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Abstract

Plant pathogens often adapt to plant genetic resistance so characterization of the architecture under-lying such an adaptation
is required to understand the adaptive potential of pathogen populations. Erosion of banana quantitative resistance to a major
leaf disease caused by polygenic adaptation of the causal agent, the fungus Pseudocercospora fijiensis, was recently identified in
the northern Caribbean region. Genome scan and quantitative genetics approaches were combined to investigate the adaptive
architecture underlying this adaptation. Thirty-two genomic regions showing host se-lection footprints were identified by pool
sequencing of isolates collected from seven plantation pairs of two cultivars with different levels of quantitative resistance.
Individual sequencing and phenotyping of isolates from one pair revealed significant and variable levels of correlation be-tween
haplotypes in 17 of these regions with a quantitative trait of pathogenicity (the diseased leaf area). The multilocus pattern of
haplotypes detected in the 17 regions was found to be highly varia-ble across all the population pairs studied. These results
suggest complex adaptive architecture un-derlying plant pathogen adaptation to quantitative resistance with a polygenic basis,
redundancy, and a low level of parallel evolution between pathogen populations. Candidate genes involved in quantitative
pathogenicity and host adaptation of P. fijiensis were highlighted in genomic regions combining annotation analysis with
available biological data.
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Abstract

Plant pathogens often adapt to plant genetic resistance so characterization of the architecture underlying
such an adaptation is required to understand the adaptive potential of pathogen populations. Erosion of
banana quantitative resistance to a major leaf disease caused by polygenic adaptation of the causal agent,
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the fungusPseudocercospora fijiensis, was recently identified in the northern Caribbean region. Genome scan
and quantitative genetics approaches were combined to investigate the adaptive architecture underlying this
adaptation. Thirty-two genomic regions showing host selection footprints were identified by pool sequencing
of isolates collected from seven plantation pairs of two cultivars with different levels of quantitative resistance.
Individual sequencing and phenotyping of isolates from one pair revealed significant and variable levels of
correlation between haplotypes in 17 of these regions with a quantitative trait of pathogenicity (the diseased
leaf area). The multilocus pattern of haplotypes detected in the 17 regions was found to be highly variable
across all the population pairs studied. These results suggest complex adaptive architecture underlying plant
pathogen adaptation to quantitative resistance with a polygenic basis, redundancy, and a low level of parallel
evolution between pathogen populations. Candidate genes involved in quantitative pathogenicity and host
adaptation of P. fijiensis were highlighted in genomic regions combining annotation analysis with available
biological data.

KEYWORDS

fungal plant pathogen, host adaptation, genome scan, quantitative genetics, Musa, Pseudocercospora fijiensis

1 | INTRODUCTION

The adaptation of a population to a new environment can involve traits controlled by only a few genes
that have a major effect, but such oligogenic adaption is relatively rare (Bell, 2009; van’t Hof et al., 2011;
Bastide et al., 2016). Indeed, many adaptive traits are genetically complex and involve large numbers of loci,
each of which contributes little to the phenotype (Pritchard et al., 2010; Sella & Barton, 2019). With the
large amount of genomic data now available, many authors have been able to identify the genetic basis of
complex adaptive traits in different organisms (Daborn, 2002; Cook et al., 2012; Linnen et al., 2013) but
identifying the genetic basis of a polygenic trait is not sufficient to understand adaptive potential of a species.
In addition, the effect size of the genes (i.e. their contribution to the genetic variance of a trait, (Park et al.,
2010)), interactions between genes (i.e. additivity, dominance, epistasis and pleiotropy, (Hansen, 2006)) and
redundancy (i.e. when several genotypes share the same phenotype by accumulating different combinations
of mutations (Barghi et al., 2020)) need to be evaluated.

Identifying the genetic architecture of adaptive traits has been the main focus of two fields of evolutionary
biology (Höllinger et al., 2019; Barghi et al., 2020). The first approach is based on molecular population
genetics and assumes that adaptive traits result in the directional selection of a limited number of beneficial
mutations that have major effects on the traits concerned. A hitchhiking effect on other linked loci leads to
loss of diversity in the surrounding genomic regions; this footprint is called a “selective sweep” (Maynard-
Smith & Haigh, 1974; Messer & Petrov, 2013). Genome scan methods have been developed to detect this
footprint across the genome by measuring differentiation between populations, by detecting variations in the
site frequency spectrum (SFS) and/or identifying haplotypes under strong linkage disequilibrium (reviewed
by (Vitti et al., 2013, Vatsiou et al., 2016 and Pavlidis & Alachiotis, 2017). The second approach is based
on quantitative genetics and focuses on the phenotype to identify the genes responsible for phenotypic
variation (Bazakos et al., 2017). Evolution of a polygenic trait is supposed to be the result of a collective
effect of a large number of loci with infinitesimally small variations, leading to more subtle footprints called
“shifts” (Barton et al., 2017; Boyle et al., 2017). Analyses of quantitative trait loci (QTL) or genome wide
association studies (GWAS) are used to decipher the genetic architecture of a phenotypic trait by identifying
correlations between loci and the phenotype (Barton & Keightley, 2002; Visscher et al., 2017). Molecular
population genetics and quantitative genetics views are not incompatible. Pritchard and Di Rienzo in 2010
proposed a unifying view of polygenic adaptation as the result of sweeps and shifts acting simultaneously.
Thus, combining the two approaches could be a good way to decipher the genetic architecture underlying
polygenic adaptation (Gagnaire & Gaggiotti, 2016).

