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Abstract

Selection on quantitative traits by divergent climatic conditions can lead to substantial trait variation across a species range.
In the context of rapidly changing environments, however, it is equally important to understand selection on trait plasticity.
To evaluate the role of selection in driving divergences in traits and their associated plasticity within a widespread species,
we compared molecular and quantitative trait variation in Populus fremontii (Fremont cottonwood) populations throughout
Arizona. Using SNP data and genotypes from 16 populations reciprocally planted in three common gardens, we first performed
QST-FST analyses to detect selection on traits and trait plasticity. We then explored the mechanistic basis of selection using
trait-climate and plasticity-climate regressions. Three major findings emerged: 1) There was significant genetic variation in
traits expressed in each of the common gardens and in the phenotypic plasticity of traits across gardens. 2) Based on QST-FST
comparisons, there was evidence of selection in all traits measured; however, this result varied from no effect in one garden to
highly significant in another, indicating that detection of past selection is environmentally dependent. We also found strong
evidence of divergent selection on plasticity across environments for two traits. 3) Traits and/or their plasticity were often
correlated with population source climate (R2 up to 0.77 and 0.66, respectively). This suggests that steep climate gradients
across the Southwest have played a major role in shaping the evolution of divergent phenotypic responses in populations and
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Selection on quantitative traits by divergent climatic conditions can lead to substantial trait variation across
a species range. In the context of rapidly changing environments, however, it is equally important to
understand selection on trait plasticity. To evaluate the role of selection in driving divergences in traits
and their associated plasticity within a widespread species, we compared molecular and quantitative trait
variation in Populus fremontii (Fremont cottonwood) populations throughout Arizona. Using SNP data
and genotypes from 16 populations reciprocally planted in three common gardens, we first performed Qgr-
Fst analyses to detect selection on traits and trait plasticity. We then explored the mechanistic basis of
selection using trait-climate and plasticity-climate regressions. Three major findings emerged: 1) There
was significant genetic variation in traits expressed in each of the common gardens and in the phenotypic
plasticity of traits across gardens. 2) Based on Qgr-Fsr comparisons, there was evidence of selection in all
traits measured; however, this result varied from no effect in one garden to highly significant in another,
indicating that detection of past selection is environmentally dependent. We also found strong evidence of
divergent selection on plasticity across environments for two traits. 3) Traits and/or their plasticity were
often correlated with population source climate (R? up to 0.77 and 0.66, respectively). This suggests that
steep climate gradients across the Southwest have played a major role in shaping the evolution of divergent
phenotypic responses in populations and genotypes now experiencing climate change.

Introduction:

Understanding the processes shaping phenotypic diversification in nature is a central objective of ecology
and evolutionary biology (Schluter 2000; Bolnick et al. 2011). Trait variation within widespread species can
be extensive due to historic demographic processes and spatially and temporally heterogeneous landscapes
exerting different selection pressures across a species’ range (Whitlock 2008). Over time, subpopulations can
become genetically and phenotypically differentiated due to neutral processes, such as drift, gene flow, and
mutation, as well as the adaptive process of natural selection (Wright 1931; Spitze 1993; Holsinger & Weir
2009; Leinonen et al. 2013). Natural selection acts on both phenotypes and phenotypic plasticity, defined as
the range of phenotypes a single genotype can express as a function of environmental change (Nicotra et al.
2010). The strength and direction of selection may vary, creating a mosaic of trait means and differences in
trait plasticity across species’ distributions (Chevin & Lande 2011). Adaptive evolution of individual traits
and associated plasticity can therefore differentially affect a population’s persistence on the landscape under
a changing climate, as both alter the range of phenotypes a population can express (Kelly 2019).

Phenotypic divergence is particularly evident in long-lived forest trees, which often show strong genetic differ-
ences and local adaptation among populations with ecological and evolutionary consequences for associated
species and communities (Savolainen et al. 2007; Leimuet al. 2008; Hereford 2009; Whitham et al. 2020).
One common hypothesis for the origins of phenotypic variation in trees is local adaptation in response to
climate. For example, studies on Populus have evidence of adaptive differences among populations in growth,
phenology, and physiological traits (Frewen et al.2000; Fischer et al. 2017; Blasini et al . 2020), and the
evolution of regionally adapted ecotypes (Grady et al. 2011; Evans et al. 2014; McKown et al. 2014; Ikeda
et al.2017; Cooper et al. 2019; Bothwell et al . 2021). To definitively show that phenotypic variation among
populations is due to divergent selection by their home climate, we need approaches that integrate molecular
and phenotypic assessments of replicated genotypes across multiple common garden environments.

In addition to understanding the role of natural selection in shaping trait differences, there has been an
increasing interest in understanding if and how selection acts on phenotypic plasticity itself (Josephs 2018;
Arnold et al. 2019). Phenotypic plasticity is expected to evolve proportionally to the variability and pre-
dictability of the environment, with higher plasticity correlated with more predictable and more hetero-
geneous environments (Lande 2009; Lindet al. 2011). For example, De Kort et al. (2020) found plastic
responses to drought in woodland strawberry were higher in topographically variable sites, while Leung et
al. (2020) experimentally determined that plasticity evolved to a lower degree in populations of a microalga
experiencing less predictable salinity conditions after 500 generations. The evolution of decreased plasticity
in homogeneous environments could occur when there is a net cost to maintaining plasticity (DeWitt et
al. 1998). Plasticity is also thought to increase in populations adapted to more benign climates relative to



harsh ones because the fitness cost of maladaptive plasticity producing phenotype-environment mismatches
will be greater when resource availability is limited (Albert & Simms 2002). This has been demonstrated in
studies where lower elevation plants produced stronger plastic responses to drought compared to plants from
harsher, high-elevation sites (Gugger et al. 2015; Akman et al.2021). Higher plasticity under milder (yet
variable) conditions may occur under the normal range of background environmental fluctuations, however
when extreme events occur outside of this range, theory predicts rapid evolution of plasticity (Lande 2009).
Evolution of increased plasticity after extreme environmental shifts can allow mean phenotypes to approach
new optima by accelerating phenotypic adaptation, and may enhance population persistence (Lande 2009;
Chevin & Lande 2010). However, this depends on the shape of the reaction norm and the genetic vari-
ance and covariances available for selection to act upon after the extreme event (Chevin & Hoffman 2017).
Finally, although plasticity is commonly studied on traits in isolation, species often respond to changes in
environmental with phenotypic plasticity in multiple traits, termed multivariate plasticity (Schlichting 1989;
Nielsen & Papaj 2022). Plasticity in one trait can therefore alter plasticity in another trait, changing the
optimal multivariate plastic response and fitness outcome to the new environment (Nielsen & Papaj 2022).
Correlations among trait plasticities may constrain the evolution of plasticity, resulting in discrete phenotypic
strategies or solutions (Schlichting 1989). Together, these processes could combine to generate a heteroge-
neous landscape, where selection gradients can produce marked differences in plasticity along environmental
clines.

