Computational Envision of Structural, Electronic, Mechanical and Thermoelectric Properties of PdXSn (X=Zr, Hf) half Heusler compounds Bindu Rani¹, Aadil Wani¹, Utkir Sharopov², Kulwinder Kaur¹, and Shobhna Dhiman³ January 5, 2022 ## Abstract Half heusler compounds have gained attention due to their excellent properties and good thermal stability. In this paper, using first principle calculation and Boltzmann transport equation, we have investigated structural, electronic, mechanical and thermoelectric properties of PdXSn (X=Zr,Hf) half Heusler materials. These materials are indirect band gap semiconductors with band gap of 0.52 (0.44) for PdZrSn (PdHfSn). Calculations of elastic and phonon characteristics show that both materials are mechanically and dynamically stable. At 300K the magnitude of lattice thermal conductivity observed for PdZrSn is 15.16 W/mK and 9.53 W/mK for PdHfSn. The highest ZT value for PdZrSn and PdHfSn is 0.32 and 0.4 respectively. ## Hosted file bindu paper of PdXSn(X=Zr,Hf).docx available at https://authorea.com/users/454091/articles/551827-computational-envision-of-structural-electronic-mechanical-and-thermoelectric-properties-of-pdxsn-x-zr-hf-half-heusler-compounds ¹Punjab Engineering College ²Physical-Technical Institute of the Academy of Sciences of the Republic of Uzbekistan ³PEC University of Technology