Genetic architecture of traits can be viewed as the genetic potential for phenotype variation through mu-
tation. However, this concept is not sufficient to fully understand adaptation in natural populations, and
Barghi et al. 2020 recently proposed the notion of adaptive architecture to better describe the adaptive
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potential of species. This notion extends the genetic architecture concept by including other factors involved
in population adaptation such as the frequency of contributing alleles, pleiotropy fitness constraints, and
genetic forces other than mutation, including selection, drift, and recombination. All these factors play a
role in shaping the relative contribution of genes to the adaptation of a population and also in the degree
of parallelism when different populations are compared that evolve in the same environment, and could
consequently be considered as replicates. Experimental evolution is one possible approach to investigate the
genomic responses related to adaptation and to measure the degree of parallelism between populations faced
with a controlled environmental constraint and has been successfully applied in Drosophila(Graves et al.,
2017; Griffin et al., 2017) and Escherichia coli(Tenaillon et al., 2012). Alternatively, in biological situations
(like epidemics) that are difficult to reproduce in the laboratory, adaptive architecture can be investigated in
natural systems comprising multiple populations that evolve independently in similar environments (Barghi
et al., 2020).

The adaptive architecture concept proposed by Barghi et al. 2020 provides a unified framework to understand
how pathogens adapt to plant genetic resistance which is more and more used in agriculture to control diseases
as an alternative to applying chemicals. Two categories of resistance have been described in the literature:
qualitative and quantitative resistance. Qualitative resistance is often based on ‘effector-triggered immunity’
(ETI), in which major genes confer almost complete protection after recognition of effectors produced by
certain pathogen genotypes referred to as avirulent genotypes (Cowger & Brown, 2019). Qualitative resistance
is usually not durable because the high specificity of the host-pathogen interactions exerts strong selective
pressure on pathogen populations and can lead to rapid selection and fixation of a beneficial mutation
(Parlevliet, 2002; Zhong et al., 2017), a process corresponding to the selective sweep concept described
above. The genetic basis of quantitative resistance may rely on only a small number of QTLs but can be
also polygenic, i.e. involve a large number of QTLs (Cowger & Brown, 2019). Diverse mechanisms can be
involved and quantitative resistance is generally considered as the most durable (Pilet-Nayel et al., 2017).
However, following changes in quantitative traits of pathogenicity (also referred to as aggressiveness (Lannou,
2012), many examples of erosion of quantitative resistance have recently been reported (reviewed in Pilet-
Nayel et al. 2017, Cowger & Brown, 2019). In contrast to quantitative resistance of plants, only a few
studies have provided information on the genetic basis of quantitative pathogenicity in pathogens. A complex
genetic architecture of fungal quantitative pathogenicity was found in a comprehensive QTL mapping analysis
of the wheat pathogen Zymoseptoria tritici supported by genome wide association studies (GWAS) of a
global sample of isolates (Hartmann et al., 2017; Dutta et al., 2021). However, description of the adaptive
architecture on one particular host requires comparison of several fungal populations which can have notable
differences on standing genetic variation and population size (McDonald & Linde, 2002).

The ascomycete fungus Pseudocercospora fijiensis , which is responsible for black streak disease (BLSD) of
banana, is an interesting pathogen model to describe adaptive architecture to quantitative plant resistan-
ce. BLSD is the most damaging foliar pathogens of banana worldwide (Guzmán et al., 2019). The BLSD
pandemic started around 1960 in South-East Asia/Oceania. In 1972, the disease was detected for the first
time in Latin America, in Honduras, and spread rapidly throughout the region (Carlier et al., 2021a). The
Fundación Hondureña de Investigación Agŕıcola (FHIA) produced several quantitatively resistant hybrids
that were used in Cuba in the 1990s and 2000s and have been used in the Dominican Republic since 2005.
However, after five to 10 years of cultivation, in both countries, erosion of resistance was reported in FHIA
18 and FHIA 21 cultivars in the field (Pérez Miranda et al., 2006; Guzmán et al., 2019). Local adaptation of
P. fijiensispopulations explaining the erosion of resistance of FHIA hybrids in the two countries was demons-
trated in cross-inoculation experiments (Dumartinet et al., 2019). An even more recent study based on pool
sequencing (Pool-Seq) supported the existence of convergent adaptation in both resistant and susceptible
cultivars in less than 10 genomic regions, suggesting oligogenic architecture underlies this adaptation (Carlier
et al., 2021b). However, other genomic regions that did not converge were detected across the populations
analyzed and neither redundancy nor phenotype-genotype relationship was tackled in that study.

The aim of the present work was thus to characterize the adaptive architecture underlying the quantitative
resistance adaptation ofP. fijiensis . To this end, we analyzed a large number of P. fijiensis samples from
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susceptible and resistant cultivars in Cuba using a paired population sampling design. We first used a genome
scan based on pool-sequencing data to detect host selection footprints in key genomic regions. Isolates from
one location characterized for one trait of pathogenicity (the diseased leaf area) were individually sequenced
to perform GWAS and to investigate correlations between the phenotype and the genotype in candidate
genomic regions. We then combined all these data to compare adaptive architecture between populations.

