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Abstract

The use of NGS datasets has increased dramatically over the last decade, however, there have been few systematic analyses
quantifying the accuracy of the commonly used variant caller programs. Here we used a familial design consisting of diploid
tissue from a single Pinus contorta parent and the maternally derived haploid tissue from 106 full-sibling offspring, where
mismatches could only arise due to mutation or bioinformatic error. Given the rarity of mutation, we used the rate of mismatches
between parent and offspring genotype calls to infer the SNP genotyping error rates of FreeBayes, HaplotypeCaller, SAMtools,
UnifiedGenotyper, and VarScan. With baseline filtering HaplotypeCaller and UnifiedGenotyper yielded one to two orders of
magnitude larger numbers of SNPs and error rates, whereas FreeBayes, SAMtools and VarScan yielded lower numbers of SNPs
and more modest error rates. To facilitate comparison between variant callers we standardized each SNP set to the same number
of SNPs using additional filtering, where UnifiedGenotyper consistently produced the smallest proportion of genotype errors,
followed by HaplotypeCaller, VarScan, SAMtools, and FreeBayes. Additionally, we found that error rates were minimized for
SNPs called by more than one variant caller. Finally, we evaluated the performance of various commonly used filtering metrics
on SNP calling. Our analysis provides a quantitative assessment of the accuracy of five widely used variant calling programs
and offers valuable insights into both the choice of variant caller program and the choice of filtering metrics, especially for

researchers using non-model study systems.

Introduction

The decreasing cost and ease of producing short-read next-generation sequencing (NGS) datasets has trans-
formed our understanding of organismal diversity across the tree of life. Next-generation sequencing offers
new opportunities to empirically test both basic and applied hypotheses relating to the molecular ecology
and evolutionary genetics within and among populations. However, transforming abundant raw sequence
data into biologically meaningful genetic data is non-trivial. Genotyping errors can be introduced at several
steps of NGS data analysis, which by extension may induce biases in subsequent inference. This becomes
particularly problematic in non-model organisms with large and complex genomes and fragmented genome
assemblies. It has become increasingly clear that understanding the performance and sources of biases and
errors from such tools is critical for the success of any NGS-based project.

Various open-source programs have been developed to identify genomic variants, such as single nucleotide
polymorphisms (SNPs) or insertions and deletions (indels), from short read data. Commonly used programs
include Freebayes (Garrison & Marth 2012), HaplotypeCaller and UnifiedGenotyper from the Genome Anal-
ysis Tool Kit (Van der Auwera & O’Connor 2020), SAMtools (Li et al. 2009), and VarScan (Koboldt et



al. 2012), which are widely used in NGS-based projects in both model and non-model systems. However, it
is often difficult to know a priori how well a given tool will perform given the genomic resources available
for any particular study organism, or how the study design will interact with the underlying assumptions of
such tools, which are often benchmarked with model organism data.

Several studies comparing variant calling programs exist in the literature (Cornish & Guda 2015; Hwang et
al. 2015; Bian et al. 2018; Chen et al. 2019; Sandmann et al. 2019). Most aim to test program efficiency
(Hwang et al. 2015) or to evaluate estimations of the precision and sensitivity of the variant calling tools
(Sandmann et al. 2019). However, these studies are often conducted with human genomic data in mind
(Cornish & Guda 2015; Bian et al. 2018; Sandmann et al. 2019). These studies often conclude that there
are substantial differences in precision and sensitivity across tools which depend in large part on aspects of
the data such as sample size and coverage as well as the genomic resources available (Cornish & Guda 2015;
Sandmann et al. 2019, but see Bian et al. 2018). As genome-scale datasets are now common for non-model
organisms with limited or fragmented reference genomes, it is necessary to expand upon these studies to
understand and establish best practices for systems where genomic resources are limited.

