MACROSCOPIC PROPERTIES OF NOVEL CORROSION RESISTANT AND TAMPER EVIDENT VISCOELASTIC POLYMERS, BASED ON HYBRID CYCLIC PHOSPHAZENE MATERIALS

khalid Aref Ibrahim¹, Mahir Es-Saheb², Steve Kirk³, Shahid Azhar², Abdulhakim Almajid², Lara Matia-Merino⁴, and Fahad Almehmadi²

¹King Saud University College of Engineering
²King Saud University
³Massey University
⁴Massey University Institute of Food Nutrition and Human Health

May 16, 2022

Abstract

Three novel materials have been developed based on hexachlorocyclotriphosphazene and octachlorocyclotetraphosphazene. The core phosphazene ring is substituted with varying ratios of fluorinated side groups and with 4-hydroxybenzaldehyde to allow a Schiff base reaction with diaminodiphenylmethane (DDM) to form a cyclomatrix or cyclolinear polymer compound. These compounds give excellent water repellence combined with good adhesion and viscoelasticity. In addition, the new materials undergo a surface reaction on exposure to atmosphere such that subsequent disturbance of the surface causes virgin material to become exposed giving clear evidence of such disturbance.

Hosted file

Paint Coating paper draft-9-2-2022.doc available at https://authorea.com/users/482974/ articles/569317-macroscopic-properties-of-novel-corrosion-resistant-and-tamper-evidentviscoelastic-polymers-based-on-hybrid-cyclic-phosphazene-materials

Hosted file

Figure 1.docx available at https://authorea.com/users/482974/articles/569317-macroscopic-properties-of-novel-corrosion-resistant-and-tamper-evident-viscoelastic-polymers-based-on-hybrid-cyclic-phosphazene-materials