2 | MATERIALS AND METHODS

2.1 | Sampling

Two sampling campaigns were conducted in Cuba in 2011 and in 2013 in three different locations (Villa
Clara, Ciego de Avila and Matanzas) located between 20 and 300 km apart using the same paired population
sampling design (Figure 1, Table 1). Infected banana leaves were collected in a banana plantation pair in each
location except in Ciego de Avila, where two pairs were sampled in 2013. The same varieties were collected
in all pairs; one plot was planted with a susceptible variety (Macho ¾ belonging to the banana AAB genomic
group and the plantain subgroup) and the other with a resistant variety (the tetraploid FHIA 18 belonging to
the banana AAAB genomic group). More than 1 000 strains were isolated representing 14 populations with
a number of isolates per population ranging between 38 and 135. The six populations sampled in 2011 had
already been analyzed to investigate local adaptation to banana quantitative resistance and the underlying
genetic basis in P. fijiensis (Dumartinet et al., 2019; Carlier et al., 2021b). To further describe adaptive
architecture, in this study, we added eight more populations sampled in 2013 in the same locations. Banana
plantations are frequently replanted and different plantation pairs were collected in the two first locations
in 2011 and in 2013. In Matanzas, the same plantations were sampled but they were replanted between
2011 and 2013. The data obtained from samples collected in the two years were then considered as spatial
replicates but not as time series.

2.2 | P. fijiensis isolates, DNA extraction and sequencing

Mycelium cultures initiated by single ascospore isolated from necrotic lesions were identified as belonging
to P. fijiensis and stored as described in Zapater et al. 2008. Genomic DNA was extracted from mycelium
cultures as detailed in Halkett et al. 2010. Equimolar amounts of DNA from isolates of each population were
then pooled (see details in Table 1) to reduce variation during pool sequencing (Pool-Seq), as suggested
by Rode et al. 2018. The mean pool size of the six and eight populations collected in 2011 and 2013 was,
respectively, 42.25 and 93.12 individuals per pool. The pools of isolates collected in 2011 were sequenced
as described in Carlier et al. 2021b, at the Genome Quebec Innovation Centre at McGill University on a
GAII platform for paired-end Illumina sequencing (read length of 100 pb, target depth of 80X). The pools of
isolates collected in 2013 were sequenced for this study by Genewiz UK Ltd for paired-end HiSeq for paired-
end Illumina sequencing (read length of 150 pb, target depth of 200X). Finally, the DNAs of 63 isolates
sampled in the location Villa Clara in 2011 were sequenced for this study at the Genome Quebec Innovation
Centre at McGill University for individual paired-end Illumina sequencing (read length of 100 pb, target
depth of 30X).

2.3 | Mapping, variant calling and filtering

Genomic reads obtained from individuals and pools were mapped against the P. fijiensis reference geno-
me (https://genome.jgi.doe.gov/Mycfi2/Mycfi2.home.html , Arango Isaza et al., 2016). Pool-sequencing data
were treated using the same pipeline and filtering parameters as in Carlier et al. 2021b. Data available from
the 2011 samples were rerun with the 2013 samples so the same versions of software were used for both.
SNP calling was performed separately for the samples from the two years because some analyses were only
possible using samples from 2011, for which some phenotypic data were available (see explanation below).
After filtration (mapping quality > 30, minimum read count=3, minimum allelic frequency=0.03) , 981 001
and 1 792 219 biallelic SNPs were detected in the six and eight populations collected in 2011 and 2013, re-
spectively. For the sequencing of individuals, the genomic reads of 63 isolates were mapped separately using
bwa v0.7.15 software (Li & Durbin, 2010) with bwa_men commands and default parameters. Duplicates
were tagged and eliminated using Picard Toolkit v 2.7.0 (Picard Toolkit, 2019, Broad Institute, GitHubRe-
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. pository:http://broadinstitute.github.io/picard/ ) and mark_duplicates command. Genome Analysis Toolkit
(GATK) v 4.1.4.0 (McKenna et al., 2010) was used for SNP calling with Haplotypecaller command and all
individuals were merged in the same file in variant call format (VCF) with the GenotypeGVCFs_merge. The
VCF file was filtered to keep only SNPs using GATK’s SelectVariants command and variants were filtered
for quality with the VariantFiltration command with the same parameters as in Derbyshire et al. 2019. A
second filter was then applied to each genotype from the VCF file using vcftools v.0.1.14 (Danecek et al.,
2011) with the following parameters: maf 0.01, minDP 4 maxDP 100, minGQ 20, max-missing 0.7. After
filtration, 758 407 SNPs were identified among the 63 isolates. The VCF file was converted using a custom
script into FASTA files containing all individuals, the required format for some analyses below.

2.4 | Evaluation of quantitative pathogenicity

The quantitative pathogenicity of isolates sampled in 2011 (including the 63 isolates individually sequenced)
was measured in Dumartinet et al. 2019, on the two cultivars studied (FHIA 18 and Macho ¾) by performing
in-vitro inoculations. Briefly, quantitative pathogenicity was estimated for 16 to 32 isolates per sample by
measuring the diseased leaf area (DLA) on the susceptible (DLA-S) and the resistant cultivar (DLA-R)
via in-vitro inoculation of detached leaf fragments. DLA combines two phenotypic traits, i.e., the within-
host growth rate and infection efficiency, which are among the most influential epidemiological parameters
in P. fijiensis(Landry et al., 2017) and appeared to be a good proxy of parasite fitness. Leaf fragments
were collected on banana plants cultivated in the greenhouse for 5-7 months and inoculated with conidial
suspensions of P. fijiensis. After inoculation, the fragments were incubated in a climate chamber and the DLA
was measured at 60 dpi (days post inoculation). A mixed linear model accounting for all the experimental
effects was developed to predict the least-squares means (LSMeans) of DLA-S or DLA-R at the population
level and for each isolate.

