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Abstract

Revealing the ecological mechanisms driving the diversity patterns followed by microbial communities across space and through
time is an essential issue in microbial community ecology. In this study, two typical spatial scaling patterns, including diversity-
area and distance-decay relationships, were investigated for microbial communities in an ocean sediment ecosystem. Strong
spatial scaling patterns were observed at the whole community level and for the rare subcommunities, but hardly for the
abundant subcommunities. Rare subcommunities were mainly responsible for the observed spatial scaling patterns, as also
confirmed by extending spatial scaling diversity metrics to Hill numbers. Distinct ecological mechanisms underlay the differed
spatial scaling patterns followed by abundant and rare subcommunities. Both environmental heterogeneity and local community
assembly mechanisms drove the microbial spatial scaling patterns. Environmental heterogeneity was significantly associated
with the spatial scaling metrics of rare but not abundant subcommunities. Strong ecological drift and dispersal limitation
underlay the spatial scaling patterns of rare subcommunities, whereas high homogeneous selection weakened the spatial scaling
patterns of abundant subcommunities. Such differed mechanisms driving the spatial scaling patterns of abundant and rare
subcommunities were also experimentally confirmed by deep sequencing experiments. This study links microbial spatial scaling
patterns with ecological mechanisms, providing novel mechanistic insights into the diversity patterns followed by different types

of microbes.

1. Introduction

Microbes are ubiquitous in the Earth’s biosphere, executing essential ecosystem functions and maintain-
ing ecosystem stability(Bardgett & van der Putten, 2014; Fuhrman, Cram, & Needham, 2015; B. Gilbert
& Lechowicz, 2004). The diversity of soil microbial communities is in general positively associated with
ecosystem multifunctioning (Bradford et al., 2014; Delgado-Baquerizo et al., 2016; Lefcheck et al., 2015).
As a major component of microbial communities, revealing the diversity patterns across space and through
time is of essential importance for better understanding the underlying ecological mechanisms governing the
distribution and assembly of microbial communities. However, the tiny size of microorganisms and immense
complexity of microbial communities make this issue more challenging than macrobial communities.

Taxa-area relationship (TAR) and distance-decay relationship (DDR) are two typical and perhaps universal
spatial scaling patterns followed by both macrobial and microbial communities(Green et al., 2004; M. C.
Horner-Devine, M. Lage, J. B. Hughes, & B. J. Bohannan, 2004; Tu et al., 2016; Zinger, Boetius, & Ram-
ette, 2014). Of these, TAR describes the pattern of continuously increasing species richness with increasing
sampling area(Connor & Mccoy, 1979; Rosenzweig, 1995), whereas DDR describes the pattern that the
composition of biological communities becomes more dissimilar with increasing geographic distance(Nekola
& White, 1999). Although different in concept, both TAR and DDR are assumed to be the result of a
set of common processes, including environmental heterogeneity and local community assembly processes
(e.g., speciation, drift, and dispersal limitation) across sampling area and distance(Connor & Mccoy, 1979;



Hubbell, 2001). Specifically, higher environmental heterogeneity is associated with more ecological niche
space and habitat types, allowing more microbial taxa to coexist(Allouche, Kalyuzhny, Moreno-Rueda,
Pizarro, & Kadmon, 2012; Huber et al., 2020; Yang et al., 2015). The larger sampling area it is, the higher
environmental heterogeneity and more coexisted microbial taxa are expected, resulting in TAR patterns.
Environmental heterogeneity also contributes to DDR patterns for its being strongly correlated with geo-
graphic distance(Tilman, 1983). Local community assembly processes may also result in differed community
structure and composition(Stegen et al., 2013; X. Zhang et al., 2020). leading to TAR and DDR patterns.
However, TAR and DDR may not be directly derived from each other, and may be subjected to influences
by different ecological factors(Zinger et al., 2014).

