we have

n
5 o 20Nh 2
. T 2 2 2
DV(r)éf mafin | - El—¢§PYB—2PK+P(A+D)+‘I’+(DL+25P + 4eNh (1+(—1_29Nh))]

11



+&JQ(PI + FP)}e(m, Hdm + 2 f eT(m, H(Iy ® P)w(m, t)dm,
Q
where w(m, 1) = (w! (m, 1), w} (m,1),-- -, wi(m, 1)’ In addition,

frf[eT(m,t)e(m, 1) - 8%w! (m, Hw(m, t)]dmdt
0o Ja

= f , f [¢" (m. e(m. 1) = P (m, Dyo(m, )| dmd + f DVt + V(0) - Vi(zy)
0 Q 0

= f r f [ET(m,t)E(m,t)—62wT(m,t)w(m,t)]dmdt+ f 1 D*V(t)dt + f 2D+V(t)dt+~--
0 Q 0 ;

1
t,

+ D*V(®)dt + V(0) - V(z,)

q
Ygr)

<f"feT(m, De(m, t)dmdt_f’f52wT(m, Dw(m, t)ydmdt + V(0) — V(tr)+frfeT(m,t){INé@[—ZPK

26Nh

n
2 2/ 1 N 2
_Z_ZPYﬁ+P(A+D)+\P+48Nh (1+(m

=1 95

+2 f ' f eI (m, 1)(Iy ® P)w(m, H)dmdt
0 Q

1, 1, n
- fo fg |sw(m, 1) - I ? Pe(m, t)]T[éa)(m, H-— IN?Pe(m, 0)|dma + fo fg e m, oIy e[~ Z 9%Mﬁ

) )i +26P” + OL] + £J @ (PT + TP)e(m, t)dms

B=1
_ 1 26Nh 2
2 2 2
—2PK + PX(A+D)+¥ + L+ (2 + )P + (4eNh (1 +(m) )+ D
+&J® (PT + rp)}e(m, Hdmdt + V(0) - V(t,)
<V(0), 27

where k,(t,) = arg maxk*{t]‘c’* < t,}. In terms of (27), one can get

frfeT(m, tye(m, dmdt <V(0)+62frfwT(m, Hw(m, H)dmdt.
0 Jao 0 Ja

Therefore, the network (24) realizes event-triggered H., synchronization under (2) according to Definition 3.1.

Remark 4. As we al know, the disturbance or noise are unavoidable and maybe lead the networks to unanticipat-
ed states or destroy the synchronization in the real systems. Consequently, how to design disturbance attenuating
synchronization controllers and reduce the influence of external disturbance has received considerable attention. In
recent years, H,, synchronization has been verified to be a very effective strategy, which can reduce the effect of
disturbances, and important results of CNs have been established [12]-[15], [22]-[25]. In addition, as a discontin-
uous control strategy, event-triggered control has been widely applied for ensuring CNs synchronization and H.,
synchronization synchronization [38]-[44] since it can overcome a number of consecutive control’s defects in system
theory, and avoid some needless communication when data is sent and exchanged for transmission. In other words,
the triggering event control is a very efficient tool to solve the unnecessary communication problem and overcome the
disadvantages of continuous control in many real system. Unfortunately, synchronization and H,, synchronization
problems of CDRDMNNS via event-triggered control have not been yet addressed. In this section, event-triggered
synchronization and H,, synchronization criteria are established for CDRDMNNSs with state coupling in Theorems
3.1 and 3.2, respectively.
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4. Event-triggered synchronization and #,, synchronization of CDRDMNNs with spatial diffusion coupling

4.1. Event-triggered synchronization
The following CDRDMNNSs with spatial diffusion coupling in this section is described by:

UL W lyﬁ" Zq“"” — Kz,(m, 1) + I + Azy(m, D) f(zy(m, D) + yy(m, 1) + D(zy(m, 1))g(z4(m. 1))
+Yh Z,, 1 Gap Taz”(m’) +vy(m, 1), 28)
Zgm,t) = Dm0, (m,t) € Qx [-7,0],

Zq(m7 t) 0’ (m’ t) € 0Q X [_T7 +OO),

where z,(m, 1), Y3, K, A(zg(m, 1)), f(z4(m, 1)), D(z4(m, 1)), g(z4(m, 1)), 1,7 (1), v4(m, 1), v4(m, 1) denote the same as those
in model (1); ¢ > 0 is the overall coupling strength; 0 < Y € R™ denotes the inner coupling matrix; G = (Ggp)nxn 18
the coupling weight, which satisfies G,, = G,; > 0(p # ¢) if there exists a connection from p-th node to g-th node,
orelse G,, =0and G,, = — 3., G,p; 9,(m, 1) € C(Q x [-7,0]) is continuous and bounded.