2.5 | Genome scan analyses

Genomic patterns related to host selection were first investigated with Pool-Seq data using the procedure
detailed in Carlier et al, 2021b. Briefly, two different genome scan approaches were used: the first, named
BayPass (Gautier, 2015), is a genotype-environment association method, while the second, named PoolFre-
qDiff (Wiberg et al., 2017), is a differentiation-based method. The population pairs collected in 2011 or
in 2013 were used in the same analysis using the two approaches to detect convergent signals between the
replicates and to limit the detection of false positives. For BayPass, we used the standard covariate model
with a qualitative covariate (called Cov-co) corresponding to the cultivars of origin (coded 1 for resistant and
-1 for susceptible). Analysis with the samples collected in 2011 were also run with two other quantitative
covariates (called Cov-dS and Cov-dR ) corresponding to the least-squares means (LSMeans) of DLA-S or
DLA-R estimated in Dumartinet et al. 2019. Three independent runs were conducted for all the BayPass
analyses and produced very close results. For the poolFreqDiff method, we rescaled all the allele counts to
the effective sample size (neff), as recommended by the authors (Wiberg et al., 2017). From the p-values
estimated in the above analyses, we identified putative genomic regions under host selection using the local
score approach (Fariello et al., 2017) which accounts for linkage disequilibrium from Pool-Seq data. Several
values of the tuning parameter ξ (1, 2 or 3) were used as recommended in simulations (Bonhomme et al.,
2019).

2.6 | Genome-Wide Association Studies (GWAS)

GWAS were performed on the two different phenotypic traits (DLA-R and DLA-S) estimated for each
isolate in (Dumartinet et al., 2019) using two different statistical models: the multi-locus mixed linear
model (MLMM, (Segura et al., 2012)) and the settlement of MLM under progressively exclusive relationship
(SUPER) (Wen et al., 2018) both implemented in GAPIT software (Lipka et al., 2012). The first model
accounts for the linkage disequilibrium between loci associated with traits while the second model is known
to have higher statistical power than regular mixed linear models. All GWAS were corrected for population
genetics by estimating a distance matrix between all isolates, and all single-marker p-values were corrected
using the Benjamini–Hochberg FDR procedure (Benjamini & Hochberg, 1995). The above-mentioned local
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. score procedure was also applied to GWAS p-values to increase GWAS resolution to detect clusters of loci
with low p-values, as in Bonhomme et al. 2019.

2.7 | Population genetics statistics

Genetic differentiation between all populations was estimated with SNP markers using pairwise FST(Weir
& Cockerham, 1984). With pool-sequencing data, we ran the function computePairwiseFSTmatrix imple-
mented in “Poolfstat” (Hivert et al., 2018). FST were computed between each population pair, with all the
SNP markers along the genome, or only with the SNPs found in all the candidate genomic regions identified
with genome scan analyses, and neighbor joining dendrograms were computed using the R-function hclust.
In the candidate regions, the differentiation between each population pair sampled in the same location and
for each region was estimated and compared to an empirical null FST-distribution, as described in Carlier et
al. 2021b.

Tajima’s D, nucleotide diversity (π), and Watterson’s Theta (θ) were estimated with Pool-Seq data on 1Kb
non-overlapping windows distributed across the genome for each population sampled in 2011 and 2013 using
PoPoolation software (Kofler et al., 2011). These three indexes were also estimated on 1Kb non-overlapping
windows using the 63 isolates individually sequenced with the library Egglib v.3.0.0 (De Mita & Siol, 2012).
For each population, we computed the median for the three statistics based on the distribution of each 1 kb
window distributed across the genome as described in Carlier et al. 2021b. We then compared Tajima’s D
distributions computed with SNPs found in the candidate genomic regions to the whole genome distribution
using a Wilcoxon-Mann-Whitney test.

Linkage disequilibrium (LD) was estimated from the 63 isolates of P. fijiensis sequenced individually using
the option hap-r2 implemented in vcftools v.0.1.14 (Danecek et al., 2011). In the present study, LD was
estimated for all pairs of loci, for each scaffold forming the core genome and for the two populations separately
(CU1S2 and CU1R2). The pattern of LD decay was estimated by calculating the mean Pearson’s correlation
coefficient (r2) for intervals of 1 Kb grouping pairs of loci separated by the same distance.

2.8 | Haplotype analysis in candidate genomic regions

The VCF files corresponding to each previously identified candidate region were extracted from the individual
sequencing data using vcftools v.0.1.14 (Danecek et al., 2011) and converted into a FASTA file containing
all individuals using a custom script. The software RAxML v.8.2.4 (Stamatakis, 2014) was used with a
GTRGAMMA model (-m), rapid bootstrap method (-f), 630 seeds for the parsimony inference procedure
(-p) to build maximum likelihood trees for each region and including the 63 individuals from location 1. Trees
were visualized with the R package ggtree(Yu et al., 2017). The LD between haplotypes in pairs of candidate
regions was tested with the R GenePop package (Rousset, 2008) and p-values were corrected for the number
of tests by computing q-values. The R Poppr package (Kamvar et al., 2014) was used to estimate the index
of association (rD) between combinations of haplotypes in multiple candidate regions. Redundancy analysis
(RDA, (Rao, 1964)) was performed with the R vegan package (Oksanen et al., 2012). We used a RDA to
identify correlations between the haplotypes defined in the candidate regions (explanatory variables) and
the quantitative traits (response variables), i.e., the DLA-R and the DLA-S traits. The correlations between
candidate regions and traits were statistically tested with a permutation test with 1 000 permutations. The
multilocus adaptive pattern between populations was then further investigated using pool-sequencing data.
The software harp (Kessner et al., 2013) was used to estimate the frequency of the haplotypes defined from
individual sequencing in the 14 study pools.