Microbial communities in natural ecosystems are typically composed by a small number of abundant taxa
and an extremely long tail of rare taxa(M. D. Lynch & Neufeld, 2015; Sogin et al., 2006). The abundant taxa
usually occupy < 20% of the total richness, but > 80% in relative abundance(Sogin et al., 2006). Although
low in relative abundance, recent studies suggest that the rare microbial taxa execute nonnegligible ecosystem
functions in the environment(Q.-L. Chen et al., 2020; Lyons & Schwartz, 2001; Mouillot et al., 2013; Xiong et
al., 2021). Recent studies suggested that the abundant and rare subcommunities are structured by different
community assembly mechanisms and environmental parameters(Jiao & Lu, 2020; Mo et al., 2018; W. Zhang
et al., 2018). However, it remains not clear whether and how abundant and rare subcommunities differ in the
spatial scaling patterns they may follow and how such patterns are linked to environmental heterogeneity
and local community assembly processes.

In this study, we investigated the spatial scaling patterns followed by abundant and rare subcommunities
of microbes in an ocean sediment ecosystem, aiming to address the following ecological questions: (1) Do
abundant and rare subcommunities differ in following spatial scaling patterns? (2) How do environmental het-
erogeneity and local community assembly mechanisms respectively contribute to the spatial scaling patterns?
We expected that abundant and rare subcommunities may differ in the spatial scaling patterns they follow,
mainly due to their different life strategies (e.g., different adaptability to environmental conditions)(He et
al., 2022; Wan et al., 2021). Specifically, abundant subcommunities may follow weak spatial scaling patterns,
especially TAR, as they are more broadly distributed across the sampling space. As previously reported,
abundant and rare subcommunities differ dramatically in local community assembly mechanisms(Jiao & Lu,
2020; Mo et al., 2018; W. Zhang et al., 2018). We therefore expected strong links between local community
assembly and spatial scaling patterns. The results confirmed our expectation that spatial scaling patterns
were rarely observed for abundant subcommunities, whereas rare subcommunities were mainly responsible
for the observed microbial spatial scaling patterns. Distinct ecological mechanisms underlay the spatial scal-
ing patterns followed by abundant and rare subcommunities. The study provided novel mechanistic insights
into the spatial scaling patterns followed by different types of microbes.

2. Materials and methods
2.1 Experimental design and sample collection

A total of 29 sedimental samples were collected in the Beibu Gulf, a semi-enclosed oceanic bay located in
the southern coast of China (Supplementary Figure 1). Samples were collected from a near rectangle area
that was 149.25 km long and 128.73 km wide, covering approximately 19212.57 km?. The sampling area
were then divided into 9 blocks, with each block covering 3-4 samples. By merging neighborhood blocks, a
series of multi-block sampling areas were generated, enabling TAR analysis in the experiment.

2.2 Environmental variables

A total of 19 environmental variables were measured at each sampling station, including temperature, salinity,
pH, total organic carbon (TOC) i, total nitrogen (TN) , total phosphorus (TP) , ammonium nitrogen (NH4"-
N) , nitrate nitrogen (NO3-N) | nitrite nitrogen (NO2 -N) , Organic matter , Sulfate (SO%) , Petroleum and
sulfide. In addition, seven heavy metals, including Hg, Cd, Pb, Cr, As, Cu, and Zn. Of these, the pH value
was measured by adding 5 ml of distilled water to 2 g of the precipitate and recording the pH value using a pH
electrode (STARTER 300, OHAUS, Beijing, China). Total nitrogen (TN) content was analyzed by Kjeldahl



method(J. M. Lynch & Barbano, 1999). Total phosphorus (TP) content was determined by molybdenum
blue colorimetry at 660 nm after hydrofluoric and perchloric acid digestion. Ammonium nitrogen (NH+4
-N), nitrate nitrogen (NO-3 - N), nitrite nitrogen (NO-2 -N) were quantified by automated discrete analysis
(CleverChem 380, Germany)(Islam, Sarker, Yamamoto, Wahab, & Tanaka, 2004). Heavy metal element
content was determined by inductively coupled plasma mass spectrometry (ICP-MS, Optima, 2000 DV,
Perkin Elmer, USA).

