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Abstract

Here I describe the novel R package SNPfiltR and demonstrate its functionalities as the backbone of a customizable, repro-
ducible SNP filtering pipeline implemented exclusively via the widely adopted R programming language. SNPfiltR extends
existing SNP filtering functionalities by automating the visualization of key parameters such as depth, quality, and missing
data, then allowing users to set filters based on optimized thresholds, all within a single, cohesive working environment. All
SNPfiltR functions require a vcfR object as input, which can be easily generated by reading a SNP dataset stored as a standard
vef file into an R working environment using the function read.vefR() from the R package vcfR. Performance benchmarking
reveals that for moderately sized SNP datasets (up to 50M genotypes with associated quality information), SNPfiltR performs
filtering with comparable efficiency to current state of the art command-line-based programs. These benchmarking results
indicate that for most reduced-representation genomic datasets, SNPfiltR is an ideal choice for investigating, visualizing, and
filtering SNPs as part of a cohesive and easily documentable bioinformatic pipeline. The SNPfiltR package can be down-
loaded from CRAN with the command [install.packages( “SNPfiltR”)], and a development version is available from GitHub at:
(github.com/DevonDeRaad/SNPfiltR). Additionally, thorough documentation for SNPfiltR, including multiple comprehensive
vignettes, is available at the website: (devonderaad.github.io/SNPfiltR/).

Introduction

As next-generation (i.e. massively parallel, short read) sequencing has become the ubiquitous approach
for population genetic and phylogenetic investigations, SNP (single-nucleotide polymorphism) datasets have
quickly become the standard input data for a wide array of phylogenetic and population genetic analyses
(Toews et al., 2015). SNP datasets typically contain thousands to millions of base-calls for each individual
sample (i.e., genotypes), located at thousands to millions of variable sites (i.e., SNPs) throughout the genome
of the focal taxa. For storing these genotype calls along with associated quality information, the standardized
and efficient formatting of the vef (variant call format) file has become the widely accepted standard (Danecek
et al., 2011). By retaining only variant sites (i.e., called SNPs), large population genomic datasets can be
stored in vcf files which are manageable both in terms of file size and computational time required for
downstream analyses.

As SNP datasets stored and vcf files have become standard input for population genetic and phylogenetic
analyses, programs to call SNPs from next generation sequencing data have proliferated rapidly (e.g.,GATK
(McKenna et al., 2010), SAMtools (Danecek et al., 2021), Stacks (Rochette et al., 2019), Ddocent (Puritz
et al., 2014), ipyrad (Eaton & Overcast, 2020)). While these programs are optimized to call SNPs rapidly
and accurately, called SNPs will inevitably suffer from a variety of technical issues such as sequencing error,
paralagous assembly, and missing data, all of which need to be addressed before performing downstream
analyses (O’Leary et al., 2018). Furthermore, individual samples may suffer from low sequencing coverage or
contamination, preventing confident use in downstream analysis, necessitating their removal from the dataset
(Cerca et al., 2021). To address these issues, some SNP calling programs contain built in functionality for



filtering output SNP datasets (e.g., GATK and Stacks ), but these filtering options often leave much to be
desired for investigators hoping to perform thorough explorations of parameter space and deeply understand
the nuances of their particular SNP dataset. This limited functionality results in a gap in many bioinformatic
pipelines, especially for SNP datasets generated via reduced-representation genomic sequencing where de
novo assembly and rampant missing data often necessitate careful filtering in order to maximize retained
signal while minimizing systematic error (O’Leary et al., 2018).

Currently, this bioinformatic gap is often addressed via informal data visualizations implemented across
multiple programs and programming languages, as investigators attempt to confirm that technical issues
and missing data are not influencing downstream inferences, before choosing a final set of SNP filtering
parameters. As reproducibility is becoming more widely acknowledged as critical for the future of science,
effectively documenting this often iterative process of investigating, visualizing, and cleaning large datasets
continues to be a major challenge. Current state of the art programs for filtering SNP datasets such as
GATK and VCFtools (Danecek et al., 2011) are highly efficient and parallelizable, making them especially
useful for massive datasets, but their command-line interfaces do not lend themselves easily to graphical
visualization, leading many investigators to rely on homebrewed scripts for preliminary data investigation.
A common homebrewed approach involves generating summary statistic files using a command-line based
program or Unix scripting, for investigation and visualization using the renowned data visualization tools of
the R (R Core Team, 2019) computing language. This approach requires moving between scripting languages
and writing custom code to perform visualizations, creating a steep learning curve for inexperienced users
and resulting in pipelines that may be error prone and difficult to document. Based on the ubiquity of this
approach, there is clearly an outstanding need within the field of evolutionary genomics for user-friendly
software that automates and streamlines the process of investigating, visualizing, and filtering SNP datasets.