2.9 | Gene content in the candidate genomic regions

The annotated reference genome of P. fijiensis was used to identify all the genes in all the genomic regions
detected using the genome scan approaches and that were putatively involved in the host adaptation. The
annotation (Go terms, KOG terms, and presence of a peptide signal) for these genes was retrieved from
the GGF3 file of the JGI website (https://genome.jgi.doe.gov/Mycfi2/Mycfi2.home.html). We also tested
whether these genes corresponded to in silico defined SSPs (Arango Isaza et al., 2016) or to proteins secreted
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. in vitro and in plantaby comparing isolates with different pathogenicity levels (Escobar-Tovar et al., 2015) or
genes expressed during infection in a transcriptome analysis (Noar & Daub, 2016). Protein sequences were
subjected to a BLAST (Altschul et al., 1990) search in the pathogen-host interactions database (PHI-base,
version 4.9), which currently contains around 6 000 genes proven to affect the outcome of host-pathogen
interactions (Urban et al., 2015). For each BLAST search, we kept the gene in the PHI-base that had the
lowest bitscore (and E value < 1x10-9) and an effect on quantitative pathogenicity (i.e. phenotype “loss of
pathogenicity”, “reduced virulence”, “increased virulence”).

3 | RESULTS

3.1 | Population genetic structure

The FST values were relatively low (ranging from 0 to 0.055) indicating a weak genetic structure between
the different populations (Table S1). A dendrogram constructed from the FST (Figure S1) shows that
the populations initially clustered in pairs. However, sampling location is not a hierarchical level of the
population structure since only the populations sampled in location 1 in 2011 and 2013 clustered together.
The populations in location 3 were sampled in the same plantations in 2011 and 2013 but the plantations
had been replanted between the two years and the differentiation observed could thus result from genetic
drift after recolonization by P. fijiensis . Absence of clear hierarchical structure reinforced our decision to
consider data from samples collected in 2011 and 2013 as spatial replicates but not as time series.

The nucleotide diversity (π), Watterson’s theta (Θ) and Tajima’s D estimated for each population were
similar in populations sampled in the same year (in 2011 or in 2013) with Pool-Seq data. In populations
sampled in 2011, the median values of π and Θ ranged from 0.0001 to 0.0019 and from 0.0003 to 0.0017,
respectively. In populations sampled in 2013, the median values of π and Θ ranged from 0.0049 to 0.0072 and
from 0.0040 to 0.0061, respectively. The greater genetic diversity detected in populations sampled in 2013 is
certainly due to the fact that more individuals were sampled in 2013. However, Tajima’s D estimates were
similar in the two sampling years, ranging from -0.429 to 0.055 and -0.316 to -0.005 in populations sampled
in 2011 and 2013, respectively. For individual sequencing data, the median values of π and Θ were 0.0005
for both populations and both indices. Tajima’s D median was 0.0006 for population CU1S2 and 0.0005
for population CU1R2. The estimated values for all the indexes were lower with the individual sequences,
probably due to the smaller number of SNPs detected. The data obtained by sequencing individuals were
also used to estimate linkage disequilibrium (LD) decay over the distance separating two SNPs in each
population. The distance corresponding to a LD decay of 50% was around 4 Kb when all the scaffolds
constituting the core genome ofP. fijiensis were taken into consideration (Figure S2). Overall, no difference
in the LD decay pattern was observed between the two populations (CU1S2 and CU1S2). The association
became random in sites located 500 kb apart whatever the population.

3.2 | Host selection footprints

After combining the results of all the genome scan analyses, a total of 32 genomic regions with sizes ranging
from 0.59 to 57 kb were detected (Figure 2, Table 2). Among the 32 regions, 25 were only identified with
BayPass, two only with PoolFreqDiff, and three with both methods (Table 2). Fifteen genomic regions were
detected using the six populations sampled in 2011. Twelve of the regions had already been identified in our
previous study (Carlier et al., 2021b), including the five major and convergent regions: S1R2-Cu, S2R1-Cu,
S2R5-Cu, S12R1-Cu and S12R2-Cu. The detection of three new regions in the present study was certainly
because a larger number of SNPs were found using the latest more efficient version of the software used for
the mapping step. We ran the same analysis on the eight additional populations sampled in 2013 and a total
of 19 genomic regions were detected including two (S1R2-Cu, S12R1-Cu) already detected in the 2011 pool
and 17 newly detected.

The genetic differentiation estimated between populations in the 32 candidate genomic regions (from 4 974
SNPs) was higher than that of the whole genome (Figure S1, Table S1) with FST values ranging from 0.003 to
0.226. Although none of the regions was found in all seven population pairs analyzed, 29/32 were significantly
differentiated in at least two pairs, including three regions (S1R2-Cu, S6R5-Cu, S12R1-Cu) in five pairs. A
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. complex population structure was observed with no apparent effect of the location, the sampling year, or
the variety of origin (Figure S1). Tajima’s D computed from 1-kb non-overlapping window was significantly
greater in the candidate genomic regions than in the whole genome in all the study populations and in either
pool or individual sequencing in location 1 (Figure 3).