2.3 DNA extraction, PCR amplification, and sequencing

Microbial DNA was extracted from 0.5 g soil samples using Soil DNA Mini kit (Omega Bio-Tek, Norcross,
GA, USA) according to the manufacturer’s protocol. The DNA preparation and sequencing library prepa-
ration were performed following the procedures described by Scholer and Vestergaard(Griffiths, Whiteley,
O’Donnell, & Bailey, 2000). The V3-V4 region of the bacterial 16S rRNA gene were PCR amplified (95 °C
for 2 min, followed by 27 cycles of 95 °C for 30 s, 55 °C for 30 s, and 72 °C for 45 s, with a final exten-
sion at 72 °C for 10 min) using the primer set 341F (5-CCTACGGRRBGCASCAGKVRVGAAT-3’) and
806R (5-GGACTACNVGGGTWTCTAATCC-3). A six-base barcode was added to each library for further
demultiplexing samples. All samples were subject to paired-end high throughput sequencing at regular se-
quencing depth. The BBW11 sample was also subject to deep sequencing to achieve at least 1 million reads
per sample, in addition to regular depth sequencing. The Illumnina HiSeq 2500 (Illumina, Inc., San Diego,
CA, USA) was used for sequencing.

2.4 Sequence data processing

The raw FASTQ files were subject to a series of standard processing including demultiplexing, read merg-
ing, quality filtering and chimeric removal using DADA2 (version 1.20.0)(Callahan et al., 2016). A relative
abundance microbial profile was generated at the level of amplicon sequence variant (ASV). The taxo-
nomic information for each ASV was determined using the Ribosomal Database Project (RDP) Classifier
(http://rdp.cme.msu.edu)(Cole et al., 2009) with a confidence interval of 80%. The ”Rarefy” function in
the ”GuniFrac” package is used to rarefy the microbial profile to a same sequencing depth before further
statistical analyses were carried out. All analyses were completed in R v 4.1.2.

Microbial ASVs were classified into two different categories, including abundant and the rare taxa, according
to their relative abundance and/or frequency(Bickel & Or, 2021). Here, ASVs with an average relative
abundance of <0.01% across all samples were defined as rare taxa, whereas the remaining ones were defined
as abundant ASVs. Notably, different criteria were used to define abundant and rare taxa in different
studies(Jiao, Chen, & Wei, 2017; Y. Xue et al., 2018). Since only 72 ASVs were not rare, we classified all of
them as abundant, without considering more precise concept such as occasional taxa.

For all ASVs, indices including niche breadth and niche overlap were calculated to see how well they may
adapt to the environment. The niche breadth was evaluated using the Levins’ standardized niche breadth
index(Feinsinger, Spears, & Poole, 1981). The niche overlap was calculated using Pianka’s niche overlap
index equation, with the value of Pianka’s index between 0 and 1(Pianka, 1974). The R package "spaa” was
employed to calculate niche breadth and niche overlap indices.

2.5 Spatial scaling pattern analyses

Two typical spatial scaling patterns were analyzed, including TAR and DDR. The community richness
(alpha-diversity) and Bray-Curtis community similarity (beta-diversity) were respectively used as diversity
metrics for TAR and DDR analyses. The slope coefficients between log-transformed diversity indices and
log-transformed geographic area/distance were calculated for TAR and DDR. Both the diversity indices
of TAR and DDR were extended to different diversity orders using Hill numbers, which are a parametric
family of diversity indices differentiated by the parameter ¢ (Chao, Chiu, & Jost, 2014). The extended
TAR and DDR were respectively termed as DAR, and DDR,. The R package “hillR”(Chiu & Chao, 2014)
(https://github.com/dajiang/hillR) was used for both alpha- and beta-diversity indices calculation under
different diversity order ¢ .



In addition, we also correlated the diversity metrics with environmental heterogeneity to investigate how
microbial spatial scaling patterns were affected by environmental conditions. Here, the Euclidean distance
based on normalized environmental variables was calculated to represent the environmental heterogeneity
between different samples. All 19 environmental variables were included for environmental heterogeneity
calculation. The analysis, as well as TAR and DDR, were carried out for the whole community, the abundant
and the rare subcommunities.