A common test for whether natural selection is the mechanism responsible for generating phenotypic diver-
gence among populations is to compare Qgr, the variation in quantitative traits, to Fgr, the variation in
neutral genes (Wright 1951; Lande 1992; Spitze 1993). Qgr is the quantitative genetic analog to Fgp and
measures the proportion of additive genetic variance in a trait attributed to among-population differences.
If QsT > Fgsr, there is evidence that directional selection is responsible for population-level divergence with
respect to a trait of interest. If Qgsr [?] Fsr, the null model that population differences are due to genetic
drift alone cannot be rejected. Finally, if Qsr < Fgr, this suggests uniform or stabilizing selection acting
to constrain among-population divergence (Spitze 1993). Selection is expected to be uniform when pop-
ulations share the same phenotypic optimum and divergent when phenotypic optima vary, such as across
heterogeneous environments (Le Corre & Kremer 2012). The surge in both experimental and theoretical
Qs7-Fsrstudies has revealed a major role of natural selection shaping intraspecific variation in quantitative
traits (McKay & Latta 2002; Leinonen et al. 2008; Leinonenet al. 2013), with approximately 70% of all
studies showing Qgr > Fgr (Leinonenet al. 2008).

Qst-FsT comparisons can also be used to test for selection on phenotypic plasticity (Josephs 2018). Lindet
al. (2011) used Qgr-Fsr to test for selection on plasticity in development time among island populations
of the common frog, Rana temporaria, which vary in pool drying regimes. DeKort et al. (2016) performed
a modified Bayesian Qgr-Fsr analysis (Ovaskainenet al. 2011) to show selection on phenological plasticity
inAlnus glutinosa across a latitudinal gradient. Alternatively, selection on plasticity can be assessed by
regressing a genotype’s plasticity against overall fitness or a fitness proxy (Pigliucei & Schlichting 1996;
Arnold et al. 2019). In Fremont cottonwood, for example, higher plasticity in bud flush is associated with
higher survival when populations experience warmer temperatures (Cooperet al. 2019). Either approach
can complement the use of environment-trait regressions (Whitlock 2008) to test whether trait divergence
among populations is systematically related to climatic gradients as selection pressures.

The role of selection by past climatic in shaping intraspecific variation in foundation species is especially
important to quantify in the American Southwest, where the effects of climate change are pronounced (Garfin
et al. 2013; Williams et al. 2020). The loss of foundations species, defined as species that create locally stable
conditions, can have dramatic effects on fundamental ecosystem processes like energy fluxes and biodiversity
(Ellison et al.2005). The Southwest is described as one of the most “climate-challenged” regions of North
America, with warming temperatures and increasing drought events already contributing to massive forest
mortality events (Breshears et al. 2005). Fremont cottonwood is especially sensitive to drought and high
temperature, particularly in combination, as evidenced by stand-level mortality at the Bill Williams National
Wildlife Refuge on the lower Colorado River (Fig. 1). Recent studies by Hultine et al. (2020a) and Blasiniet



al. (2020) suggest that these trees are at the edge of their thermal tolerance where water is essential for
evaporative cooling. This mortality is associated with the megadrought that Williams et al.(2020) identify
as being the second worst drought in the past 1200 years in the American Southwest. Thus, current climatic
gradients will be exacerbated by ongoing climate change, leading to new selection pressures on functional
traits that may be locally adapted to a narrower range of environmental conditions.

In this study, we use trait data from three experimental common gardens to quantify divergence (Qsr)
in both genotype means within environments and genotype plasticities across environments for five traits
of Populus fremontii . We then compare these Qgt values to neutral genetic divergence (Fgr). Common
gardens are necessary to ensure that among-population variance components reflect genetic differences and
are not inflated by environmental effects (Leinonen et al. 2013). Reciprocal common gardens can reveal
traits that vary across environmental gradients as a result of phenotypic plasticity (Kawecki & Ebert 2004;
Franks et al. 2014). Plastic responses to environmental stress or release from stress may mask or amplify
genetically determined trait differences that have emerged as a result of divergent selection (Oke et al. 2015).
It is therefore important to assess phenotypes in multiple growing conditions to see how the environment
can modify the degree to which we can detect evidence of selection. Our use of multiple common gardens
adds to the Qgr literature by examining how the detection of trait differences depends on environmental
conditions (Akman et al.2021) and by allowing for Qgr-Fst tests on trait plasticity across gardens.

Both the collection and garden locations span an elevation gradient of almost 2000 m, consistent with the
species’ range and including a difference of 12°C mean annual temperature and > 500 mm in mean annual
precipitation across source locations and ~350 mm across gardens. The benefit of these experimental gardens
is enhanced by the development of genomic data based on the identification of > 9000 single nucleotide
polymorphisms (SNPs) for all genotypes planted. SNPs are an ideal type of marker for Qsr-Fsr analyses
because their mutation rates and the effects of drift are considered to be more similar to loci that control
quantitative traits compared to other molecular markers, such as hypervariable microsatellites (Edelaar &
Bjorklund 2011). Thus, the only difference between quantitative trait loci driving Qg and the loci used in
Fgr estimates should be that only the latter conform to neutral molecular evolution (Leinonen et al. 2013).

In order to address whether climate-driven natural selection drives trait and trait plasticity divergences across
the range of Fremont cottonwood, we evaluated three hypotheses: 1) Genetic variation in tree traits will be
evident among populations and genotypes in each of the three common gardens, although the magnitude
of the genetic effects may vary across environments and among traits. Likewise, populations will differ in
the magnitude of plasticity of these traits measured across the garden environments 2) Qs values will be
significantly higher than the neutral expectation of Fgr, suggesting divergent selection has outweighed drift
in shaping divergence in trait means and plasticity among populations. 3) Mean population phenotypes
will show strong relationships with their climate of origin, as is expected when climate is a primary selective
force. Similarly, trait plasticity will also be correlated with population source climate. Such plasticity-climate
relationships should emerge when population origins differ not only in mean climate conditions but also in
climatic variability across seasons and years, as is the case in the Southwest.