3.3 | Adaptive phenotypic variation in quantitative pathogenicity traits

Genome wide association studies (GWAS) were performed using the 63 samples collected in location 1 in
2011 that were both sequenced and phenotyped. No significantly associated SNP nor genomic regions were
detected using two models either with a false discovery rate (FDR) of 5% or the local score procedure.
Adaptive phenotypic variation was further investigated considering the 32 genomic regions showing host
selection footprints. Phylogenic trees were computed for each region from the genomic sequences of the 63
sequenced isolates (example of the region S1R2-Cu in Figure S3). The two regions with the lowest sizes (S3R0-
Cu and S9R0-Cu) were first discarded because no SNP was detected from this data. In most of the other
regions, the isolates clustered in two main groups of close DNA sequences, hereafter referred to as haplotype 1
and haplotype 2 (Table S2). However, two genomic regions (S9R1-Cu and S12R3-Cu) were discarded because
clusters of haplotypes were difficult to identify due to missing data and possible recombinant haplotypes. In
the remaining 28/30 regions, each isolate was assigned to either haplotype 1 or haplotype 2. Between one
and six individuals with intermediate haplotypes that may have resulted from recombination between the
two main haplotypes in four regions were discarded (Table S2). The distribution of the DLA-R and DLA-S
traits was then compared between the two haplotypes using a non-parametric Wilcoxon test. If a significant
difference was observed, the haplotype performing the best (which could be either haplotype 1 or haplotype
2) was considered as the advantageous haplotype in the variety concerned. The results suggest association
of at least one haplotype with at least one trait in 17/28 regions. A significant difference between haplotypes
was observed for both traits (DLA-R and DLA-S) in 3/28 regions, where haplotype 1 appeared advantageous
in both cultivars in two regions (S2R1-Cu and S4R4-Cu) while in the latter (S9R3-Cu), haplotype 1 was
advantageous in the resistant cultivar and haplotype 2 in the susceptible cultivar (Table 3 and S3). In 9/28
regions only haplotype 1 appeared to be more advantageous in the resistant cultivars. The opposite was
observed in 5/28 in which only haplotype 2 appeared to be more advantageous in the susceptible cultivar.

To further investigate correlations with phenotype in the 28 candidate regions in which haplotypes could be
defined, a redundancy analysis (RDA) was conducted. Differentiation between the two populations (CU1S2
and CU1R2) was first observed using this analysis according to the x axis (RDA1) but not according to
the y axis (RDA2, Figure 4A). The angle between the two vectors corresponding to DLA-S and DLA-R
approached 90° suggesting no correlation between the two traits. The sign of the RDA score indicates the
direction of the correlation for a given trait, a positive or a negative score indicating that haplotype 1
or haplotype 2 is correlated with the trait, respectively. An unequal contribution to DLA-S and DLA-R
of the 28 candidate genomic regions was observed when we plotted the RDA scores corresponding to all
candidate regions (Figure 4B). RDA scores ranged from 0.419 to -0.232 for DLA-R and from 0.234 to -
0.301 for DLA-S, suggesting heterogeneous contributions of the candidate regions for the two traits (Table
S3). A significant correlation (permutation test with 10% threshold) was found using the RDA approach
considering both traits in 13 genomic regions for which a significant difference in pathogenicity was previously
observed between haplotype 1 and haplotype 2 using the Wilcoxon test (Table 3). The S2R1-Cu region
was significantly correlated with both traits, with RDA scores of 0.347 and 0.234 for DLA-R and DLA-S,
respectively, supporting the hypothesis that haplotype 1 is advantageous for both traits. Eight out of 13
regions were only correlated with DLA-R with positive RDA scores ranging from 0.419 to 0.285, suggesting
that haplotype 1 is the advantageous haplotype for the resistant cultivars. By contrast, the RDA scores of
the 4/13 regions showing a significant correlation with DLA-S ranged from -0.301 to -0.264 and this negative
correlation supports the hypothesis that haplotype 2 is advantageous for the susceptible cultivar.

3.4 | Relationship between multilocus genotype and traits related to quantitative pathogenicity

Analysis of multilocus genotypes was conducted on the 63 isolates individually sequenced across the 28 regi-
ons in which haplotypes could be defined. No significant multilocus disequilibrium was detected in the two
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. populations considering the two haplotypes previously defined across the 28 regions (0.008 > rD> 0.009),
the 12 regions only associated with DLA-R (0 > rD > 0.007), or the eight regions only with DLA-S (0 >rD >
0.009). Furthermore, based on the same haplotypes, no significant pairwise linkage disequilibrium (LD) was
detected between the 28 regions in the two populations (CU1S2 and CU1R2). However, the number of advan-
tageous haplotypes in the resistant cultivar accumulated per isolate ranged from 2 to 10 (out of 12 possible
advantageous haplotypes) and the correlation of this number with the level of aggressiveness in the resistant
cultivar (measured with DLA-R) was positive (Spearman’s correlation coefficient ρ=0.39, p=2.21e-16). On
the other hand, the number of advantageous haplotypes in the susceptible cultivar accumulated per isolate
ranged from 0 to 7 (out of 8 possible advantageous haplotypes) and the correlation of this number with
the level of aggressiveness in the susceptible cultivar (measured with DLA-S) was also positive (Spearman’s
correlation coefficient ρ=0.38 and p=4.093 e-9). These results suggested that the most aggressive isolates in
both cultivars tend to accumulate more advantageous haplotypes in the corresponding cultivars across the
candidate regions but in different combinations.