Conifers are non-model organisms with genomes recalcitrant to chromosome-scale assembly, especially so
under budgetary constraint. For instance, conifers often have exceptionally large genomes (20-40 Gbp;
Neale et al. 2017) with histories of whole-genome duplication (Zheng et al. 2015), gene family expansion
(De La Torre et al. 2014; Scott et al. 2020), transposable element dynamics (Yi et al. 2018; Scott et al.
2020; Wang et al. 2020), and extensive repeat regions (Wegrzyn et al. 2014). These complexities present
a major challenge for NGS data analysis and downstream hypothesis testing in conifers (Shu & Moran
2020; Lind et al. 2021). Such challenges can be alleviated by quantifying the accuracy of SNP calling
when using the above-mentioned variant calling tools. High-quality databases exist for model organisms
to calibrate existing programs and account for biases in the data, yet such resources remain elusive for
many non-model organisms. A unique biological attribute of conifers is that they possess maternally derived
haploid megagametophyte tissue that can be reliably excised from embryonic seeds. Megagametophyte tissue
can be used in a family design with parent and offspring samples and provide insight into the accuracy of
genotype calls by quantifying concordance between haploid offspring genotypes that could arise given the
diploid parental genotypes.

Here we used a familial design consisting of diploid tissue from a single lodgepole pine (Pinus contorta
) parent and maternally derived haploid tissue from 106 full-sibling offspring to evaluate similarities and
differences among SNP sets generated from FreeBayes, HaplotypeCaller, Samtools, UnifiedGenotyper, and
VarScan. We use the rate of mismatches between parent and offspring genotype calls to infer the genotype
error rate of each variant caller, given the rarity of mutation within one generation. We describe how the
number of SNPs and proportion of genotyping errors behave under varying threshold levels for the most
commonly used quality metrics during filtering steps. Our results shed light on how the choice of variant
calling program can affect the result and interpretation of genomic analyses in non-model organisms lacking
extensive genomic resources.

Methods

Sample Preparation

Our sample data originated from a Pinus contorta linkage mapping population consisting of a single parent
and its 106 F1 offspring from the interior of British Columbia, Canada, and was provided to us by col-
laborators at the University of British Columbia (https://coadaptree.forestry.ubc.ca). For each F1 sample,
haploid megagametophyte tissue was excised from embryonic seeds for sequencing. Sample preparation,
probe design, DNA extraction, and library preparation were performed as described in Lind et al. 2021.
DNA samples were sequenced at the Genome Quebec Innovation Centre at McGill University, Montreal,
Canada, where they isolated 351 Gbp of "150-bp paired-end reads from an Illumina HiSeq4000 instrument.



We used fastp v0.19.5 (Chen et al. 2018) to process and trim sample reads and BWA-MEM v0.7.17 (Li
& Durbin 2009) to align them against the congeneric loblolly pine (Pinus taeda ) reference genome v2.01
(Zimin et al. 2017; https://treegenesdb.org/FTP/Genomes/Pita/v2.01), as a reference genome does not yet
exist for P. contorta . We then sorted, indexed, and converted the aligned reads to BAM files with SAMtools
v1.9 and processed them with PICARD v2.18.9 (http://broadinstitute.github.io/picard). Where applicable,
we converted the BAM files to mpileup files using SAMtools.

We then took these common BAM (or mpileup) files and called SNPs using the following variant caller
programs: FreeBayes, HaplotypeCaller, SAMtools, UnifiedGenotyper, and VarScan. After calling SNPs we
performed an initial baseline level of filtering consisting of filtering criteria specific to each caller followed by
a common set of filtering criteria (Table 1). The common filtering thresholds we used for each caller required
that sites were called in both the parent and the F1 sample, did not have greater than 50% missingness, and
were not multiallelic. We used both VCFtools v0.1.14 (Danecek et al. 2011) and R v1.4.1106 (R Core Team
2021) to achieve the above-described filtering.

SNP Calling and Baseline Filtering
FreeBayes

We used FreeBayes v1.3.1-17-gaa2ace8 to call SNPs separately in both the offspring samples and the parental
sample to account for the ploidy difference. The resulting VCF files were merged using VCFtools. Genotype
calls with less than 20 genotype quality and/or less than 5 depth were filtered out, before applying the set
of common filters as described above (Table 1).