2.6 Inferring local community assembly mechanisms

To quantify the relative importance of ecological processes in structuring the bacterial and fungal metacom-
munity, the iCAMP approach was employed(Ning et al., 2020), which is a more sophisticated development
of the approach proposed by Stegen et al. (Stegen et al., 2013; Stegen, Lin, Konopka, & Fredrickson, 2012).
The iCAMP approach uses a quantitative framework to infer community assembly mechanisms through a
phylogenetic-bin-based null model analysis. Within this framework, ecological processes are divided into
five processed, including homogeneous selections (HoS), heterogeneous selections (HeS), dispersal limitation
(DL), homogenizing dispersal (HD) and drift (DR) processes. In the approach, multiple phylogenetic bins
were generated based on the phylogenetic tree. The null model analysis within each bin is calculated by beta
Net Relatedness Index (BNRI) and modified Raup—Crick metric (RC). The fraction of pairwise comparisons
with BNRI < - 1.96 is considered as the percentages of homogeneous selection, whereas those with NRI >
+1.96 as the percentages of heterogeneous selection. Next, taxonomic diversity metric RC is used to parti-
tion the remaining pairwise comparison with |[BNRI| [?] 1.96. The fraction of pairwise comparisons with RC
< -0.95 is treated as the percentages of homogenizing dispersal, while those with RC > + 0.95 as dispersal
limitation. The remaining ones with |[NRI| [?] 2 and | RC | [?] 0.95 represent the percentages of drift. The
BNRI and RC are calculated using the “picante” package(Kembel et al., 2010) and “‘ICAMP” (Ning et al.,
2020) package in R.

3. Results
3.1 Overall diversity of the sedimental microbial communities

A total of 29 sedimental samples in the Beibu Gulf were collected and subjected to total DNA extraction. For
each sample, the V3-V4 region of the 16S rRNA gene were amplified and sequenced, targeting the bacterial
communities in the Beibu Gulf sediment. After data processing including quality filtering, chimera removal
and rarefaction, 8,007 merged sequences per sample were retained. These sequences were then clustered into
13,073 bacterial ASVs (Supplementary Table 1). By applying 0.01% relative abundance as the cutoff, 13,001
bacterial ASVs (51.19% in relative abundance) were classified as rare taxa, and 72 ASVs (48.81% in relative
abundance) as abundant taxa.

Taxonomically, the bacterial communities were dominated byGamma-Proteobacteria (31.39%), Delta-
Proteobacteria(20.01%), Acidobacteria (10.57%), Bacteroidetes(9.62%), and Actinobacteria (3.69%) (Fig.
la). On average, each sediment sample was found with 299 ASVs, of which 65 were abundant and 235 were
rare (Fig. 1b). Further analysis suggested that abundant and rare subcommunities differed dramatically in
Pielou’s evenness and Shannon-Wiener diversity indices (Supplementary Figure 2), as well as within com-
munity similarity (Fig. 1c). Such results suggested that the abundant and rare subcommunities tended to
differ in spatial scaling patterns as well as local community assembly mechanisms.

3.2 Rare taxa were mainly responsible for microbial spatial scaling patterns

We first investigated whether abundant and rare subcommunities followed similar spatial scaling patterns,
such as TAR and DDR (Fig. 2a and b). The typical community richness and Bray-Curtis similarity
were respectively used to quantify TAR and DDR. As a result, clear TAR (z = 0.494, P < 0.001) and
DDR (d = -0.242, P < 0.001) patterns were observed for the bacterial communities (Fig. 2a and b). As
expected, stronger TAR pattern was found for rare subcommunities (z = 0.517, P< 0.001) than abundant
subcommunities (z = 0.029,P = 0.034) (Fig. 2a). Similarly, rare subcommunities (d = -0.447, P < 0.001)
harbored stronger DDR patterns than abundant subcommunities (d = -0.12, P < 0.001) (Fig. 2b). For



both TAR and DDR, rare subcommunities even showed stronger spatial scaling patterns than the whole
community. The results suggested that rare subcommunities were mainly responsible for the spatial scaling
patterns followed by microbial communities.