Materials and Methods:
Collection sites and common gardens

To establish the common gardens, 16 populations of Populus fremontii were collected throughout Arizona,
encompassing the environmental variation experienced by the Sonoran Desert ecotype, as well as three
populations located on the Mogollon Rim within the Colorado Plateau region of northern Arizona (Fig. 2).
These populations group genetically with and have been alternatively identified as the Mogollon Rim (Blasini
et al. 2020) or Utah High Plateau ecotype (Ikeda et al. 2017; Supplemental Table 1). This sampling design
does not include the third described ecotype of the Central California Valley (Ikeda et al. 2017). Cuttings
were taken from individual tree genotypes located over 20 m away from each other to ensure independent
genotype sampling. Clonal replicates from 12 trees per population were planted in the summer and fall of
2014 in each of the three common garden sites after rooting in the greenhouse for approximately four months.



The three replicated experimental common gardens span broad elevation and climatic gradients, resulting
in extreme climatic transfers for some populations. The northernmost garden represents the cold edge of
the species’ climatic range. It is located adjacent to Canyonlands National Park, Utah and is maintained
by The Nature Conservancy’s Dugout Ranch. The middle Arizona garden is located adjacent to the Agua
Fria River in Agua Fria National Monument and is maintained by the Arizona Game and Fish Department.
The southernmost garden is in Yuma, Arizona near Mittry Lake, and is maintained by the Bureau of Land
Management. These gardens span over a 1500 m elevation difference, a 12°C mean annual temperature range
(10.7°C in Yuma, 17.2°C in Agua Fria, and 22.8°C in Canyonlands), and a precipitation difference of ~350mm
(Supplemental Table 1). Each common garden was planted with 4,096 trees. These trees were arranged into
four replicated blocks to account for within-garden environmental variance, with each block made up of 16
randomized population-level plots. Each population plot had 64 trees, made up of three to six replicates
of the 12 genotypes collected for that population. Plots were arranged in a randomized 8 x 8 grid, with
trees spaced 1.85m in each cardinal direction. The garden was designed using population plots instead of
fully randomized by genotype to assess population-level effects on dependent community members such as
arthropods and mycorrhizae, as well as ecosystem-level traits like carbon flux.

In order to examine the relationship between climate and traits, we downloaded 30-year normals (1961-
1990 means) for 21 abiotic climate variables for each of the 16 provenance sites and the three common
gardens using the program ClimateWNA (Wang et al. 2012). Because variation in both temperature and
precipitation in the Southwest are very strongly correlated with elevation, these current climate variables
are excellent proxies for the climates that trees have experienced during their local evolutionary histories
(r > 0.985 for correlations between current MAT and MAP (WorldClim 2, Fick & Hijmans 2017) and
those variables estimated from 6,000 or 22,000 years ago (WorldClim 1.4, Hijmans et al. 2005). To create a
multivariate climatic index representing the environmental variation found throughout the 16 provenances,
the ClimateWNA variables plus elevation, latitude, and longitude, were combined in a principal component
analysis (PCA) using labdsv (Roberts 2007) and vegan (Oksanen et al. 2016) packages in the R statistical
language (R Core Team 2014).

Trait analysis

We analyzed five traits for phenotypic differentiation: fall bud set, spring bud flush, specific leaf area (SLA),
height, and trunk basal diameter. Phenology of bud set and bud flush were measured in the fall of 2015 and
the spring of 2016, respectively. Bud set was recorded as the initiation of bud formation, where internode
elongation had ceased and the newly emerged, bundled leaves were clustered at the same level on the stem,
offset from the shoot axis (Frewen et al. 2000). Bud set was measured at 6-10 day intervals from September
through December of 2015 on three replicates of all 12 genotypes per population in each garden. We scored
trees based on the bud stage exhibited by 50% or more of the apical meristems. There was little within-plant
variation in apical bud development, so we felt this was a good approximation of whole plant progression
towards dormancy. Spring bud flush was recorded as the date when all leaves had flushed from the tree,
specifically when a leaf had expanded from all buds on the branch. Bud flush was measured every two weeks
from February through the end of April in the Yuma and Agua Fria gardens, and through the end of May
in the Canyonlands garden, where colder temperatures persist later into the spring. Bud set, bud flush, and
height were assessed the full first year of growth (2015-2016) for every genotype in each of the common
gardens.

Specific leaf area was measured using the average of three to six fully expanded leaves that were free of or had
minimal herbivore damage (if no leaves without damage could be found). To standardize for light availability,
all leaves were collected from a single south-facing branch, collected approximately at breast height in May
and June of 2020. Due to mortality in the gardens over the five years since planting, and the time required
for sampling, SLA was only measured on 12 populations in Yuma and Agua Fria, and seven populations in
Canyonlands, with 3-7 genotypes measured within each population. Although early SLA analysis from 2015
showed similar patterns, concern over residual maternal and greenhouse effects cautioned against using this
first year of data. Leaves were scanned and leaf area was measured using ImageJ software (Schneider et al



. 2012). After the area scans, leaves were dried using silica beads and then weighed. Lastly, we used trunk
basal diameter recorded at the end of the fourth year of growth (2018), which was measured as the diameter
at root collar (DRC), ~10cm from the soil, on every live tree in the gardens. Diameter at root collar was
used instead of diameter at breast height because it allows us to track tree growth consistently from planting
up to their current stature.

Genetic analysis

Genomic DNA was extracted from ~0.2g silica-dried leaf tissue from all 192 genotypes using the Ther-
mo Scientific MagJET Genomic DNA Kit (Thermo Scientific). Double-digest restriction-associated DNA
(ddRAD) libraries were prepared using 2-5ng of DNA per sample in 20uL reactions following a modified
Peterson et al. (2012) protocol. Briefly, restriction and ligation was carried out simultaneously in 20uL
reactions using restriction enzymes Mspl and EcoRI and universal adapter sequences for indexing PCR. Lig-
ation products were amplified using 25 cycles of PCR. After indexing, products were checked on an agarose
gel and purified. Samples were then pooled and size selected for fragments between 200 and 350bp using a
Pippin Prep (Sage Science, Inc., Beverly, MA). The size-selected pool was quantified by PCR and sequenced
on an Hlumina MiSeq Desktop Sequencer (Illumina, Inc. San Diego, CA) in 2x75 mode. Sequence reads
were processed using a modified Stacks pipeline (Catchen et al. 2013; Andrews 2018). Potential chloroplast
and mitochondrial sequences were filtered from the dataset by comparing them to other Populus sequences
downloaded from GenBank. Specifically, we removed sequences that matched chloroplast sequences from
P. fremontii and mitochondrial sequences from P. tremula x P. alba. Parameter values for clustering were
based on tests following parameterization in Mastretta-Yanes et al. (2015). The minimum stack depth for
each individual was three and the minimum number of individuals per locus cluster was three. All loci
were used in the measure of Fgr were found to be in Hardy-Weinberg equilibrium. To calculate Fgt and a
95% confidence interval around Fgr, we bootstrapped population-level pairwise Fgr values 500 times using
thedivPartCalc function in the R package diversity (Keenanet al. 2013).