The R package SNPfiltR is designed to fill this bioinformatic gap with a suite of custom functions designed
for investigating, visualizing, and filtering reduced-representation SNP datasets within a coherent R-based
framework. As input, these functions take SNP datasets stored as standard vcf files, read into an R working
environment as ‘vcfR’ objects, which can be performed in a single step using the function read.vcfR() from
the R package vcfR (Knaus & Griinwald, 2017). This suite of custom functions from SNPfiltR can then
generate automated visualizations of key parameters such as depth, quality, and missing data, and allow
users to specify appropriate filtering thresholds based on the nuances of their particular dataset, for rapid
filtering directly in R. Functions from SNPfiltR can be used in concert with import and export functions from
vcfR | in order to generate an interactive, customizable SNP filtering pipeline, all within a single R script. The
package is publicly available on CRAN via the syntax [install.packages(“SNPfiltR” )], the development version
is available from GitHub at: (github.com/DevonDeRaad/SNPfiltR) and the entire package is thoroughly
documented including descriptions and examples for each function and multiple comprehensive vignettes, at
the website: (devonderaad.github.io/SNPfiltR/).

Materials and methods
Example datasets

SNPfiltR is distributed via CRAN with a provided example dataset. Users can install the package and load
this example dataset in a single step, by calling install.packages( “SNPfiltR”); data(vcfR.example) . The
small size of this example dataset, containing 500 SNPs from 20 individual samples (10K unique genotypes),
allows for its distribution with the SNPfiltR package without pushing the entire distribution over the 1
Megabyte limit for CRAN packages. Nonetheless this example dataset, a subset of a real empirical SNP
dataset, retains sufficient resolution for generating informative examples of SNPfiltR functions and is designed
to offer rapid testing and validation. For SNPfiltR functions that require an input ‘popmap’ which maps
individual samples in the input vcf file to putative species/populations, a popmap for this example vcfR
object can be accessed by calling data(popmap) once the package has been successfully installed. A fully
documented example SNP filtering pipeline using this small example SNP dataset is publicly available at:
(devonderaad.github.io/SNPfiltR /articles/reproducible-vignette.html).



I used additional example datasets to provide fully worked vignettes integrating functions from
SNPfiltR and wcfR into fully R-based, customizable SNP filtering pipelines for genomic da-
tasets resulting from Restriction-site Associated DNA sequencing (RADseq) (Davey & Blax-
ter, 2010) (available at: devonderaad.github.io/SNPfiltR/articles/scrub-jay-RADseq-vignette.html) and
the sequencing of Ultra-Conserved Elements (UCE’s) (Faircloth et al., 2012) (available at:
devonderaad.github.io/SNPfiltR /articles/scrub-jay-UCE-vignette.html). The RADseq vignette uses as in-
put a vcf file containing 210,336 unfiltered SNPs for 115 individuals, called using Stacks v.2.41 (Rochette et
al., 2019). This empirical dataset from throughout the entire distribution of Scrub-Jays (genus Aphelocoma
) across North America, will be publicly released via Dryad, upon publication. The UCE vignette uses as
input an unfiltered vcf file containing 44,490 unfiltered SNPs for 28 samples, called using Phyluce (Faircloth,
2016) and GATK (McKenna et al., 2010). This dataset was the focus of McCormack et al. (McCormack et
al., 2016), and is publicly available for download via the Dryad repository associated with this paper at:
(datadryad.org/stash/dataset/doi:10.5061/dryad.qh8sh).