HaplotypeCaller

We used GATK v4.1 HaplotypeCaller in -ERC mode to generate 107 individual sample g.vcf files for both
parent and offspring. Individual g.vcf’s were combined in batches of 20 using CombineGVCFs into a
single multiple sample g.vcf comprising the full mixed ploidy cohort. GenotypeGVCF was used to call
SNPs on the full cohort. Both commands for combining and genotyping are able to handle mixed ploidy
of samples. We used the standard GATK hard-filter expression (https://gatk.broadinstitute.org/hc/en-
us/articles/3600355324127id=11097) as our initial filtering step, as P. contorta lacks a benchmark set of
high-quality SNPs for calibration and therefore we could not use variant quality score recalibration (VQSR).
After the hard-filter expression we filtered out sites with less than 30 quality score, genotype calls with less
than 20 genotype quality, and then applied the common set of filters (Table 1).

SAMtools

We used the bceftools v1.9 utility from SAMtools to call SNPs on the offspring and parent samples as a
cohort. Filtering was performed by removing sites with less than 20 quality score, genotype calls with less
than 5 depth, and then applying the set of common filters (Table 1). The -G flag was set to the default (i.e.,
all samples were treated as one population).

Unified Genotyper

We used GATK v3.8 UnifiedGenotyper to call SNPs separately in both the offspring samples and the parental
sample. As with HaplotypeCaller, because VQSR was not applicable, we filtered using the hard-filter expres-
sion (https://gatk.broadinstitute.org/hc/en-us/articles/3600355324127id=11097), further filtered sites with
less than 30 quality score, and then filtered using the common set of filters (Table 1).

VarScan

We used VarScan v2.4.4 to call SNPs on the offspring data using a p-value of 0.05 and no additional filters.
We then called SNPs in the parental sample in a similar manner and merged the resulting VCF files using
VCFtools. SNPs were filtered by removing sites with minor allele frequencies below 0.10%, individual
genotype calls with depths below 10, and then applying the common filters. As VarScan does not have a



ploidy setting (i.e., all genotype calls are diploid) and our offspring sample data were haploid, we removed
all heterozygote genotype calls (Table 1).

Comparing variant caller programs

Variant callers differed considerably in the number of sites they called using the baseline filtering (e.g.,
UnifiedGenotyper yielded “3M vs. “80k for VarScan; Table 2). We found that the mismatch rates between
parent and offspring genotype calls roughly scaled with the number of SNPs called (Table 2; Fig. S1), and
in order to compare mismatch rates between different callers we standardized their output by adjusting
the filtering criteria so that each caller yielded a similar number of SNPs (Table S1-5). This additional
filtering step was conducted in an iterative manner to assess the effect of varying stringency on mismatch
rates, using the QUAL, DP, and GQ metrics (but only DP and GQ for VarScan) and varying each metric
according to their empirical distribution. For example, to get approximately © SNPs with a given caller, we
would increase the QUAL, DP, and GP filtering criteria from they * to the z *'percentile of each of their
respective distributions. We calculated two different mismatch rates, a by-genotype rate and a by-site rate,
defined respectively as the number of mismatched parent-offspring genotype calls out of the total number of
genotypes called and the number of sites with at least one mismatched parent-offspring genotype call out of
the total number of sites.

Results

Base Filter

After applying the base level filters to each caller’s SNP set, the two GATK callers, UnifiedGenotyper and
HaplotypeCaller, resulted in the greatest number of SNPs called and the highest mismatch rates by site and
by genotype (Table 2). SAMtools and FreeBayes called an order of magnitude fewer SNPs than the GATK
callers, but they also resulted in mismatch rates an order of magnitude lower (Table 2). Finally, VarScan
called the lowest number of SNPs and resulted in the lowest mismatch rates by site and by genotype, all
metrics two orders of magnitude lower than the GATK callers (Table 2). The strong correlation between the
number of SNPs a program called after base filtering and its mismatch rate (R? = 99.4%; Fig. S1) led us to
apply our additional incremental filtering method to better facilitate the comparison among variant callers.

Despite the different variant callers generating SNP sets orders of magnitude different in size, the distributions
of parent-offspring genotype mismatches across the sites called were very similar among programs (i.e.,
heavily right-skewed; Fig. S2). UnifiedGenotyper, however, produced an overinflation of sites with a 50%
genotype mismatch rate, suggesting a higher rate of genotyping error in the parent than seen with the other
variant callers (Fig. S2).