P#q

Assume the equilibrium solution of (28) is z*(m) = (z}(m), Z3(m),- - ,z;(m))” € R'. Then
Lo P m) . . . .
Yy——— — KZ'(m) + A(z'(m)) f(z"(m)) + D(z"(m))g(z"(m)) + I = 0
=L

Lete,(m,t) = z,(m, ) —z*(m). By means of the event-triggered condition (4), the error system e,(m, ) of network (28)
is represented by:

aeq(m 1) u

— =Z +A(Zq(m 1) f(eq(m, 1) + D(zy(m, 1)§(ey(m, 1)) — Key(m, ) + [A(zg(m, 1))
p=1

e,,(m 1)

— A m)IfE () + [D(zg(m. 1) = D" m)]g(&" (m)) + ¢ Z Z i

=1 p=1

e Z Hop(eq(m. 1) = e,(m, 1) + my(m, 1) = m,(m, 1)) = sign(e,(m, DAY + D), (29)
PENy

in which € [¢/, IZH), f(eq(m, 1)) and §(e,(m, 1)) have the same meanings as that in system (5), ¢ = 1,2,--- , N.

Theorem 4.1. The network (28) reaches event-triggered synchronization under the controller (2) if there exist a

matrix P = diag(py, p2,- -+, p1) € R > 0 and a constant 0 < <5 h such that
In®2PYg + (G (PT+TP) > 0, (30)
n
Iy®@ W, — —2[§G®(PT+TP)]<O 3D
4
B=1 7B

where Wi = = 3| 2PYﬁ 2PK + P*(A+ D) + ¥ + ®L + 28P* + 4sNW*(1 + (2580 and h = max{F ,en, Hyp).

Proof. The same Lyapunov functional is constructed as (10) for network (29). Then,

n

& . -
D*V(r) <2 Z f el (m, )P( Z y, D e‘f(m D _ Key(m. 1) + AGzy(m, ) f(ey(m, ) + Dizy(m, 1)3(eq@m. D)

+ [A(zg(m, 1)) = A (m)]f (" (m)) + [D(zg(m, 1)) = D(Z"(m))1g(z"(m)) + & Z Hyp(eq(m, 1)

PEN,

n N
— epm, D)+ mym. 1) = mp(m. 1) + £ D Y Gy e”(m D _ Sign(eym, 0)AD + D) )dm

B=1 p=1
13



N

N
£y fg el (m. ()®Ley(m. ydm ~ fQ e, 1) Deg(m, Ndm.
q=1 gq=1

From (11), one gets

N n N
2y f AmPe Y N GyyY ae,,(m 2 —Z f Oe(im, t)) [§G®(PT+TP)]ae(m D im
¢=172

=1 p=1 s

Then, as the proof in Theorem 3.1, it is not difficult to derive that

zzf T(m Y ZYB eq(m 1) fZZquTa ep(m t))d
B=1

p=1

n
<-> N f ¢! (m, )1y ® 2PYs + (G ® (PY + YP)le(m, t)dm. (32)
=1 $p Ve

In light of (12)-(18) and (32), one can derive

n
2 o 260Nh 2
+ T 2 2 2
D*V(1) <f (m.0{Iy | ;ga—épyﬂ—sz+P (A+ D)+ ®L+ V¥ +2eP* + 4eNh (1+(m) )
L1
- > 5IG & (PY + TP)lje(m, 1)dm
=1 ¥
<AlleC, 0P, (33)

in which A = Ay(Iy ® [~ ¥jj_, ZPYs = 2PK + PX(A+ D) +¥ + OL+2eP* + 4eNW*(1 + (2580 - ¥y, -[{G®
B B

(PY +TP)]) <0O.
Then, the rest of this proof for lim;_,|le(:, )] = O runs as Theorem 3.1. Therefore, the network (28) reaches
event-triggered synchronization under the controller (2).