Novel functions for visualizing and filtering SNP datasets in R

The SNPfiltR package relies on the efficient import and export functions of the vcfR package to efficiently
read vcf files into the local memory of an R working environment as vcfR objects, and to write vcfR objects to
disc as gzipped vcf files. Once a vcf file has been read into the local R working environment as a vcfR object,
it is immediately available in proper input format for all SNPfiltRfunctions. Each SNPfiltR function can be
run without specified thresholds or cutoffs, (e.g., hard_filter(vefR=vcfR.object) ) to visualize the parameter
space that will be filtered, without performing filtering, allowing users to quickly make informed decisions
based on patterns specific to their datasets, and implement their chosen filtering thresholds (e.g., hard_-
filter(vefR=vcfR.object, depth=5, gq=30) ). SNPfiltR contains a suite of commonly implemented filters for
genomic datasets, including filtering based on genotype quality, minimum and maximum read depth, allele
balance, number of alleles present, missing data per sample, missing data per SNP, minor allele count, and
physical linkage. While most of these filters can be implemented in other programs (e.g., VCFtools and GATK
),SNPfiltR is the first program offering dedicated functions for a comprehensive suite of SNP visualization
and filtering options. Each SNP filtering function can be implemented or skipped at the discretion of the user,
to build an interactive SNP filtering pipeline customized to the specific needs of a given genomic dataset.

Beyond simply filtering, I also developed functions to automate the process of investigating the effects of miss-
ing data on a SNP dataset. The SNPfiltR functions assess-missing-data_-pca() andassess_missing_data-tsne()
are designed to perform dimensionality reduction on highly multi-dimensional SNP datasets, using princi-
pal components analysis (PCA) via the R package adegenet (Jombart, 2008) and t-distributed stochastic
neighbor embedding implemented via the R package Rtsne (Krijthe & van der Maaten, 2015), respectively.
Each of these functions then visualizes the similarity between input samples in two-dimensional space, across
user specified missing data per SNP thresholds. Users also have the option to perform unsupervised clus-
tering to assign samples to groups without a-priori information using Partitioning Around Medoids (PAM)
implemented internally via the R package cluster (Maechler et al., 2018), by setting clustering = TRUE,
if they wish to assess the effect of missing data on objective sample clustering assignments. Finally each of
these functions will generate an additional visualization of sample similarity in two-dimensional space with
samples color-coded by missing data proportion, allowing the user to visually assess whether missing data is
driving patterns of sample clustering. These investigative functions can be used in tandem with the functi-
ons missing-by_snp() andmissing-by_sample() , in order to ensure that user specified missing data thresholds
both per sample and per SNP are sufficient for mitigating the effects of missing data in driving patterns of
sample clustering for your specific dataset before performing downstream population genetic or phylogenetic
analyses.

Performance benchmarking

To evaluate the performance of SNP/filtR , I compared filtering runtimes with the widely used program VCF-
tools (Maechler et al., 2018). VCFtools is a highly efficient command-line based program written in Perl and
C++, which is frequently used for filtering vcf files according to various quality metrics. VCFtools can parse



and filter a vcf file without having to read the entire file into local memory, offering an assumed advantage
in efficiency over R-based implementations such as SNPfiltR , especially for larger input files. To objectively
evaluate the utility of SNPfiltR , compared to a program like VCFtools , I benchmarked performance under
a simple, biologically plausible filtering scenario, setting a minimum depth per called genotype = 5 and a
minimum genotype quality per genotype = 30. I then compared runtimes across three different approaches;
1) using the R function SNPfiltR::hard filter() on a vcf file that has already been read into the local memory
as a vcfR object, 2) wrapping the R function vefR::read.vef() inside of a call to SNPfiltR::hard filter(), to first
read the given vcf file into the local R working environment as a vcfR object, and then to perform filtering on
the vcfR object, and 3) directly specifying the full path to the given vcf file to VCFtools to filter the dataset
and output a new, filtered vcf file. For each of these approaches, I recorded the runtime for filtering each of
eight vcf files, subset from a real empirical vcf file, each containing 100 samples, and varying from 10K to 500K
SNPs. All benchmarking was performed on a 2.3 GHz Dual-Core Intel Core i5 CPU, running MacOS Big Sur
11.5.1, with 8 GB 2133 MHz LPDDR3 SDRAM (i.e., a personal laptop with typical computing power), and
exact runtimes were recorded with a precision of 1/1000*" of a second using the functionmicrobenchmark()
from the R package microbenchmark(Mersmann et al., 2015) for iterations executed in R, and the bash func-
tion ‘time’ for iterations executed using VCFtools. A fully documented example of this benchmarking process
is available at: (devonderaad.github.io/SNPfiltR /articles/performance-benchmarking.html#benchmark-10k-