Statistical Analyses

To investigate the within- and among-population and genotype variation in phenotypic traits, each garden
was modeled separately using linear random effects models fit by maximum likelihood in the Ime/ package
in R (R Core Team 2014; Bates et al. 2015). The tree traits were modeled as response variables, while
population and genotype nested within population were random effects. Garden plot was included as a
random variable to help account for within-garden environmental variance. Statistical significance was
calculated using likelihood ratio tests for the random effects using the package ImerTest(Kuznetsova et al.
2015).

To model population and genotype variation in phenotypic plasticity, we first needed to obtain replicated
estimates of plasticity for each genotype and each trait. For each genotype with at least one tree in each of
all three gardens, we randomly assigned all available trees into genotype triplets, with one tree from each
garden. We then calculated plasticity for each triplet as the absolute value of the maximum difference in
those three trait values. This produced a number of estimates of plasticity equal to the lowest number of trees
available for that genotype in any garden. We repeated this random triplet assignment 100 times to obtain
a set of possible plasticity datasets. For each dataset, we estimated the variance components necessary to
calculate Qg using a linear random effects model as described above, where trait plasticity was the response
variable, and population and genotype nested within population were the random effects.

For each trait and trait plasticity, we compared the quantitative trait variation (Qgt) with genetic variance
at neutral loci (Fgr). To calculate Qgt we used the following formula:

where o2p is the additive genetic variance among populations and o?¢ is the additive within-population

variance (Spitze 1993; McKay & Latta 2002), i.e., the variance among genotypes within populations. Each
trait or plasticity was analyzed using the models described above, and population and genotype variances were
extracted to calculate Qgr. Parametric bootstrap and Bayesian estimation are considered the best methods
to obtain a precision estimate around Qs (O’Hara & Merild 2005). We performed parametric bootstrapping



to obtain a 95% confidence interval for Qgr, resampling the 16 populations with replacement 1000 times,
and estimating Qgr for each bootstrapped data set. Resampling over the highest level in a hierarchical
experimental design (here the population) is considered best practice (O’Hara & Merild 2005). Variance in
Qst becomes quite large as the number of populations decreases (< 20), especially if populations are highly
differentiated (O’Hara & Merild 2005; Goudet & Biichi 2006). Goudet & Biichi (2006) recommend sampling
many populations relative to the number of families. Our design of 16 populations with 12 genotypes per
population comes close to their recommended sampling design of upwards of 20 populations with 10 families
(O’Hara & Merild 2005; Goudet & Biichi 2006). In using clonally replicated genotypes, our estimate of 62g
includes both additive and non-additive genetic effects, an approach that has been shown to lower Qg
estimates and is thus a conservative test of Qs > Fgr (Cubry et al. 2017). Conversely, lower Qg estimates
derived from non-additive genetic effects contribute to a more liberal test of convergent selection (Qgr <
Fsr) (Whitlock 2008; Cubry et al. 2017). To determine whether Qg was significantly different from Fgr,
we compared the 95% confidence intervals for both, which provides much stronger inference than simply
comparing Qg to the mean Fgr value (Whitlock 2008; Leinonen et al. 2013). Broad-sense heritability (H?)
point estimates and confidence intervals were also calculated for each trait in each garden using the equation,
H? = 0%¢/(c%q +02E), where o%g includes both the plot variance and the error variance. Calculations of
heritability for plasticity did not include plot-level variance since plasticity was measured across gardens.

In order to test whether phenotypes showed strong climatic relationships, we regressed population trait
means and trait plasticities against the first principal component (PC1) from the environmental PCA. We
tested these regressions and calculated an adjusted R? using a linear model in R (R Core Team 2014). Here,
we used a single estimate of plasticity for each genotype. Using all available replicates for each genotype, we
first calculated the mean trait value for each genotype in each garden, and then calculated plasticity as the
maximum difference between gardens. Systematic differences among populations seen in these trait-climate
correlations are another, stronger test for evidence of divergent selection acting over genetic drift (Whitlock
2008).

Results:
Genetic and Phenotypic Variation

Our dataset of 192 genotypes analyzed with ddRAD yielded 9195 SNP loci. The 16 Arizona populations
show strong differentiation with an average pairwise Fst = 0.175 and 95% confidence interval of 0.144-0.205.
Consistent with our first hypothesis, we found significant within and among population variation for traits at
each of the three common gardens (Table 1, Fig. 3), with phenology traits exhibiting higher differentiation
at the population than the genotype level in all but one case. For SLA, height, and diameter at root
crown (DRC), the relative contribution of population vs. genotype varied among gardens. Traits measured
in the hottest common garden (Yuma) exhibited stronger population than genotype effects in four out of
the five traits; for SLA, the proportion of variance explained by genotype was higher than the proportion
explained by population, although it was very close (27% vs. 24%, respectively; Table 1). This garden
thus produced higher values of Qg (the proportion of the genetic variance that is found among rather than
within populations, see next section).

Phenotypic plasticity across the three gardens showed significant population differences in all traits except
SLA (Table 1, Fig. 3). Here, the lower sample size of seven populations with no populations from the
hottest locations may have contributed to this non-significant effect. Population explained more variance in
plasticity in the growth traits compared to the phenology traits (Table 1).

Qs - Fgr: Comparison of quantitative trait differentiation to neutral genetic expectation

We found evidence of selection (Qgt [?] Fsr) driving phenotype differences in over half of the traits measured
across the three gardens (Table 2, Fig. 4). Overall, the mean Qg value across all traits and all gardens
(0.42) was above the Fgr confidence interval (0.144-0.205), consistent with directional selection shaping
trait differences and increasing local adaptation among these populations. Bud flush traits exhibited the
highest levels of population differentiation. For example, Qgt for bud flush in the hot and mid gardens was



0.87 and 0.86, respectively, while Qgt values for bud set were more moderate (0.26-0.54). The confidence
intervals for Qgr crossed those of Fgr in two phenology measurements (bud set in Agua Fria and bud flush
in Canyonlands), suggesting no difference from the neutral expectation of genetic drift of these traits in
these environments. Divergent selection on specific leaf area was apparent in the mid (Qst = 0.54) and cold
gardens (0.79), but not detectable in the hot garden of Yuma (0.31). Tree growth traits showed relatively
lower QgT values compared to leaf traits across gardens. Tree height showed significant divergent selection
when measured at the hottest common garden in Yuma, Arizona (Qst = 0.44), but was not statistically
different from Fgr in the two cooler gardens of Agua Fria and Canyonlands (0.14 and 0.26, respectively).
Contrary to our hypothesis, we found evidence of stabilizing selection for basal trunk diameter in the coldest
garden, where the Qgr value (0.01) fell below the Fgr confidence interval. However, this result should
be interpreted with caution since dominance reduces estimates of Qgr and is therefore a poor indicator of
stabilizing selection (Cubry et al. 2017). This trait was indistinguishable from the neutral expectation of
Fsr in the warm and mid gardens (Qst = 0.50 and 0.03, respectively).

