An enhanced electron transport chain improved astaxanthin production in Phaffia rhodozyma

Carlos Luna-Flores¹, Alexander Wang², Juhani von Hellens², and Robert Speight¹

¹Queensland University of Technology ²Bioproton Pty Ltd

May 10, 2022

Abstract

Astaxanthin (AX) is a carotenoid pigment with antioxidant properties. AX is used widely in the animal feed industry as a supplement. Wild-type strains of Phaffia rhodozyma naturally produce low AX yields, but we increased AX yields 50-fold in previous research using random mutagenesis of P. rhodozyma CBS6938 and fermentation optimisation. Genome sequencing linked phenotype and genome changes of the increased AX production but relevant metabolic changes were not resolved. In this study, the wild-type and the superior P. rhodozyma mutant strains were grown in chemically defined media and instrumented fermenters. Differential kinetic, metabolomics, and transcriptomics data were collected. Our results suggest that carotenoid production was mainly associated with cell growth and had a positive regulation of central carbon metabolism metabolites associated with glycolysis, the pentose phosphate pathway, the TCA cycle, and amino acids and fatty acids biosynthesis. In the stationary phase, amino acids associated with the TCA cycle increased, but most of the fatty acids and central carbon metabolism metabolism metabolites decreased. TCA cycle metabolites such as succinate, fumarate, and α -ketoglutarate were in abundance during both growth and stationary phases. The overall observed metabolic changes in the central carbon metabolism and abundance of TCA cycle metabolites suggest an improvement in the electron transport chain and the provision of the electrons required for the AX synthesis. Transcriptomic data correlated with the metabolic data and found a positive regulation of genes associated with the electron respiratory chain suggesting this to be the main driver for improved AX production in the mutant strain.

Hosted file

Original manuscript Luna-Flores et al Biotechnology Journal.docx available at https: //authorea.com/users/481716/articles/568598-an-enhanced-electron-transport-chainimproved-astaxanthin-production-in-phaffia-rhodozyma

Hosted file

Figure 1.pdf available at https://authorea.com/users/481716/articles/568598-an-enhanced-electron-transport-chain-improved-astaxanthin-production-in-phaffia-rhodozyma

	AIIIIIO ACIUS							
Metabolite	Phase 1	Phase 2	Phase 3	Phase 4				
Arginine								
Histidine								
Threonine								
Glutamine								
Lvsine								
Valine								
Methionine								
Isoleucine								
Leucine								
Phenylalanine								
Tryptophan								
I-Tyrosine								
Proline								
Serine								
Aspartic acid								
Glutamic acid								
Glycine								
Asnaragino								
Alanino								
Aldnine								
	Central Carbon Metabolism							
PYR								
FUM								
SUC								
KGA								
PFP								
 DHΔP								
3PG 2PG								
RISP								
R5P								
G1P								
GEP								
ECD								
Chev								
Mol								
CA2D								
GMD								
GIP								
CMP								
UMP								
AMP								
NADPH								
cAMP								
UDPGA								
NAD								
NADH								
NADP								
UDPNAc								
ACO								

Mutant/Wild-Type Amino Acids

Fatty Acid Methyl Esthers

C4:0		
C8:0		
C10:0		
C12:0		
C14:0		
C14:1	3	
C15:0		
C15:1		
C16:0		
C16:1		
C17:0		
C17:1		
C18:0		

Hosted file

Figure 4.pdf available at https://authorea.com/users/481716/articles/568598-an-enhanced-electron-transport-chain-improved-astaxanthin-production-in-phaffia-rhodozyma