1).
Results

Performance benchmarking

I compared runtimes between using VCFtools to filter a series of vcf files according to simple genotype
quality thresholds (minimum depth = 5, minimum genotype quality = 30), and using the SNPfiltRfunction
hard filter() to perform the same filtering protocol on the same input files. Each vcf file contained between
10K and 500K SNPs for 100 samples, and we benchmarked SNPfiltR separately under a scenario where
the vcf file had already been read into the local memory of the R working environment, and a scenario
where the vcf file was required to be read from disk before filtering. Across three replicates of each iteration,
we found that when the vcf file had already been stored as a vcfR object in the R working environment,
theSNPfiltR function hard filter() performed filtering and returned a filtered object, on average, more rapidly
than VCFtools used to perform the identical filtering (Fig. 1). Conversely, if the amount of time taken to
read the vcf file into local memory as a vcfR object before filtering is counted against SNPfiltR |, then this
approach takes consistently longer than performing the identical filtering operation using VCFtools . This
additional step of reading the vcf file into R as a vcfR object appears to increase the slope, rather than the
intercept, of the line (Fig. 1), indicating that this step scales poorly as the number of SNPs in the input vef
file increases, compared to the filtering process itself whether executed using SNPfiltR or VCFtools .

Quality filtering for a scrub-jay RADseq SNP dataset

To provide an example of using SNPfiltR and vcfR to build a comprehensive, R-based SNP filtering pipeline,
I began by reading an unfiltered vcf file into my R working environment using the functionread.vcfR() from
the vefR package, resulting in a vcfR object containing 210,336 SNPs for 115 samples,derived from RAD
sequencing of samples from throughout the range of the scrub-jays. Using the SNPfiltR function hard_filter()
to filter genotypes to minimum thresholds of a depth of 5 reads, and a genotype quality of 30 resulted in the
removal of 32.92% and 2.01% of called genotypes, respectively (Fig. 2). Filtering to retain only bi-allelic loci
using the function filter_biallelic() , removed no SNPs, as there were no SNPs with more than two alleles.
An additional quality filter offered by SNPfiltR is the function filter_allele_balance() , which implements a
quality filter based on allele balance, or the ratio of reads for each allele in called heterozygous genotypes.
This function follows the recommendations of Ddocent (Puritz et al., 2014), by removing called heterozygous
genotypes where the allele balance falls outside of the range .25-.75, and resulted in the removal of 7.56% of
heterozygous genotypes, or .39% of all called genotypes, in our scrub-jay SNP dataset. Next, I implemented
a maximum depth filter, which is crucial for RAD datasets, where paralogously assembled loci (which will
display outlier sequencing depth) can result in problematic and misleading downstream inferences (O’Leary et



al., 2018). Because depth of coverage can vary widely based on project design, understanding the distribution
of read depths across all called SNPs is essential for making an informed decision about a maximum depth
cutoff. T used theSNPfiltR function maz_depth() to visualize the distribution of mean read depth per sample
for all called SNPs, and then set a maximum mean depth cutoff of 100 reads, resulting in 12.85% of all SNPs
being removed from the dataset. As a final quality filtering step, I implemented a minor allele count filter
using theSNPfiltR function min_mac() in order to remove invariant SNPs resulting from genotype-based
quality filtering steps, which may have resulted in all minor allele genotype calls being converted to ‘NA’ for
individual SNPs. This filter requiring one minor allele in each SNP removed of 55.87% of SNPs, resulting in
80,885 quality filtered SNPs remaining in the filtered vcfR object for further investigation (Fig. 2).

Missing data filtering for a scrub-jay RADseq SNP dataset

I then utilized the dedicated visualization tools offered by SNPfiltR to investigate patterns of missing data by
individual sample and by SNP for this quality filtered scrub-jay SNP dataset (Fig. 3). The function missing_-
by_sample() reveals that missing data is distributed relatively equally across a priori identified species groups,
and that with all 115 samples included, there are hardly any SNPs that reach a 90% completeness threshold.
A visualization of the proportion of missing genotype calls in each sample shows that samples vary along
a relatively continuous distribution from missing less than 20% of genotype calls to missing nearly 100% of
genotype calls. Using the missing_by_sample() function, I filtered with a proportion missing genotypes per
sample threshold of 81%, resulting in 20 samples being dropped from the dataset (Fig. 3). Because SNPs
may have become invariant if all minor allele genotypes were removed when these samples were dropped,
I again implemented a minor allele count filter, with a minimum of one minor allele genotype per SNP, to
remove invariant sites, resulting in .61% of remaining SNPs being dropped.