Mean Qgr values for all trait plasticities except DRC were above the Fgr confidence interval (Table 2),
suggesting overall divergent selection acting on plasticity. We found the strongest evidence for divergent
selection on plasticity for bud flush (mean Qgt = 0.84) and height (mean Qst = 0.66) where the Qgst 95%
confidence interval distribution never crossed the Fgrconfidence interval (Fig. 5). In the analyses of bud set
(mean Qst = 0.44) and SLA (mean Qgr = 0.69), the lower Qgt confidence interval distribution overlapped
with Fgr, indicating that for some of the 100 possible plasticity datasets, trait plasticity differences among
populations were not distinguishable from the neutral expectation of drift. Specifically, 67% of the permu-
tations fell within the Fgr interval for bud set, while only 6% overlapped for SLA. Similar to DRC, the
Qst values for DRC plasticity were much lower than the other plasticities (mean Qg = 0.07), however the
upper confidence interval did overlap with Fgr 76% of the time (Fig. 5). These three cases of plasticity Qsr
confidence interval distributions overlapping with Fgr represent a weaker detection of selection. However,
these results do provide partial evidence for SLA, where 94/100 permutations were non-overlapping.

Climate as an agent of selection

The strength of the correlations between traits and provenance climate varied across gardens (Table 3, Fig.
3), supporting our third hypothesis of strong associations between phenotype and climate for some traits in
some environments. A single axis (PC1) explained 95.8% of the variation in provenance climate and was
influenced primarily by temperature and growing season-related climate variables (Supplemental Table 2).
Populations sourced from areas with higher temperatures, lower precipitation, lower elevation, and longer
growing seasons had higher PC1 scores. Bud set exhibited the strongest relationship with provenance climate
across the gardens (R? = 0.67 to 0.77), while bud flush showed significant correlations in the two warmer
gardens (R? = 0.49 in Yuma and 0.66 in Agua Fria), but not in the cold garden (R? = -0.01) (Table 3, Fig.
3a). In Canyonlands, population variation was constrained as all trees flushed at approximately the same
time, late in the spring. Specific leaf area did not show significant trait-climate correlations in any garden,
although we see overall SLA values increasing from the hot to the cold garden site (Fig. 3a).

Tree growth traits were more likely to show garden-dependent relationships between population origin and
performance (Table 3, Fig. 3b). Tree height showed no climate relationships when planted in the hottest
garden, however the correlation become stronger in the mid to cold gardens. When planted at the coldest
garden, trees sourced from colder, wetter climates, including the three populations from the Colorado Plateau,
were taller than populations from hotter, drier environments. Similarly, the DRC relationship in the hottest
garden showed trees sourced from warm, hot environments had larger trunk diameters compared to trees
from colder climates (Fig. 3b). Together, tree height and basal trunk diameter act as indicators that overall
tree performance is consistent with local adaptation, with hot, southern populations growing larger in the
hottest Arizona garden, and northern, cold adapted populations growing larger in the coldest Utah garden.

Phenotypic plasticity was significantly correlated with population source climate for all traits except SLA
(Table 3, Fig. 3). Populations sourced from hot, dry climates exhibited increased plasticity in leaf-level
phenology traits relative to the colder populations, as previously reported in Cooper et al. (2019). Tree-



level growth traits showed the opposite pattern of increased plasticity in those populations sourced from the
colder, high elevation environments. SLA showed a similar trend to phenology, with warmer populations
exhibiting higher plasticity compared to populations sourced from cooler climates, but was not significant.
Again, this may be due in part to the lower sample size of seven populations that did not include populations
from the hottest, driest sites (Fig. 3a).

Discussion:

We found evidence of selection acting on both traits and trait plasticity across our three common gardens. In
addition, regressions between traits and provenance climate indicate that much of the selection detected with
Qst-FsT analysis is driven by climatic clines to which these populations are locally adapted. The result of
mostly high Qg values for traits is consistent with a majority of studies finding Qg is generally larger than
Fgr for ecological traits (McKay & Latta 2002; Savoleinen et al. 2007; Leinonen et al.2013). However, our
result of divergent selection acting on trait plasticity is quite striking in light of the relatively few examples
of selection on plasticity documented in the literature (Arnold et al. 2019). Combining Qsr-Fsr analysis on
trait plasticity with plasticity-climate regressions can help uncover the evolutionary forces shaping plasticity
differences across environmental gradients (Whitlock 2008; Josephs 2018; Kelly 2019). Below, we discuss
the evidence for climate-driven adaptive divergence in traits and trait plasticity, local adaptation to climate,
and the potential consequences of both under current climate change.

Divergent selection shapes population trait and plasticity differences

We interpret cases when both the Qsp-Fgranalysis showed large divergences from neutral expectation and
phenotype-climate correlations were significant as strong evidence for climate-driven selection. Cases with
only one of these tests showing population differences provide partial evidence for climate-driven selection
(Table 4). For instance, there were four cases showing Qs > Fst but non-significant trait-climate correla-
tions. These inconsistencies between the two tests could be due to divergent selection that is not related to
the climatic gradients we tested. There were also four cases showing Qg [?] Fsr and significant trait-climate
correlations. In these cases, Qgrconfidence intervals overlapping with Fgr could be due to the bootstrap
sampling of genotypes with less genetic variation compared to the full sampling design, thus lowering the
Qsr estimate. There were also more significant plasticity-climate correlations (4 out of 5) than significant
Qst-Fgr differences for plasticity (2 out of 5). Finally, there was a range of results across the three gardens
within the Qsp-Fgr analysis itself. Together, these tests provide a continuum of support for selection on
traits and trait plasticity, and highlight which traits may be under the strongest selection and potentially
the most important to investigate under climate change.