4.2. Event-triggered Ho, synchronization
The following CDRDMNNSs with spatial diffusion coupling is stated in this subsection:

6zq(m 1) u q
Z (9 — Kzy(m, 1) + A(zy(m, 1) f(z,(m, 1)) + I + y,(m, t) + D(z4(m, t))g(zq(m 1))
n N
£33 Gy & Z”(m D ¢ vgm.t) + wy(m. ), (34)
p=1 p=1

where z,(m, 1), Y3, K, A(z4,(m, 1)), f(z4(m, 1)), D(z4(m, 1)), 8(z4(m, 1)), I, T ;(t), v,(m, 1), vs(m, 1), {,G,p, and T are expressed
well in (28); w,(m, 1) is square integrable.
Assume the equilibrium solution of (34) is z*(m) = (z}(m), Z3(m),- - - ,z;(m))" € R!, and it dynamics

oy P . . . .
E Y, 5— — KZ'(m) + A(Z'(m)) f(z" (m)) + D(z"(m))g(z" (m)) + 1 = 0.
— om
p=1 B

Let e,(m, 1) = z,(m,t) — z"(m). Based on the event-triggered condition (4), the error system e,(m, t) for network (34)
is given as follows:

dey(m, 1) 3 ’ v azeq(m, 1)

= f >
ot = Bmﬁ

+ A(zy(m, t))f(eq(m, 1) + D(z4(m, 1)g(ey(m, 1)) — Ke,(m, 1) + [A(z4(m, 1))
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0? e,(m,t)

— A M) f (@ (m)) + [D(zg(m, 1)) — D(" (m))]g(z" (m)) + { Z ZquT on?

p=1 p=1

s Z Hop(eq(m, 1) = ey(m, 1) + my(m, 1) = ,(m, 1)) + wy(m, 1) = sign(eq(m, 0)(AG + D), (35)
PEN,

in which € [¢/, tZ 1) f (e4(m, 1)) and g(e,(m, t)) have the same meanings as that in system (5).

Theorem 4.2. For the network (34), we assume matrix P = diag(py, p2,--+ ,p1) € R > 0 and two constants
0<6< 2Nh,6 > 0 satisfying
In®2PYp +{G®(PT+TP) >0, (36)
n
Iy@W, — —2[{G ® (PYT +TP)] <0, 37
-1 %5

where W, = —22:1 %PYB —2PK + P(A+ D) + ¥ + OL + (4cNh*(1 + (2852 + DI, + (26 + £)P? and h =
{
max{3, PEN, H,,}, then event-triggered H, synchronization can be reached under the controller (2).

Proof. The Lyapunov functional is also chosen as (10) for network (35), we obtain

n

P ) -
DYV <2 Z f el (m, )P Z yy bl e"(m D_ Keg(m, 1) + A(zg(m. 1) f(eq(m, 1)) + D(zy(m, )§(egm. 1)

+[A(zg(m, 1)) — A (M) f (" (m)) + [D(z4(m, 1)) — D(2"(m)))g(z" (m)) + & Z Hyp(eq(m, 1)

PEN,
. 1Y e, (m,t
~ ep(m, )+ 7y(m. 1) = 7 (m, 1)) ~ sign(eg(m, OYAD + DF + £ D" Y quv%
=1 p=1 s

N N
+ wy(m, 1))dm + Z f el (m, )®Le,(m, tydm — Z f ea(m. 1) Geg(m, Ddm.
P a=1v9
According to (12)-(18) and (32), one gets

D+V(t)<feT(m nfr ®[—Zn:3PY —2PK+P2(A+D)+‘P+®L+25P2+43Nh2((ﬂ)2+1)1]
SJot TR L2t 1 - 20Nh !

n
- Z %[{G ® (PY + TP)]}e(m, Hdm + 2f el (m, t)(Iy ® P)w(m, t)dm.
=1 5 Q

In addition,

ff eT(m,t)e(m,t)—62wT(m,t)w(m,t)]dmdt

f fe (m, He(m, t)dmdt — f f52 T (m, Hw(m, H)dmdt + V(0) = V(z,) +f f el (m, t) IN® - 2PK

;' 2 20Nh 2 )
- ; 27 PY(A+ D) +¥ + 4eNW () + 1)l + OL+ 26P”) - [,Z_; gl

+CPYl)e(m, )dmds +2 f " f e (m. )(Iy ® P)ew(m, Hydmdt
0 Q

== fotr fQ [50)(771, H- IN?Pe(m, t)]T[éw(m, - Iy ®Pe(m, t)]dmdt + fotr erT(m, t){]N Q- Zn:

15




o 1 260Nh
—2PK+PXA+D)+¥ + DL+ (2 + 6—2)132 + (4eNh(1 + ( 1

- 29Nh)2) + D]

n
-3 L Ge@r+ TP))e(m, ydmdt + V(0) - V(t,)
51 %

<V(0). (38)

According to (38), one can acquire

f ' f eT (m, De(m, ydmdi <V(0) + 6 f ' f W (m, Hw(m, Hdmat.
0 Q 0 Q

Therefore, the network (34) realizes event-triggered H., synchronization with the controller (2).