To verify the major contribution of rare subcommunities to the spatial scaling patterns of microbial com-
munities, we extended both alpha- and beta-diversity to Hill numbers to analyze TAR and DDR patterns at
different diversity orders. As such, the ambiguous definition of abundant and rare taxa can be well resolved
by giving continuously decreasing weight on rare taxa. By setting the diversity order gto different values
(here 0 [7] ¢ [?] 2), different weight is given to microbial taxa with different relative abundance. The higher
diversity order ¢ is, the lower weight is given to rare taxa. Taking alpha diversity for example, the Hill
numbers equal to community richness when ¢ = 0, indicating all microbial taxa are equally treated. When
the order ¢ is set to 1 and 2, the Hill numbers respectively equals to the Shannon-Wiener and Simpson
diversity index (Supplementary Figure 4). In the case rare subcommunities were mainly responsible for the
microbial spatial scaling patterns, decreased DAR, and DDR, slope coefficients with increasing ¢ values
were expected. As a result, sharply decreased slope coefficients of DAR, and DDR, were observed when
the diversity order ¢ increased from 0 to 2 (Fig. 2c¢). Such results confirmed that rare subcommunities were
mainly responsible for the observed spatial scaling patterns followed by microbial communities.

3.3 Linking environmental heterogeneity with microbial spatial scaling patterns

Environmental heterogeneity could be an important factor responsible for the spatial scaling patterns of
biological communities. Therefore, we first investigated whether and how environmental heterogeneity was
associated with microbial spatial scaling patterns. For each sample pair, the Euclidean distance was cal-
culated based on a set of 19 environmental factors and used as environmental heterogeneity. For bacterial
communities, significant associations were observed between environmental heterogeneity and microbial spa-
tial scaling metrics, except for abundant subcommunities (Fig. 3a and b). Rare subcommunities were found
with stronger association with environmental heterogeneity than abundant subcommunities (Fig. 3a and b),
suggesting that environmental heterogeneity more influenced rare subcommunities. Additionally, weak asso-
ciation was observed between environmental heterogeneity and geographic distance (Supplementary Figure
3). The results suggested that environmental heterogeneity played important roles in driving the spatial
scaling patterns of sedimental microbial communities via rare subcommunities.

3.4 Local community assembly mechanisms also drove the spatial scaling patterns of microbial communities

To further disentangle the underlying mechanisms driving the spatial scaling patterns of microbial communi-
ties, especially the different patterns between abundant and rare subcommunities, the following experimental
and statistical investigations were carried out.

First, deep sequencing of a randomly selected sample (BBW11) was performed to investigate the dispersal
potential of microbial communities. Here, microbial ASVs were mapped to the deep sequencing dataset at
the levels of ASV and read (Fig. 4 a and b). As a result, as high as 72.62% microbial ASVs and 88.57%
reads could be mapped to the deep sequenced dataset. Dramatically differed mapping ratios were observed
between abundant and rare subcommunities. Abundant ASVs (100%) and reads (100%) can be completely
mapped to the deep sequencing datasets. In contrast, rare ASVs (65.22%) and reads (74.46%) were mapped
to the deep sequencing datasets at much lower ratios. The results suggested that abundant taxa had higher
dispersal rate and better adaptability to the environment than rare taxa.

Second, the niche breadth and niche overlap were also calculated using the Levins’ standardized niche breadth
index and the Pianka’s niche overlap index (Fig. 4c and d). In general, rare ASVs were similar with the
whole community regarding the niche breadth and niche overlap. In contrast, abundant ASVs had much
higher niche breadth and overlaps than rare ASVs. Such results were consistent with the deep sequencing
experiment and suggested that the abundant taxa can better adapt to the environment and coexist with
each other than rare taxa.

Third, null model analysis was carried out to investigate the links between local community assembly mech-



anisms and microbial spatial scaling patterns. According to BNRI and RCy.ay values, the contribution of
five different processes to the compositional variations of microbial communities were quantified, including
homogeneous selection, heterogeneous selection, dispersal limitation, homogeneous dispersal, and drift (Fig.
5). At the whole community level, drift (62.32%) is mainly responsible for the compositional variations
of microbial communities, followed by dispersal limitation (24.45%) and homogeneous selection (10.56%)
(Fig. 5a). Distinct community assembly processes were observed for abundant and rare subcommunities.
Abundant subcommunities were mainly structured by homogeneous selection (38.69%) and drift (36.55%),
whereas rare subcommunities were mainly structured by drift (58.8%) and dispersal limitation (24.04%) (Fig.
5b and ¢). Such differed contributions of homogeneous selection and dispersal limitation to abundant and
rare subcommunities were consistent with the deep sequencing experiment results. The results here demon-
strated that distinct community assembly mechanisms shaped the compositional variations of abundant and
rare subcommunities, resulting in differed spatial scaling patterns.