We found the largest Qgr values for spring bud flush, consistent with other studies showing high phenological
divergence across latitudinal clines (Hurme 1999; Howe et al. 2003; Hallet al. 2007; Evans et al. 2016).
Spring bud flush is highly differentiated among P. fremontii populations, with a difference of up to eight
weeks observed in flush timing (Grady et al. 2015; Cooper et al. 2019; Blasini et al. 2020). We also found
large population differences in fall bud set timing of ~2-5 weeks across the common garden gradient, reflected
in moderate Qg values in two out of the three gardens. The strong population differences in phenology found
here agree with Fischer et al. (2017), who showed leaf phenology accounted for >80% of the variation in
tree and forest productivity among Fremont cottonwood genotypes. We found larger population differences
in bud flush compared to bud set. This result is intriguing given that spring bud flush is primarily governed
by temperature, while fall bud set is mostly cued by precise day length periods (Thomashow 2001; Howe
et al. 2003). While day length is driven by latitude and is constant from year to year, temperature can
vary. The fixed environmental cue of day length should allow populations to become highly locally adapted
and differentiated in bud set compared to a variable environmental cue such as temperature. However,
the strength of photoperiod-driven selection on bud set may be relaxed in all but the highest elevation
populations, where the trade-off for longer growing seasons is selected for in areas that very rarely or never
experience killing frosts (Howe et al. 2003). Both phenology traits also showed strong relationships with
provenance climate across the gardens, except for bud flush in the coldest garden, where low temperatures
prevented an earlier flush in the southern, warm-adapted populations (Fig. 3a).



Our detection of selection was dependent, in part, on the environmental conditions of each garden. Bud
flush, bud set, and SLA all exhibited divergent selection (Qgt > Fsr) in two out of three gardens (Fig. 4).
Tree growth traits exhibited even larger variation in Qgr among gardens. For example, we observed high
population differentiation in height expressed in the hottest garden (Qgt = 0.44). When populations were
planted in the moderate and cool gardens, these population differences diminished, but became more strongly
predictable from home climate (Fig 3). Qgr estimates for trunk diameter also decreased with decreasing
garden temperature. This variability in Qgr across gardens suggests that phenotypes shaped by selection
pressures across a species’ range can be expressed differently in different growing environments, with some
environments enhancing and others dampening population phenotypic differences (Oke et al. 2015; Akman
et al. 2021). Particularly for growth traits, this may represent an interaction between the selection pressures
that have shaped existing variation across the species range and novel selection pressures imposed in a
common garden experiment or under future climate change.

The larger population-level trait differences exhibited in the hottest common garden for most traits (except
SLA) could be driven by the maladaptation of the cold-adapted, northern populations to the extreme thermal
conditions experienced in this hot garden. This climate transfer from northern to southern Arizona represents
an extreme warming treatment, a scenario that may be imposed on populations under severe heat waves
with climate change (Cook et al . 2015). Similarly, Evans et al. (2016) found that the relationship between
Qst and Fgr changed through time, with tree height displaying high population differentiation (Qgt >
Fst) under the growing conditions in one year but not the next. Long-term common garden experiments
can demonstrate how population differences are expressed both across different environments and through
time. Given the intensification of extreme events and climate variability going forward (Jentsch et al. 2007;
Ganguly et al. 2009; Garfin et al. 2013; Williams et al. 2020), these types of field trials should be expanded
to evaluate the correspondence between the degree of existing climate adaptation and the potential for
future climate survival, either through phenotypic plasticity, selection on remaining genetic variation, or a
combination of the two (Nicotra et al.2010; Josephs 2018).

Our Qgr-Fst comparison revealed support for divergent selection acting on phenotypic plasticity in bud
flush and tree height, and showed partial evidence for selection on plasticity in the other three traits (Table
2; Fig. 5). This is in contrast to previous studies that found no evidence of selection on trait plasticity using
Qst-Fst type comparisons (Lindet al. 2011, De Kort et al. 2016), and low overall support for selection on
plastic responses to temperature (Arnold et al.2019). Our results suggest that for some traits, differences
in plasticity among populations across a wide environmental gradient are larger than expected from neutral
genetics, where some populations show minimal plasticity and others exhibit high plasticity. Conversely
we found some evidence for stabilizing selection in DRC plasticity, indicating that the difference in the
magnitude of plasticity for this trait across our populations was smaller than expected by Fgr, however it
was not below the Fgrconfidence interval in all 100 plasticity permutations. The mosaic of natural selection
acting on trait plasticity across our populations shows how plasticity itself can evolve in response to different
climates.

The mosaic of natural selection acting on trait plasticity across our populations shows how plasticity itself
can evolve in response to different climates. We found significant plasticity-climate relationships in phenol-
ogy and growth traits, where the sign of the correlation switched between these two types of traits (Fig.
3). Specifically, we found trees sourced from colder environments were significantly more plastic in height
and DRC compared to the warm provenance populations, but were not as plastic with regard to their bud
set and bud flush (Fig. 3). This is an example of a multivariate plasticity response, where plasticity in
one trait may be affecting the plasticity in another trait (Nielsen & Papaj 2022). The higher plasticity in
phenology traits measured in populations from hotter provenances is counterintuitive because colder source
populations experience much more predictable fall freezing events and higher yearly temperature variation
(see TD in Supplemental Table 1), and theory predicts plasticity will increase under predictably variable
environments (Chevin & Lande 2010). However, our climate transfer of southern Arizona populations to the
northernmost cold garden represents an extreme climate event (over 15°C colder in the coldest month for
the populations from the hottest source locations, Supplemental Table 1) far outside of some populations’
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normal temperature range, which can result in large, maladaptive plastic responses (Chevin & Hoffman
2017). The higher phenological plasticity seen in hot-adapted populations did not translate into increased
growth or growth plasticity, likely due to maladaptive phenological plasticity that pushed these trees outside
of the appropriate growing season window (Cooper et al. 2019). The high bud set plasticity of warm-adapted
populations meant that these trees did not set bud until late in the growing season, when freezing tempera-
tures damaged non-dormant tissues. The subsequent frost damage translated to lower growth compared to
cold-adapted trees that set buds earlier in the season and avoided frost damage. The increased height of the
cold adapted populations in the coldest garden relative to the warm populations produced the significant
differences in height plasticity. Therefore, our result of higher height plasticity in populations sourced from
cold locations can be partially explained by the warm populations’ maladaptive plasticity in phenology.

In comparing our results to previous findings of no divergent selection on plasticity in other systems, it is
important to consider both climate means and variances. In this system, higher growth plasticity observed
in populations sourced from colder, high elevation locations could also be due to adaptation to increased
climate variability, compared to the central and southern Arizona populations. Specifically, the temperature
difference between the mean warmest month and the mean coldest month was the largest for the three
populations collected on the Colorado Plateau compared to the rest of the populations below the Mogollon
Rim of the Plateau (see TD in Supplemental Table 1). This follows the theory that higher levels of plasticity
should occur in more variable environments (Lande 2009).