The frequencies of haplotype 1 or haplotype 2 defined from individual sequencing in the 17 genomic regions
associated with DLA-R and/or DLA-S (Table 3) were estimated in the 14 study pools with the software
harp (71, Table S4). This program uses an expectation-maximization (EM) algorithm to infer the maximum-
likelihood estimated frequencies of a known haplotype in a pool of individuals. To validate this approach, we
first compared the frequencies of the two haplotypes between estimates resulting from individual and pool
sequencing in samples from location 1 for which both kinds of data were available (Chi2 test). Haplotype
frequencies differed significantly in pool and individual sequencing in 4/17 regions (S1R3-Cu, S2R3-Cu,
S4R2-Cu, S4R4-Cu). Visual examination of the alignments from the sequencing of individuals revealed a
large number of recombinant haplotypes, missing data, and/or point mutations in these regions that could
have biased our estimation of haplotype frequencies in pools. These four regions were consequently not
used for further analysis. A significant difference in haplotype frequencies (Fisher’s exact test) was detected
between population pairs in some of the 13 remaining regions and in some of the locations, indicating
high heterogeneity between populations but a tendency was nevertheless observed (Table 4). For the seven
regions correlated with DLA-R, haplotype 1, which was advantageous in the resistant cultivars, was always
significantly more frequent in the populations of this cultivar sampled, with one exception (region S8R1-Cu).
In the four regions correlated with DLA-S, the advantageous haplotype 2 in the susceptible cultivar was
always more frequently found in the populations of this cultivar sampled. In the S2R1-Cu region correlated
with both DLA-R and DLA-S, haplotype 1 was more aggressive considering both traits but was found to be
more frequent only in the population of the resistant variety sampled in location 3 in 2013. Fot the region
S9R3-Cu haplotypes 1 and 2 were considered to be advantageous in the resistant and susceptible cultivar,
respectively. In this region in location 1 in 2011 and 2013, haplotypes 1 and 2 were significantly more frequent
in populations of resistant cultivars and susceptible cultivars, respectively, suggesting diversifying selection.
Overall, our results concerning multilocus haplotypes suggested a low degree of convergence between the
different locations, and the regions involved in the two traits are not necessarily the same from one location
to another. However, some populations accumulated several haplotypes across regions that are advantageous
in their cultivar of origin.

3.5 | Gene content in the candidate genomic regions

A total of 118 genes distributed in 25/32 candidate regions were identified using the annotated reference
genome of P. fijiensis(Arango Isaza et al., 2016). However, due to linkage disequilibrium and the hitchhiking
effects, it is unlikely that all these genes are involved in pathogenicity and adaptation. The number of
genes per region ranged from 1 to 12. All the information on these genes available to date is provided
in supplementary (Table S5). None of the candidate genes corresponded to the putative small secreted
proteins (SSPs) identifiedin silico in Arango-Isaza et al. 2016, which are putative effectors involved in plant-
pathogen interactions. However, secreted molecules other than SSPs can also be effectors (Rovenich et al.,
2014). We identified 10 genes distributed across nine regions with a peptide signal that could correspond to
effectors (Table 5). Only one gene among these genes was identified in the in-vitro secretome of P. fijiensis
published by Escobar-Tovar et al. 2015. Four other genes found in different regions were associated with
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. increased expression in leaf tissues infected by P. fijiensis in the transcriptome study published by Noar
& Daub 2016. Finally, we found 17 genes distributed in 10 genomic regions corresponding to homologous
genes indexed in the PHI-base (a database containing more than 6 000 genes involved in host-pathogen
interactions, (Urban et al., 2015)) that are known to lead to a total loss, reduction, or gain in pathogenicity
in other fungal species. A total of 12 genes located in the 17 regions significantly correlated with DLA-R
and/or DLA-S were also identified in at least one of the other previous analyses. Based on all the data
available at present, we considered several genes as candidates involved in quantitative pathogenicity and
host adaptation (highlighted in Table 5 and details in Table S5): three major candidate genes (highlighted
in red in Table 5 and Table S5) were located in regions significantly correlated with DLA-R or DLA-S and
previously identified in at least two of the databases consulted, other good candidates (highlighted in grey)
were located in regions correlated to DLA-S or DLA-R and identified in one of the database (9 genes) or
found in at least two of the databases consulted (4 genes).

4 | DISCUSSION

The aim of this study was to investigate the adaptive architecture involved in the response of the fungal
pathogen Pseudocercospora fijiensis to selection exerted by banana quantitative resistance. We combined
genome scan and quantitative genetic approaches to compare paired population samples of P. fijiensis col-
lected on banana cultivars with different levels of quantitative resistance in Cuba. The results provide
first insights into the adaptive architecture behind the response to quantitative resistance in a fungal plant
pathogen which was revealed to be complex.