Comparing Between Callers
Sites Called

After applying the additional incremental filtering and reducing each SNP set down to approximately 4x10°,
1x10°, and 8x10* sites called, HaplotypeCaller, SAMtools, and UnifiedGenotyper were most similar in the
specific sites called, sharing at least 44% of sites at each level of filtering (Fig. S3-8). FreeBayes and
VarScan called the most sites unique to a single caller; FreeBayes called at least 61% unique sites across
these incremental filter levels (Fig. S3-6), and VarScan called 86% unique SNPs in the one comparison it
was included in (Fig. S3-4). We found very little difference when comparing the total sites shared between
callers (Fig. S3,5,7) and the sites shared with zero genotype mismatches (Fig. 1, S9-10). Notably however,
the specific sites each program called that had genotyping mismatches were largely unique to each caller
(Fig. 1, S9-10).

Mismatch Rates



With the additional incremental filtering, all callers dramatically improved in by-site mismatch rates and
by-genotype mismatch rates, with the exception of VarScan which remained rather insensitive (Table S6;
Fig. 2). UnifiedGenotyper, HaplotypeCaller, and SAMtools all showed striking improvements in mismatch
rates with additional incremental filtering until about the 1055 SNP mark, where mismatch rates for all
three callers approached relative plateaus. FreeBayes showed continued improvements in mismatch rates
with increased filtering and did not reach a point of diminishing returns. In contrast, VarScan did not
substantially improve in mismatch rates with increased filtering, however, because VarScan called relatively
few SNPs, minimal additional filtering could be applied. After additional incremental filtering to a specific
number of sites called, UnifiedGenotyper consistently had the lowest genotype mismatch rate, followed by
HaplotypeCaller, VarScan, SAMtools, and FreeBayes (Fig. 2A). The number of SNPs called (i.e., the degree
of filtering applied) did not change the ranking of the five callers in terms of mismatch rate by genotype
(Fig. 2A).

Comparing Within Callers

To assess the effects of individual quality metrics on mismatch rates, we explored the effect of varying each
metric on the number of genotypes called and the by-genotype mismatch rates for the baseline filter SNP
set from each variant caller program (Table 1).

FreeBayes

Increasing stringency in either of DP or GQ resulted in monotonically decreasing genotype mismatch rates
in the FreeBayes SNP set (Fig. 3, S11-12). Similarly, increasing QUAL over lower values decreased the
mismatch rate, however, mismatch rates did plateau over very high QUAL values (Fig. S13). All three
filtering metrics performed well on our dataset and would be useful metrics to filter SNPs with increased
stringency.

HaplotypeCaller

Filtering by any of QUAL, DP, or GQ produced monotonic decreases in genotype mismatch rates with
the HaplotypeCaller SNP set (Fig. 3, S14-16). These three filtering metrics would be useful for researchers
unable to use VQSR and requiring further increased filtering stringency. The metrics FS, MQ, MQRankSum,
QD, ReadPosRankSum, and SOR, did not appreciably improve mismatch rates with further filtering, and in
the case of QD slightly increased mismatch rates in our data (Fig. S17-22).

SAMtools

Filtering by either QUAL or GQ resulted in monotonic decreases in genotype mismatch rates in the SAMtools
SNP set (Fig. 3, S23-24). Increasing DP did improve mismatch rates over lower DP thresholds, although
mismatch rates plateaued over higher values (Fig. 3, S25). As with the other callers, these three filtering
metrics performed well and would be useful for filtering SNPs with further stringency, however, there may
be diminishing returns when filtering by DP with SAMtools.

UnifiedGenotyper

Filtering by any of QUAL, DP, or GQ resulted in decreased genotype mismatch rates with increasing strin-
gency in the UnifiedGenotyper SNP set (Fig. 3, S26-28). As with HaplotypeCaller, these three filtering
metrics would be useful for researches unable to filter with VQSR and requiring further filtering stringency.
Similar to HaplotypeCaller, none of FS, MQ, MQRankSum, QD, ReadPosRankSum, nor SOR appreciably
improved mismatch rates, and with our dataset filtering by QD or SOR slightly increased mismatch rates
with UnifiedGenotyper (Fig. S29-34).