Finally, our estimates of heritability in both traits and trait plasticity also indicate that these components of
the phenotype can evolve in response to selection, at least under some environmental conditions. Broad-sense
heritability values for the five traits were moderate, with a mean value across all gardens of 0.21 (Table 2).
Our phenology heritability measures (H? = 0.04-0.48 for bud flush and H? = 0.19-0.30 for bud set) were
lower than previously found in some Populus studies (H? = 0.94 for bud flush and H? = 0.91 for bud set
in P. trichocarpa = deltoides , Frewen et al. 2000). Heritability values for growth traits (H?= 0.11-0.27 for
height and 0.08-0.21 for DRC) and SLA (H? = 0.10-0.35) were fairly consistent with other reported Populus
estimates (H? = 0.03-0.42 for height and H? = 0.09-0.25 for diameter at breast height in P. tremuloides ,
Ding et al. 2020; H? [?] 0.2-0.6 for SLA in P. nigra , Guet et al. 2015). The range of heritability estimates
for the same trait across the three gardens highlights the environment-dependent nature of heritability.
This is especially apparent in our bud flush results, where we found the lowest value in the cold garden
(H?= 0.04) and the highest value in the warmest garden (H? = 0.48). There was also no trend toward
higher or lower heritability estimates in a particular common garden. These results suggest that in some
environments evolutionary potential is limited but can increase as environmental conditions and associated
selection pressures change. Furthermore, these heritability increases are not necessarily associated with a
specific direction of change (i.e., increasing or decreasing temperature). Broad-sense heritability for the five
trait plasticities ranged from 0.09-0.18, a similar result to bud burst plasticity found in another riparian
deciduous tree, black alder (H? = 0-0.129, De Kortet al. 2016). Our results of genetic variation in trait
plasticity combined with the evidence for selection based on Qst-Fst analysis and non-zero heritability
estimates show selection on the heritable components of phenotypic plasticity may lead to evolving plasticity
across the landscape among these Arizona populations of Fremont cottonwood.

Local adaptation to climate

Whereas leaf phenology and morphology traits (bud flush, bud set, and SLA) had the highest degree of
differentiation in our study, likely due to climate-related divergent selection, tree growth traits (height and
trunk basal diameter) were less differentiated. This result suggests that the neutral processes of gene flow
and drift may override weak selection on growth traits (McKay & Latta 2002), or that growth is strongly
constrained by the relative success dictated by the rest of a plant’s phenotype (Saint-Laurent et al. 2007;
Leinonen et al . 2013). In this case, the latter explanation is very likely. Although phenology and growth
traits showed significant regressions with climate of origin (Fig. 3), only the growth traits reversed the
sign of that relationship across gardens. Specifically, phenology trends were mostly constant across gardens,
with warmer source populations setting bud later and flushing earlier regardless of growing environment
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(except for bud flush in Canyonlands). However, height and trunk diameter declined as transfer distance
increased (in terms of both hotter and colder climates) for populations relative to their home sites. This
indicates local adaptation, where the highest productivity is observed in populations whose source climate
best matches that of the garden climate. In the hottest garden (Yuma), there was a positive relationship
between trunk diameter and warmer provenance climates. In the coldest garden (Canyonlands), the reverse
was true, where trees from cooler provenances grew significantly taller than those from the warmer sites (Fig.
3b). Whether this higher performance of local populations is enabled by their leaf phenology and morphology
traits measured here vs. additional plant functional traits is an important area for further study.

Management implications

When local adaptation and phenotypic differentiation in forest trees are closely tied to variation in climate,
populations may become increasingly maladapted as climate change continues (Shaw & Etterson 2012;
Franks et al. 2014; Aitken & Bemmels 2015). However, the magnitude of climate change combined with the
degree of genetic variability, heritability, and phenotypic plasticity of traits will all interact to determine the
extent of adaptation or maladaptation. Maladaptation due to climate change is expected to be greatest in
populations from the warmest extent of their range, while populations at the cold edge may benefit from
slightly warmer temperatures (Aitken & Bemmels 2015). This expectation corresponds with the maladaptive
phenological plasticity we have observed in southern populations vs. adaptive phenological plasticity in
northern populations (Cooperet al. 2019). However, nuanced changes in temperature and precipitation
patterns will produce novel genotype-climate associations, creating more complex climate responses compared
to the poleward range shifts and vulnerable trailing edges traditionally associated with warming (Gougherty
et al. 2021). Although our study does not encompass the full genetic and geographic range of Fremont
cottonwood, our results of declining performance as climate transfer distance increases suggests that this
species will likely experience maladaptation as local conditions become more arid, especially for southern
populations that are close to their thermal tolerance (Aultet al. 2014; see Fig. 1). Because these trees
are important foundation species of riparian systems, selecting genotypes with sufficient performance under
warming conditions is essential for the persistence of associated communities and ecosystems.

Conclusions

By combining Qsp-Fst analyses and climate-trait regressions, we show that both quantitative traits and
associated plasticity are targets of climate-driven selection, where population may exhibit significant differ-
entiation in both, one, or neither type of analysis (Table 4). This spectrum can help determine which traits
are likely under the strongest climate-drive selection. Specifically, phenology as well as bud flush plasticity
and height plasticity show the strongest responses to selection (Table 4). These traits and plasticities could
be most impacted by further climate change, as they show strong signals of climate-driven selection in the
past. However, both the detection of past selection and the differentiation in current performance differed
strongly across our experimental common gardens. Strategies for management of widespread species like
Fremont cottonwood would benefit from considering the climatic selection pressures of source locations to
anticipate their future performance, as well as the population-specific potential for adaptive trait plasticity
under changing environmental conditions.
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Tables and Figures:

Table 1: Model variance and p-values for each trait measured in each garden, showing the population,
genotype, and plot-level effects on trait variation. In addition, model variance and p-values for each trait’s
plasticity across the three gardens, showing the population effect, are shown.