I then used the SNPfiltR function missing_by_snp() to visualize the proportion of missing data in each sample
across a reasonable set of potential per-SNP completeness thresholds (Fig. 3). This visualization shows a
continuous distribution of missing data within retained samples and no visible outlier samples, indicating
that we have successfully dropped problematic samples from the dataset. Dotplots show a strong negative
correlation between total proportion missing data and the total number of SNPs retained in the dataset,
across potential per-SNP filtering thresholds. I chose to implement a per-SNP completeness cutoff of 85%
using the functionmissing_by_snp() , resulting in a final, quality and missing data filtered SNP dataset
containing 95 samples, 16,307 SNPs, and 5.7% total missing genotypes (Fig. 3).

To ensure that the implemented 85% missing data threshold effectively prevents patterns of missing data
within individuals from driving overall clustering patterns, I then used the functionassess_missing_data._-
pea() to visualize sample clustering across 75% and 85% completeness per SNP completeness thresholds
(Fig. 4). At both thresholds, all samples visually cluster according to a priori assignment to species groups.
When samples are colored according to proportion missing data, it becomes evident that within species
groups, samples with the most missing data are clustered the least tightly, indicating increased uncertainty
in assignment. Between the 75% and 85% per SNP completeness thresholds, the more restrictive threshold
slightly reduces the effect of missing data in these most loosely assigned samples (Fig. 4). Sample clustering
using t-SNE reveals additional population substructure within species groups and shows no indication that
missing data is driving patterns of clustering either between or within groups (Fig. 4). A final filter for
physical linkage, using the SNPfiltR function distance_thin() to remove all SNPs separated by less than 500
base-pairs, resulted in a quality and missing data filtered, unlinked SNP dataset of 2,803 SNPs ready for
input in downstream analyses.

Discussion

Historically, programs designed for performing computationally intensive bioinformatic processes have rarely
been implemented in the R language because the requirement that datasets be read into local memory can
cause computational bottlenecks with large input file sizes. Here I showed that the R package SNPfiltR can
be used to filter moderate sized reduced-representation SNP datasets with runtimes comparable to state-
of-the-art programs implemented in highly efficient languages such as Perl and C++. While benchmarking



confirmed that reading large files into the local memory of an R working environment scales poorly with
increasing input file size, the vcfR and SNPfiltR packages can be used in tandem to read and quality filter
a SNP dataset containing 50M genotypes and associated quality information in less than two minutes on
a personal laptop. This size SNP dataset (50M genotypes, or 500K genotypes for 100 samples) is realistic
for a set of unfiltered SNP calls resulting from a moderate to large sized reduced-representation genomic
sequencing project, indicating that the computational power of the R language has been generally overlooked
for the purposes of processing and filtering reduced-representation genomic SNP datasets. SNPfiltR takes
advantage of this previously overlooked computational power, and unlike existing programs designed for SNP
filtering, harnesses the widely commended data visualization capabilities of R, allowing users to design an
interactive and customizable SNP filtering pipelines within a single R script.

While many existing R packages are capable of working with SNP data, no existing R package contains
functions for automated visualization and filtering of SNP data comparable to those offered by SNPfiltR .
A few packages focus on directly reading and manipulating SNP data (e.g.,vcfR (Knaus & Griinwald, 2017)
and dartR (Gruber et al., 2018)), but largely require custom scripting using R syntax if users wish to filter
and visualize their SNP datasets, leaving a need for automated SNP visualization and filtering functions.
SNPfiltR is complementary to these packages, extending their functionalities with modular functions that
automate key visualization and filtering steps, allowing the rapid generation of full SNP filtering pipelines in
R. Notably, functions from the SNPfiltR package rely on vcfR objects as input, which can be directly read in
from vcf files using the function read.vefR() from the vefR package. For this reason, we strongly recommend
that users of the SNPfiltR package also cite the vcfR package as part of their integrative SNP filtering
pipelines. A suite of additional R packages exist for performing downstream phylogenetic and population
genetic analyses on high-quality SNP datasets (e.g., APE (Paradis & Schliep, 2019),stAMPP (Pembleton
et al., 2013), SNPrelate (Zheng et al., 2012), adegenet (Jombart, 2008), sambaR (de Jong et al., 2021), and
introgress (Gompert & Buerkle, 2010)).SNPfiltR is complementary to these packages as well, as eachSNP/filtR
function returns a filtered vcfR object which can be easily converted into a myriad of object classes within
R for further analysis using any of these dedicated population genetic programs.