VarScan

Increasing stringency in DP or increasing stringency in GQ beyond 20 produced appreciable improvements
in genotype mismatch rate in the VarScan SNP set (Fig. 3, S35-36). Similar to SAMtools, filtering by DP
resulted in mismatch rates plateauing over higher values (Fig. S35). Both DP and GQ appear to be useful



for increased filtering with VarScan, however, there may be diminishing returns when filtering by DP with
VarScan.

Discussion

The reliability of SNP genotypes identified from high-throughput sequencing and the choice of variant caller
has been a topic of debate for over a decade (Poland & Rife 2012; Hwang et al. 2015). Here we lever-
aged diploid and haploid sequence data from a single P. contorta parent and 106 full-sibling offspring to
compare SNP genotyping across five popular variant calling tools: FreeBayes, HaplotypeCaller, SAMtools,
UnifiedGenotyper, and VarScan. We used the proportion of mismatches between parent and offspring geno-
type calls to infer the genotype error rates of each variant caller, given the rarity of mutation within one
generation. Our comparison finds large differences in the SNPs called and we evaluate the impact of various
filtering metrics on the SNP quality and quantity.

After applying an initial, base level of filtering (Table 1) with each program, we found a large disparity in
the number of SNPs called and the error rates between callers (Table 2). As might be expected, we found
a strong correlation between the number of SNPs called and the by-genotype error rates (R? = 99.4%; Fig.
S1), which led us to apply our additional incremental filtering to compare callers. For our specific dataset,
we show that UnifiedGenotyper consistently had the lowest error rates at all degrees of additional filtering
stringency (Fig. 2). Not only did UnifiedGenotyper have the lowest overall error rates after additional
filtering, but it also resulted in the most SNPs called in total, offering ample opportunity to prioritize either
the volume of SNPs called or the error rates. However, note that UnifiedGenotyper is no longer supported by
GATK. After UnifiedGenotyper, both HaplotyperCaller and VarScan performed appreciably well in terms
of error rates (Fig. 2). VarScan, however, produced quite a low volume of SNPs despite initial filtering on
minor allele frequency and depth being relatively lenient (Table 1). After additional filtering, FreeBayes and
SAMtools resulted in the highest by-genotype error rate and by-site error rate respectively (Fig. 2).

Our results highlight two different flavours of variant callers. Tools like HaplotypeCaller and UnifiedGeno-
typer are highly customizable, highly flexible and offer the user the option to prioritize the number of SNPs
called or the error rate. However, HaplotypeCaller and UnifiedGenotyper also required extensive additional
filtering beyond baseline to achieve acceptable error rates, and may require a more experienced user and
likely more tinkering to curate a suitable SNP set. Other variant callers like FreeBayes, SAMtools, and
VarScan, achieve decidedly lower error rates when comparing baseline filter SNP sets, and likely require
much less tinkering and effort to produce an acceptable SNP set. However, these three variant callers may
lack the customization and flexibility of the GATK callers, and because they call many fewer SNPs may be
at risk of missing some important sites.

When we compared the specific sites produced with each variant caller, we found a large degree of overlap
among most programs (60%) in both the total sites a program called (Fig. S3,5,7), and as well in the error-
free sites a program called (Fig. 1, S9-10). The sites where each caller made genotyping errors, however,
were largely specific to the caller used (Fig. 1, S9-10), suggesting that the processes by which each caller
makes errors differ mechanistically. Taken together, the high degree of overlap among callers in correctly
called sites and the low degree of overlap in erroneously called sites (Fig. 1, S9-10), suggests that the practice
of calling sites with multiple different variant caller tools and using only the SNPs common to all tools may
be a highly effective method to improve accuracy. However, while this may reduce error rates, taking the
intersection across multiple tools will result in a smaller number of SNPs called.

Across all callers, we found that filtering by QUAL, DP, or GQ gave the best results in terms of reducing
by-genotype error rates in our dataset (Fig. 3; also see Supp. Mat.). For those using GATK callers and
investigating non-model organisms where VQSR is not applicable, these three metrics may offer the best
returns on increasing filtering stringency. While the majority of the GATK filtering metrics did not perform
optimally on our data, it should be noted that our results represent a comparison performed on one single



dataset and that results may vary with other input data. For other variant calling programs, our results
suggest that substantial improvements in error rate can be achieved solely through filtering with QUAL, DP,
and/or GQ only.