Trait Garden Variable Proportion variance explained P-value
Bud set Yuma Population 30.19 <0.001
Genotype 13.12 <0.001

Plot 8.43 <0.001

Agua Fria Population 17.70 <0.001

Genotype — 24.97 <0.001

Plot 7.82 <0.001

Canyonlands Population 29.53 <0.001
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Trait Garden Variable Proportion variance explained P-value

Genotype 16.57 <0.001
Plot 2.23 0.003
Plasticity Population  30.00 <0.001
Bud flush Yuma Population 86.59 <0.001
Genotype  6.42 <0.001
Plot 0 1
Agua Fria Population 78.08 <0.001
Genotype  6.59 <0.001
Plot 1.54 <0.001
Canyonlands Population 2.97 0.16
Genotype  3.56 0.08
Plot 4.07 0.02
Plasticity Population 23.25 <0.001
SLA Yuma Population 24.28 0.002
Genotype 26.81 <0.001
Plot 10.91 <0.001
Agua Fria Population 19.31 0.02
Genotype 8.3 <0.001
Plot 27.63 <0.001
Canyonlands Population 61.21 <0.001
Genotype 8.16 <0.001
Plot 7.03 <0.001
Plasticity Population 6.72 0.2
Height Yuma Population 14.85 <0.001
Genotype 9.40 <0.001
Plot 7.57 <0.001
Agua Fria Population 3.73 0.5
Genotype 11.55 <0.001
Plot 20.26 <0.001
Canyonlands Population 16.39 0.004
Genotype 22.81 <0.001
Plot 8.57 <0.001
Plasticity Population 45.51 <0.001
DRC Yuma Population 12.13 <0.001
Genotype  6.13 <0.001
Plot 12.92 <0.001
Agua Fria Population 0.52 0.9
Genotype 7.90 <0.001
Plot 23.77 <0.001
Canyonlands Population 0.71 0.7
Genotype 24.66 <0.001
Plot 4.03 <0.001
Plasticity Population 36.93 <0.001

Table 2: Qg and broad-sense heritability, H? (+ 95% confidence intervals), for each trait in each garden,
and the mean Qg and H?(+ mean 95% confidence intervals) for the 100 plasticity permutations for each
trait across gardens.
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Trait Garden QsT H?

Bud set  Yuma 0.54 (0.40-0.86)  0.19 (0.05-0.26)
Agua Fria  0.26 (0.15-0.42)  0.30 (0.24-0.34)
Canyonlands  0.47 (0.46-0.57) 0.28 (0.18-0.24)
Plasticity 0.44 (0.18-0.82) 0.12 (0.03-0.21)

Bud flush  Yuma 0.87 (0.69-0.93)  0.48 (0.36-0.60)
Agua Fria  0.86 (0.67-0.93) 0.30 (0.16-0.43)
Canyonlands  0.29 (0.00-1.00) 0.04 (0.00-0.07)
Plasticity ~ 0.84 (0.64-0.95) 0.16 (0.04-0.27)

SLA Yuma 0.31 (0.01-0.62)  0.35 (0.18-0.46)
Agua Fria 0.54 (0.23-0.79)  0.10 (0.04-0.14)
Canyonlands  0.79 (0.70-0.93) 0.21 (0.09-0.23)
Plasticity ~ 0.69 (0.37-0.98)  0.14 (0.01-0.26)

Height  Yuma 0.44 (0.23-0.69)  0.11 (0.04-0.17)
Agua Fria  0.14 (0.00-0.50)  0.12 (0.05-0.19)
Canyonlands  0.26 (0.03-0.43) 0.27 (0.18-0.31)
Plasticity ~ 0.66 (0.42-0.94) 0.09 (0.01-0.17)

DRC Yuma 0.50 (0.09-0.73)  0.07 (0.04-0.10)
Agua Fria  0.03 (0.00-0.26)  0.08 (0.05-0.10)
Canyonlands  0.01 (0.00-0.07) 0.21 (0.19-0.30)
Plasticity ~ 0.07 (0.00-0.16) 0.18 (0.13-0.23)

Table 3: The adjusted R? and p-value output from the linear regression models of provenance climate (PC1
score) and population trait means at each common garden, as well as between PC1 and the population-level
trait plasticity.

Trait Garden Adjusted R? P-value
Bud set Yuma 0.67 < 0.001
Agua Fria 0.76 < 0.001
Canyonlands 0.77 < 0.001
Plasticity 0.65 < 0.001
Bud flush  Yuma 0.49 0.002
Agua Fria 0.66 < 0.001
Canyonlands -0.01 0.36
Plasticity 0.62 < 0.001
SLA Yuma -0.08 0.69
Agua Fria 0.02 0.28
Canyonlands  0.20 0.17
Plasticity 0.33 0.1
Height Yuma -0.02 0.42
Agua Fria 0.32 0.013
Canyonlands  0.12 < 0.001
Plasticity 0.32 0.017
DRC Yuma 0.62 < 0.001
Agua Fria -0.01 0.37
Canyonlands  0.05 0.21
Plasticity 0.28 0.02

Table 4: Summary of the two tests for selection. Light blue indicates a significant Qsp-Fgr test and dashed
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lines indicate significant climate regressions for that trait or plasticity. The Garden abbreviations are Y=
Yuma, A = Agua Fria, C = Canyonlands, and P = Plasticity across gardens.

Trait Bud set Bud set Bud set Budset Bud flush Bud flush Bud flush Bud flush SLA

SLA

Garden Y A C P Y A (@ P Y
Selection Tests

A

Figure 1: Stand-level mortality event of Fremont cottonwoods along the Bill Williams National Wildlife
Refuge on the lower Colorado River. Photo taken by HF Cooper in March 2017.

Figure 2: Map of the 16 collection locations (white circles) and three common gardens (white stars). The
middle common garden of Agua Fria is also a collection site. Color represents the maximum temperature
of the warmest month (°C). Axes are labeled with degrees latitude and longitude. Inset is the map of the
United States with a purple rectangle outlining the latitude and longitude presented in the full map.
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Figure 3: Population means (4/- 1SE) for (a) leaf traits and (b) growth traits measured in each garden as
well as the population mean trait plasticity values, regressed onto their home climate (indicated by principal
component axis 1 values). Populations are colored by mean annual temperature (MAT °C). Regression lines
are present when there is a significant relationship (p < 0.05) between the PC1 axis and the trait. SLA is
in unit of mm?/mg. Note the scale on the y-axis for the plasticity regressions are different than the trait
regressions.
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Figure 4: Qg means and 95% confidence intervals (point and vertical lines, respectively) for the phenotypic
traits measured at each of the three gardens. The average pairwise Fgr value (0.175) + 95% confidence
interval (0.144 - 0.205) is shown as the grey band. Common gardens are abbreviated as Y = Yuma, A =
Agua Fria, and C = Canyonlands.
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Figure 5: Trait plasticity Qgr-Fgr distributions for each trait measured across the three common gardens.
The filled shape is the mean Qg distribution and the open shapes are the 95% confidence intervals for the
100 plasticity datasets. Like Fig. 4, the horizontal lines represent the average population pairwise Fgp and
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its 95% confidence interval. Any Qgr distribution that crosses the Fgpconfidence interval is interpreted as
no different from neutral expectation and not under selection.
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