Remark 5. Recently, most of synchronization results associated with the nodes of CRDNNs are coupled with their
state [18]-[21]. It is well known that different diffusion of single RDNNs are likely to have an effect on other adjacent
RDNNSs in the coupling form. Therefore, it is indispensable to take dynamical behaviors of spatial diffusion coupled
networks into account. As far as we know, this is the first paper to discuss synchronization and H., synchronization
of CDRDMNNSs with spatial diffusion coupling via event-triggered protocol. Some event-triggered synchronization
and H,, synchronization conditions are derived for CDRDMNNS with spatial diffusion coupling in Theorems 4.1 and
4.2 of this section, respectively.

5. Numerical Examples
Example 5.1. Consider the CDRDMNNSs with state coupling via event-triggered communication as follows:

0z4(m, 1) :Yazzq(m, )
ot om?

— Kzg(m, 1) + I + A(zy(m, 1)) f(z4(m, 1)) + y4(m, t) + D(z4(m, 1))g(z4(m, 1))

6
+E Jgplzpm, 1) +vym, 1),

p=1

(39)

where Q = {m| - 025 < m < 0.25),1 = 3,q = 1,2,-++,6; fo(u) = L o (uy = BN o = 1,2,3;K =
diag(4,3,5), Y = diag(0.6,0.7,0.9),1 = (0,0,0)7;7,(t) = | = zze™, @, = -7, j = 1,2,3;T = diag(0.6,0.5,0.8),& =

2.4;vy(m, 1) = € 3 pen, Hyp(2g(m, 1f) = 2p(m, 1)); y4(m, 1) = =sign(zy(m, 1) — z*(m))(AY + D), £ = 3.2. The matrices
A(zy(m, 1)), D(z4(m, 1)), J = (Jyp)exs and H = (H,,)exs are chosen, respectively:

-0.18,

a(zg1(m, 1)) = { 035

a13(zq1(m, 1)) =

an(zp(m, 1)) =

az3(z3(m, 1)) =

d2(zq1(m, 1)) =

0.25,
az1(zg3(m, 1)) = {

|zg1(m, )] < 1.2,
l2g1 (m, D] > 12,
|zg1(m, D] < 1.2,
|zg1(m, D] > 1.2,
zgo(m, )| < 1.2,
|zg2(m, D)) > 1.2,
|zg3(m, D] < 1.2,
|zg3(m, D] > 1.2,
|zg3(m, )] < 1.2,
|Zq3(m9 t)' > 12»

|zg1(m, 0] < 1.2,
|qu(m9 t)' > 129
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-0.28,

a12(zq1(m, 1)) = { 0.45

a21(2q2(m, 1)) =

ax3(zp(m, 1) =

di1(zq1(m, 1)) =

d3(zq1(m, 1)) =

0.43,
az(zg3(m, 1) = {

|Z(Il(m’ t)' g 12,
|zg1(m, )] > 1.2,
|Zq2(m, H <12,
|zp2(m, 1)) > 1.2,
zgo(m, )] < 1.2,
|Zq2(m, > 1.2,
|Zq3(m, t)| < 12,
|zg3(m, 1) > 1.2,
|qu(m, t)| < 12,
zg1(m, )] > 1.2,