It is widely accepted that the universe of elegant, open-source R based tools such as Rstudio and Rmark-
down allow for exceptional interactivity and reproducibility (Gandrud, 2018). Additionally, the performance
benchmarking results presented here indicate that the computational power of the R programming language
is sufficient for analyzing most reduced-representation SNP datasets, despite that this practice seems rela-
tively rare. The SNPfiltR package takes advantage of this previously unrecognized opportunity and provides
custom functions designed to fully integrate the investigation, visualization, and filtering of a SNP dataset
into a single coherent R framework. The filtering functions offered by SNPfiltR perform competitively with
current state of the art SNP filtering programs on moderately sized datasets, indicating that bioinforma-
ticians ought to consider implementing fully R-based pipelines for streamlining the often complicated and
iterative process of optimizing filtering parameters for next-generation sequencing datasets. By extending
the current bioinformatic tools available in R for filtering SNP datasets, theSNPfiltR package will allow
users to spend less time investigating and testing filtering parameters, and more time resolving evolutionary
mysteries with genomic data.
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Figure 1 . Dotplot showing mean runtimes for filtering vcf files according to the following thresholds:
minimum depth per genotype = 5, and minimum genotype quality per genotype = 30. Each input vcf file
contained between 10K and 500K SNPs for 100 individual samples. The three approaches to performing this
filtering were as follows; SNPfiltR - using the function SNPfiltR::hard filter() on a vcf file that has already
been read into the local memory as a vcfR object; SNPfiltR+vcfR - wrapping the function vefR::read.vef()
inside of a call to SNPfiltR::hard_filter(), in order to read in the given vcf file as a vcfR object, and then
perform filtering on the vcfR object; and VCFtools — directly specifying the full path to the given vcf file to
VCFtools to filter and output a new, filtered vcf file.



Quality filtering using SNPfiltR

Uibrary (SNPfiltR)
library(vcfR)

#read in vcf as vcfR

VefR <= read.vcfR("~/Desktop/aph.data/populations. snps.vcf")
### check the metadata present in your vcf
vefR

#> xexok Object of Class VCTR e

#> 115 samples

> 87 CHROMs

210,336 variants

Object size: 685.5 Mb

57.1 percent missing data

Ty

#> o

start by visualizing the di of depth of ing and genotype quality
among called genotypes, then set appropriate cutoffs for both values for this
ataset.

#visualize distributions
hard_filter(vcfR=vcfR)
#> no depth cutoff provided, exploratory visualization will be generated.
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#hard filter to mininum depth of 5, and mininun genotype quality of 30
vcfRe-hard_filter(vcfR=vcfR, depth = 5, gq = 30)

#> 32.92% of genotypes fall below a read depth of 5 and were converted to NA

#> 2.01% of genotypes fall below a genotype quality of 30 and were converted to NA

#remove loci with > 2 alleles
vefRe-filter_biallelic(vcfR)
#> 0 SNPs, 0% of all input SNPs, contained more than 2 alleles, and were removed

#execute allele balance filter

vcfRe-filter_allele_balance(vcfR)

#> 7.56% of het genotypes (9.3%% of all genotypes) fall outside of .25 - .75 allele
balance and were converted to NA
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#visualize and pick appropriate max depth cutoff
max_depth(vcfR)
#> cutoff is not specified, exploratory visualization will be generated.
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#> dashed line indicates a mean depth across all SNPs of 46.7

#filter vcf by the max depth cutoff you chose
vcfRe-nax_depth(vcfR, maxdepth = 100

#> maxdepth cutoff is specified, filtered vcfR object will be returned

#> 12.85% of SNPs were above a mean depth of 100 and were removed from the vcf

max depth cutoff
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#remove invariant SNPs generated during the genotype filtering steps
vefRe-nin_mac(vcfR, min.mac = 1)
#> 55.87% of SNPs fell below a minor allele count of 1 and were removed from the VCF
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#check VCfR to see how many SNPs we
vefR