4. Discussion

Revealing the underlying mechanisms driving the spatial scaling patterns of the complex soil microbial com-
munities is an essential issue in microbial ecology and community ecology(Jiang et al., 2018; O’Brien et
al., 2016). In this study, we focused on the ecological mechanisms structuring the spatial scaling patterns
of abundant and rare subcommunities in an ocean sediment ecosystem. Rare subcommunities were mainly
responsible for the spatial scaling patterns followed by microbes. Environmental heterogeneity was signif-
icantly associated with the spatial scaling metrics of whole community and rare subcommunities, but not
abundant subcommunities. Further experimental and statistical analysis suggested that distinct ecological
mechanisms underlay the spatial scaling patterns followed by abundant and rare subcommunities.

We found that rare subcommunities were mainly responsible for the spatial scaling patterns followed by
microbes. The slope coefficients of rare subcommunities even exceeded the values of the whole community.
The role of rare microbial subcommunities has been ambiguous and awkward in microbial ecology, and
were frequently ignored due to their low relative abundance and frequency in microbial profiles(Sogin et al.,
2006). However, recent studies demonstrated that rare microbial taxa execute important ecosystem functions
in various ecosystems(Q.-L. Chen et al., 2020; Xiong et al., 2021; M. Xue et al., 2020). Recent studies in
macrobial ecology also show that common species contribute little to the spatial scaling pattern of functional
diversity(van Schalkwyk, Pryke, & Samways, 2019; White, Pakeman, & Buckley, 2022). This suggests that
the major contribution of rare subcommunities to the spatial scaling patterns might be a common rule in
both macrobial and microbial community ecology.

Traditional microbial TAR and DDR analyses generally employ community richness and Bray-Curtis simi-
larity indices and do not distinguish abundant and rare subcommunities(Barreto, Conrad, Klose, Claus, &
Enrich-Prast, 2014; Feinstein & Blackwood, 2012; M. C. Horner-Devine, M. Lage, J. B. Hughes, & B. J. M.
Bohannan, 2004). A recent study extended TAR to DAR using Hill numbers, incorporating species abun-
dance in spatial scaling analysis(Ma, 2018). Consensus has been achieved that Hill numbers, also knowns
as the effective number of species, are the best choice to quantify abundance-based species diversity (Ellison,
2010). In this study, Hill numbers were also employed to quantify both alpha- and beta-diversity, showing
decreasing spatial scaling patterns when lower weight was given to rare taxa (i.e., increasing g value). The
employment of Hill numbers confirmed the major contribution of rare subcommunities to microbial spatial
scaling patterns, bypassing the ambiguous definition of abundant and rare taxa.

Multiple ecological mechanisms may drive the plain and well recognized spatial scaling patterns of biological
communities. Environmental heterogeneity (niche theory) and dispersal limitation (neutral theory) are
generally considered as the most important factors responsible for the spatial scaling patterns(B. Gilbert
& Lechowicz, 2004; Stein, Gerstner, & Kreft, 2014). The effects of environmental conditions on microbial
communities may differ for abundant and rare subcommunities, as revealed by previous studies(Jiao et al.,
2017; Jiao & Lu, 2020; Mo et al., 2018). In this study, significant associations between environmental
heterogeneity and the spatial scaling metrics of whole and rare subcommunities were observed, but not with
that of abundant subcommunities. This suggested that environmental heterogeneity was an important factor



responsible for the spatial scaling patterns of microbial communities, via affecting rare subcommunities.