Our study provides a quantitative assessment of the accuracy of some of the more popular variant caller
programs and their commonly used filtering metrics; however, it comes with three main caveats. Our
analysis was performed on a linkage mapping population and as such our results may differ from similar
analyses performed on natural populations. For example, a variant caller that is predicated on sample allele
frequencies being in Hardy-Weinberg equilibrium will have biased error rates when used on a linkage mapping
population where allele frequencies are expected to be 0, 0.5, or 1. As such, it would be valuable to repeat our
comparison of variant callers on natural populations in the future. Secondly, because a P. contorareference
genome does not yet exist, we aligned our reads against the best available but highly fragmented congeneric
loblolly pine (P. taeda ) reference genome. Any differentiation or lack of synteny betweenP. contorta and
P. taeda , as well as any assembly errors in the loblolly pine reference genome may have influenced our
results. The option to use the reference genome of the correct study species, the quality of that genome,
and whether or not the study species is model will all likely have important effects on results. Finally, we
chose to include VarScan in our analysis as it is currently a popular variant calling tool, however, VarScan
can only call diploid genotypes. As such, all of our VarScan results are diploid genotype calls from haploid
input data and should be interpreted with some caution.
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Tables

Table 1: Baseline Filtering Criteria. Set of filtering criteria unique to each variant caller program and set of
common filtering criteria used across all programs. Criteria describe the sites removed.

FreeBayes Sites with less than 30 quality (QUAL) Genotype calls with less than 10 depth (DP) Genotype calls with less th

HaplotypeCaller Sites with greater than 60 Fisher strand (FS) Sites with less than 40 mapping quality (MQ) Sites with less
SAMtools Sites with less than 20 quality (QUAL) Genotype calls with less than 5 depth (DP)

UnifiedGenotyper Sites with greater than 60 Fisher strand (FS) Sites with less than 40 mapping quality (MQ) Sites with le;
VarScan Sites with less than 0.10% minor allele frequency (MAF) Genotype calls with less than 10 depth (DP) Heterozygo
Common Filters Sites not called in both parent and offspring Sites with greater than 50% missingness Multiallelic sites

Table 2: The number of sites and genotypes called, and the by-site and by-genotype mismatch rates for each
variant caller program after base filtering was applied.

Genotype mismatch

Sites Genotypes Site mismatch rate rate
FreeBayes 1.19x10° 1.05x107 1.03x1072 2.39x1073
HaplotypeCaller 2.24x10° 1.87x108 2.41x10! 1.18x1072
SAMtools 4.59x105 4.16x107 5.36x1072 3.08x107
UnifiedGenotyper 3.49x10° 2.86x108 1.51x10" 2.03x1072
VarScan 8.79x10% 4.41x108 9.79x10™* 3.97x10™*
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Fig. 1: Number of unique sites shared between FreeBayes, HaplotypeCaller, SAMtools, UnifiedGenotyper,
and VarScan after additional filtering to approximately 8x10* sites called. The number of unique sites
with zero genotype mismatches (A) and the number of unique sites with at least one genotype mismatch
(B) are shown. SNP sets were filtered with depth, genotype quality, and quality score where applicable.
FreeBayes, HaplotypeCaller, SAMtools, UnifiedGenotyper, and VarScan resulted in 79,970, 79,931, 77,928,
79,990, 79,650 sites respectively.
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Fig. 2: Comparison of mismatch rates by genotype (A) and by site (B) between SNP callers at variable
numbers of sites called. Mismatch rates were calculated as the number of mismatched parent-offspring
genotype calls out of the total number of genotypes called (A) and as the number of sites with at least one
mismatched parent-offspring genotype call out of the total number of sites (B). Variation in the number of
sites called for a particular SNP caller was generated by additional incremental filtering to different degrees

with depth, genotype quality, and quality score where applicable.
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Fig. 3: Effect of filtering by depth (DP) on the number of genotypes called (blue) and the genotype mismatch
rates (red) after baseline filtering in FreeBayes, HaplotypeCaller, UnifiedGenotyper, SAMtools, and VarScan
(A-E). Note: Scales differ on all three axes for each panel.
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