#> opex Object of Class VCTR sk
> 115 samples

> 70 CHROMs

#> 80,885 variants

#> Object size: 283.2 Mb

#> 60.85 percent missing data
> orrnk [

vy

Figure 2. An example using SNPfiltR to filter a vcf file based on genotype quality, genotype depth, number
of alleles, allele balance, SNP depth, and minor allele count. This quality filtered vcf is now ready for filtering
based on missing data thresholds.
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Missing data filtering using SNPfiltR #subset poprap to only include retained individuats
popnap id %ins ),
#run function to visualize samples
missing_by_sample(vefR=vcfR, popnap = popmap) #remove invariant sites generated by dropping individuals
o vefRe-nin_mac(vcfR, min.mac = 1)
£10 #> 0.61% of SNPs fell below a minor allele count of 1 and were removed from the VCF
2
go7s
s #visualize missing data by SNP and the effect of various cutoffs on the missingness of
£ 050 missing_by_snp(vcfR)
s e ol Rro e pecTried Wexplot atory R s ualizat lons il L | beYoenerated]
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/ #choose a cutoff resulting in an acceptable amount of missing data in each sample
vefRe-nmissing_by_snp(vefR, cutoff = .85)
I o #> cutoff is specified, filtered vcfR object will be returned
o #> 79.72% of SNPs fell below a completeness cutoff of 0.85 and were removed
02 os o6 o8 o
proporion g dta 0
2 40000
#run function to drop samples above the threshold we want from the vcf g 8-
vcfRe-missing_by_sample(vcfR=vcfR, cutoff = ® 30000 -—
£ 70 B £ R0 0 O (YBeE T 600 sy 760 i (o] ) Vi o [
£ 20000 .
2 .
T 10000 +
e
.
030 050 060 065 070 075 0.80 0.85 0.90 0.95 1.00
SNP completeness cutoff
#check how many SNPs and samples are left
i
#> woprexx Object of Class VTR whkak
#> 95 samples
# 36 CHROMS
#> 16,307 variants
#> Object size: 111.2 Mb
#> 5.743 percent nissing data
- f— [

Figure 3. An example using SNPfiltR to visualize missing data by sample and by SNP, and then filter a
previously quality filtered vef file (Fig. 2) based on user specified missing data thresholds both per sample
and per SNP.
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Assessing the effect of missing data using SNPfiltR

#check if these cutoffs prevent samples from clustering
#by patterns of missing data in a PC
miss<-assess_missing_data_pca(vcfR=vcfR, popnap = popnap,

thresholds = c(.75,.85), clustering = FALSE)
#> cutoff is specified, filtered vcfR object will be returned
#> 72.84% of SNPs fell below a completeness cutoff of .75 and were removed

75% SNP completeness cutoff PCA
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#check what t-SNE clustering looks like at an 85% threshold
_missing_data_ popmap = popnap,
thresholds = .85, clustering = FALSE)
#> 79.72% of SNPs fell below a completeness cutoff of 0.85 and were removed

t-SNE clustering analysis 85% SNP completeness cutoff
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#choose a value that retains an acceptable amount of missing data in each sample
vefRe-missing_by_snp(vefR, cutoff = .85)

#> cutoff is specified, filtered vcfR object will be returned

#> 79.72% of SNPs fell below a completeness cutoff of 0.85 and were removed from the VCF
Write out the filtered vcf, and a linkage filtered version, for downstream analyses
#write out vef with all SNPs

VefR: twrite.vef (vefR, "~/Downloads/aphelocoma. filtered.vcf.gz")

#linkage filter vcf to thin SNPs to one per 500bp

VefR. thin<-distance_thin(vcfR, min.distance = 500)

#> 2803 out of 16307 input SNPs were not located within 500 base-pairs of another SNP

#write out thinned vcf
vefR: swrite.vef (vefR. thin, "~/Downloads/aphelocoma. filtered. thinned.vcf.gz")

Figure 4. An example using SNPfiltR to validate that the user specified missing data thresholds (Fig. 3)
remove enough missing data to avoid missing data driving sample clustering patterns. The example finishes
with writing a fully filtered vcf file to disc, for input into future downstream analyses.
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