In addition to environmental heterogeneity, local community assembly mechanisms may also contribute
to the spatial scaling patterns of biological communities, such as processes like dispersal limitation(W.
Chen, Jiao, Li, Du, & Yang, 2019). The distinct local community assembly mechanisms for abundant and
rare subcommunities well explained their differed spatial scaling patterns. Specifically, high homogeneous
selection result in highly similar communities(Vellend, 2010; Zhou & Ning, 2017), leading to flat spatial
scaling patterns for abundant subcommunities. In contrast, dispersal limitation and drift result in highly
dissimilar communities(Vellend, 2010; Zhou & Ning, 2017), leading to strong spatial scaling patterns for
rare subcommunities. Noteworthily, the deep sequencing experiment, which was previously used to uncover
the ultimate microbial diversity in the environment(Gibbons et al., 2013; J. A. Gilbert et al., 2012), also
demonstrated the distinct ecological mechanisms underlying abundant and rare subcommunities. A recent
study suggests that the compositional variations of different type of microbes were structured by different
mechanisms due to different organismal body size(Luan et al., 2020). Here, the differed spatial scaling
patterns and community assembly mechanisms between abundant and rare subcommunities should be due
to their differed life strategies (e.g., adaptability to the environment).

In conclusion, this study investigated the ecological mechanisms driving spatial scaling patterns of sedimental
microbial communities in a coastal sediment. Rare subcommunities were mainly responsible for the spatial
scaling patterns followed by microbes. Distinct ecological mechanisms shaped the spatial scaling patterns of
abundant and rare subcommunities. The results in this study are heuristic that different mechanisms may
underlie the spatial/temporal patterns of microbes with different relative abundance. The study provided
novel mechanistic insights into the spatial scaling patterns followed by different microbes.
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Figure legends

Fig. 1 The composition and diversity metrics of the bacterial communities in the Beibu Gulf
sediment. a Community composition at the phylum level; b Community richness (log transformed) for
the whole community, the abundant and the rare subcommunities; ¢ Community dissimilarity for the whole
community, abundant and rare subcommunities. The Bray-Curtis dissimilarity was calculated and used for
community dissimilarity.

Fig. 2 Spatial scaling patterns followed by sedimental microbes in Beibu Gulf. a Taxa-area
relationship (TAR) for the whole community, the abundant and the rare subcommunitiesm, by investigating
the relationship between log-transformed richness and area; bDistance decay relationship (DDR) for the
whole community, the abundant and the rare subcommunities, by investigating the relationship between
log-transformed community similarity (1-Bray-Curthis dissimilarity) and geographic distance; ¢ The slope
coefficient (z-value) of the diversity-area relationships (DAR,) with different diversity orders (¢ ) by extending
TAR to DAR, and the slope coefficient (d -value) of the distance decay relationship (DDR,) with diversity
order (¢ ) by extending DDR to DDRj.

Fig. 3 Linking microbial spatial scaling diversity metrics with environmental heterogeneity. a
The association between environmental heterogeneity and differed species richness of the whole community,
the abundant subcommunities and the rare subcommunities. The number of unique taxa in two sample pairs
were calculated for differed richness. b Association between community similarity and environmental hete-
rogeneity. The community similarity was calculated as 1-Bray-Curtis dissimilarity. The Euclidean distance
based on normalized environmental variables was calculated to represent the environmental heterogeneity
between different samples.

Fig. 4 Properties of microbial taxa at the levels of whole community, abundant subcommunities,
and rare subcommunities. aPercentage of microbial ASVs mapped to the deep sequencing dataset;b
Percentage of reads mapped to the deep sequencing dataset;c Niche breadth of microbial ASVs; d Niche
overlap of microbial ASVs. The Levin’s and Pianka’s indices were respectively calculated for niche breadth
and niche overlap.
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Fig. 5 Local community mechanisms driving the compositional variations of sedimental mi-
crobial communities in the Beibu Gulf. Local community mechanisms were quantified for the whole
community (a ), the abundant subcommunities (b ), and the rare subcommunities (¢ ). The contribution
of five different ecological processes, including homogeneous selection (HoS), heterogeneous selection (HeS),
drift (DF), dispersal limitation (DL), and homogeneous dispersal (HD), were quantified.
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