g1 Om, )] < 1.2,
21 (m, 1) > 1.2,



~033,  [p(mnl <12,
-0.15,  |zp(m, 0| > 12,

042, gm0 <12,

d ’t =
21(z42(m, 1)) { -0.27, zg2(m, D] > 1.2,

dy(zpp(m, 1) = {

-0.54, |zgo(m, )| < 1.2,
0.45, zgo(m, )] > 1.2,

032,  lzp0m 0l < 12,

029,  lzp(mnl <12,
-0.35, gm0 > 1.2,

-0.38, im0 <12,

dx(zpp(m, 1) = { d31(z3(m, 1)) = {

d3(z3(m, 1) = { d33(z43(m, 1)) = {

-0.15, lzg3(m, 1) > 1.2, 0.51, |zg3(m, )] > 1.2,
-0.7 0.1 0 03 02 0.1 0 0.02 003 006 0.04 0.05
01 -06 02 02 0.1 0 003 0 0.04 0.02 0.03 0.04
7= 0 02 -04 02 0 0 o= 005 006 0 0.01 0.02 0.03
03 02 02 =09 02 o 7 0.08 0.07 0.03 0 0.03 0.04
02 0.1 0 02 -07 02 0.06 0.02 0.03 002 0 0.01
0.1 0 0 0 02 -03 0.03 0.21 0.02 0.01 004 O

Hence,

0.81 0.76 0.09
08 0.7 025

,D=| 018 0.69 0.99

0.53 0.73 045
A=
0.64 047 0.89

1.02 0.97 0.91]

Case I: Bvidently, z*(m) = (0,0,0), ;= (Zj =05and y; = sz = 0.25. Take 8 = 0.15 in the condition (4), it is easy
to get the matrix P satisfying (9) as follows:

0.8342 0 0
P = 0 0.8106 0 .

0 0 0.5779

According to Theorem 3.1, the network (39) achieves synchronization under the controller (2). Fig. 1 displays the
evolutions of the error vector when the network (39) is synchronized.

Case 2: Y, i, ¢}, $;, 2" (m), 0 are similar as those in Case 1. wy(m, 1) = (0.6q Vt cos(nm), 0.8q Vt cos(nm), 1.2q Vt cos
(nrm))T. In terms of exploiting MATLAB, the matrices P satisfying (26) with § = 1.2 can be computed as follows:

1.5059 0 0
P = 0 1.5168 0 .

0 0 1.4837

From Theorem 3.2, the network (39) with the disturbance attenuation level § = 1.2 reaches event-triggered H.,
synchronization. Fig. 2 displays the evolutions of e,(m, t), w,(m, t) when the network (39) is H., synchronized, and
the corresponding instants of triggering event are shown in Fig. 3.

Example 5.2. The following CDRDMNNSs with spatial diffusion coupling via event-triggered control is considered:

Ozy(m,1) 62zq(m, 1)

” =Y o Kzg(m, t) + I + A(zg(m, 1) f(zg(m, 1)) + ya(m, 1) + D(z,(m, 1))g(z4(m, 1))
6 2
+0y @ﬂ% +vy(m, 1), (40)
p=1

in which [ = 3,q = 1,2,-+,6,a = 1,2,3, f(u) = LN o () = EHEN Q) = (] - 0.5 < m < 051K =
diag(2,6,8), ¥ = diag(0.8,0.5,0.7),1 = (0,0,0); 7,(1) = 1 - 5e™, @ = =55, j = 1,2,3;£ = 0.09, T = diag(0.4,0.8,
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Figure 1: The evolutions of e, (m, t) in (39).
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Figure 2: The evolutions of e, (m, t), w,(m, 1) in (39).
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Figure 3: The change instants of triggering event of z,(m, 1).

0.6);vy(m, 1) = & 3. pen, Hyp(zg(m, IZ) = z2,(m, 1)) y,(m, 1) = —sign(z,(m, 1) — 7*(m))(AY + D), & = 1.8. The matrices

A(zy(m, 1)), D(z4(m, 1)), G = (Ggp)exs, H = (H,p)sxs are chosen, respectively:

—-0.33,

ai(zg1(m, 1) = 0.15.
0.12,

a13(zg1(m, 1)) = 0.23,
-0.24,

an(zp(m, 1) = 0.44,
45,

az1(zg3(m, 1)) = 028,
0.11,

az3(zg3(m, 1)) = 0.26.
-0.54,

di2(z41(m, 1)) = 0.13,
0.33,

dr1(zg2(m, 1)) = 045,
0.34,

dr3(z2(m, 1)) = 047,
0.12,

d3(z43(m, 1) = 035,

|zg1(m, )] < 1.5,
|zg1(m, )] > 1.5,

zg1(m, )] < 1.5,
|zg1(m, )] > 1.5,
|zg2(m, )] < 1.5,
|zg2(m, )] > 1.5,
|zg3(m, )] < 1.5,
|zg3(m, )] > 1.5,
|zg3(m, )] < 1.5,
|z43(m, )] > 1.5,
|zg1(m, )] < 1.5,
|zg1(m, 1) > 1.5,
zgo(m, )| < 1.5,
2g2(m, )] > 1.5,
|zgo(m, )| < 1.5,
2g2(m, )] > 1.5,
|zg3(m, )] < 1.5,
|zg3(m, )] > 1.5,

-0.18,

a12(zq1(m, 1)) = 043
—0.35,

a1 (zp(m, 1)) = 0.16
-0.52,

ax5(zp(m, 1) = 0.36
0.35,

az(zg3(m, 1) = 027
0.49,

di1(zg1(m, 1)) = 035
-0.36,

d13(zg1(m, 1)) = 025
0.47,

dxn(zp(m, 1) = 037
-0.29,

d31(z3(m, 1)) = 035
0.34,

ds3(z43(m, 1)) = 041

19

|zg1(m, D) < 1.5,
zg1(m, 1) > 1.5,
|Zq2(m5 t)| < ]Sa
|ZqZ(ms t)l > 15’
|zg2(m, )| < 1.5,
|zg2(m, )] > 1.5,
|zg3(m, )| < 1.5,
|zg3(m, )] > 1.5,
|zg1(m, )| < L5,
|zg1(m, )] > 1.5,
|z41(m, D] < 1.5,
|z41(m, D) > 1.5,
IZqZ(m7 t)| g 1‘59
|zgo(m, 1) > 1.5,
|zg3(m, )| < 1.5,
|zg3(m, )] > 1.5,

|zg3(m, 1) < 1.5,
|Zq3(m’ t)| > 159
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Figure 4: The evolutions of e, (m, t) in (40).

0 0.002 0.002 0.003 0.04 0.005 -0.8 0.2 0.3 0.1 0.1 0.1
0.003 0 0.005 0.002 0.003 0.004 02 -0.8 02 0.1 0.2 0.1
H = 0.001 0.06 0 0.01 0.02 0.03 G = 0.3 02 -0.7 0 0 0.2
0.003 0.007 0.002 0 0.003 0.004 |’ 0.1 0.1 0 -04 0.2 0
0.004 0.002 0.003 0.004 0 0.001 0.1 0.2 0 02 -07 02
0.01 0.02 0.003 0.002 0.005 0 0.1 0.1 0.2 0 0.2 -0.6
Hence,

0.78 0.84 0.81
0.64 047 0.75

0.51 0.68 0.88
0.73 0.62 0.37

’D =

048 0.61 0.11
A=

0.84 0.67 0.61]

Case I: Evidently, z*(m) = (0,0,0)7, Y= LZ_,- =0.5and ¢; = ¢3j = (0.25. Take 8 = 0.45 in the condition (4), it is easy
to calculate the following matrix P satisfying (30) and (31):
0.6535 0 0
P= 0 0.4427 0 .
0 0 0.3226
On the basis of Theorem 4.1, the network (40) achieves event-triggered synchronization. Fig. 4 displays the evolu-
tions of the error when network (40) is synchronized.

Case 2: Y, 0j, ¢, ¢, 2" (m), 0 are similar as those in Case 1. w,(m, ) = (1.2q Vt cos(mm), 1.8q V't cos(mm), 1.6q V't cos
(mm))T. By means of employing MATLAB, the matrix P satisfying (36) and (37) with § = 3.6 can be computed as

follows:
0.4068 0 0
P= 0 0.2703 0 .

0 0 0.1994

From Theorem 4.2, the network (40) with the disturbance attenuation level § = 3.6 realizes event-triggered Hoo
synchronization. Fig. 5 displays the evolution of e,(im, 1), w,(m, ) when the network (40) is H,, synchronized, and
the corresponding instants of triggering event are shown in Fig. 6.
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Figure 5: The evolutions of e, (m, t) in (40).
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Figure 6: The change instants of triggering event of z,(m, 1).
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6. Conclusion

This paper has studied event-triggered synchronization and H,, synchronization of CDRDMNNSs with state cou-
pling and spatial diffusion coupling by means of exploiting the event-triggered controller. On the one hand, event-
triggered synchronization and H.,, synchronization criteria are derived for CDRDMNNSs with state coupling on the
basis of Lyapunov functional strategy. On the other hand, we also address the event-triggered synchronization and H,
synchronization problems for CDRDMNNNs with spatial diffusion coupling. In addition, two numerical examples
have been given to confirm the effectiveness of the proposed event-triggered synchronization and H., synchronization
results.
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