Thirty-two putatively selected genomic regions were detected using the genome scan approach, suggesting
a polygenic basis of host adaptation inP. fijiensis (Table 2, Figure 2). Genome sequencing of pools of
isolates (Pool-Seq), a cost-effective method that enables estimation of allele frequency using large samples
(Schlötterer et al., 2014), was used in this first approach. The main problem using genome scan methods is
the detection of false positives (Vatsiou et al., 2016). Considering signals that are convergent between several
replicates is one way to limit the number of false positives, which is what we did in this study (Lotterhos
& Whitlock, 2015; Hoban et al., 2016). As also suggested in Dalongeville et al. 2018 to limit the number of
false positives, we combined different genome scan methods and used the local score method that considers
linkage disequilibrium between SNPs showing a significant signal to delimit genomic regions (Bonhomme
et al., 2019; Fariello et al., 2017). It is worth noting that the sizes of the genomic regions delimited in the
present study using the local score method were in line with the results of linkage disequilibrium analysis.
The average size of the candidate regions was around 14 kb, a distance for which there still was some linkage
disequilibrium between two adjacent SNP markers (Figure S2). We used the same paired design as in Carlier
et al. 2021b, but we more than doubled the number of population pairs analyzed (Table 1, Figure 1). The
8/14 new populations were sampled two years later in the same locations and in the same cultivars. Based
on this larger number of samples, a convergent selection footprint was detected in at least two locations in
90% (27/30) of the candidate genomic regions. As suggested in Carlier et al. 2021b, increasing the number
of locations analyzed allowed us to detect more candidate regions. The genetic basis of host adaptation
in P. fijiensisconsequently appears to be more polygenic than we previously thought. The genome scan
based on Pool-Seq was an efficient and low-cost way to obtain insights into the genetic basis of adaptation
of P. fijiensis to quantitative resistance. However, to further characterize the genetic architecture of this
adaptation, other approaches were required to identify adaptive variation and estimate the contribution of
the candidate genomic regions in adaptive traits.

The genetic architecture of adaptation of P. fijiensis to quantitative resistance was further investigated by
searching for correlations between a trait (the diseased leaf area, DLA) involved in quantitative pathogenicity
and haplotypes identified from individual sequencing of isolates originating from one location (Table 3). This
trait, previously used to detect local adaptation in the populations sampled in 2011 (Dumartinet et al., 2019),
appeared to be a good proxy of parasite fitness (see Material and Method). A correlation was found between
61% (17/28) of the candidate regions and DLA measured in both cultivars. These results first confirmed that
more than half the candidate regions detected by genome scan were associated with a phenotypic variation
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. related to quantitative pathogenicity in at least one cultivar. In 14 regions out of 28, we were able to detect
a haplotype that would confer a fitness advantage only on the resistant cultivar (9 regions) or the susceptible
one (5 regions). These results support the hypothesis that adaptation to quantitative resistance can involve
specific host-pathogen (or genotype x genotype) interactions that may result in a local adaptation pattern
already described in the same cultivars (Dumartinet et al., 2019). However, the advantageous haplotypes
identified in one cultivar did not result in a disadvantage in the other cultivar, thus supporting the absence
of a fitness-cost, as previously observed in Dumartinet et al. 2019. Host specificity in genes involved in
quantitative pathogenicity was also suggested in the fungus Z. tritici (which has similar biology toP. fijiensis
; Ohm et al., 2012) by comparing two wheat cultivars (Hartmann et al., 2017). Three regions (S2R1-Cu,
S4R4-Cu and S9R3-Cu) were found to be significantly correlated with the trait measured in the two cultivars.
In the two first regions, the same haplotype conferred an advantage on both cultivars, meaning that the same
genes in these regions could be selected in both cultivars or alternatively, different linked genes, since the
regions contained several genes. In the third region, two different haplotypes were correlated with increased
pathogenicity in the two cultivars, again suggesting the existence of specific host-pathogen interactions. No
correlation was detected between the DLA and 39% (11/28) of the candidate genomic regions. This could be
due to insufficient statistical power or, alternatively, the genes in these regions may play a role in other traits
related to the pathogen’s life cycle not measured in this study, such as the latent period, spore production
rate, or the latent infectious period (Guzmán et al., 2019). The level of disease in the field depends on the
value taken by all these quantitative traits (Lannou, 2012). Currently, no method is available to measure all
these traits inP. fijiensis in laboratory conditions but methods that test associations at the population level
like BayPass may make it possible to study some of them directly in the field.

In the case of polygenic adaptation, variants can have different effect sizes on a given phenotypic trait and
measuring these effects provides insight into the genes that contribute the most to adaptation (Park et al.,
2010; Shabana et al., 2018). The effect sizes can be estimated using GWAS (Korte & Farlow, 2013). However,
in the present study, no association between loci and phenotypic traits was detected using this analysis.
GWAS is not always appropriate to study the genetic basis of highly variable traits and/or traits involving
a large number of loci with minor effects, because associations can only be detected with using a large
number of individuals (Barton & Keightley, 2002; Korte & Farlow, 2013; Visscher et al., 2017). Concerning
quantitative pathogenicity in plant pathogenic fungi, SNPs associated with a trait related to reproduction in
two cultivars were detected using the GWAS approach in Z. tritici (Hartman et al. 2017). However, in a recent
GWAS analysis with the same pathogen, SNPs associated with a trait related to reproduction and to leaf
disease area (like the trait used in the present study) were detected in only 3/12 and 2/12 inoculated wheat
cultivars, respectively, although the authors used a not too conservative statistical threshold (false discovery
rate, FDR=10%, (Dutta et al., 2021)). The size effect of the candidate regions detected in the present study
was rather tackled by estimating their contribution to the two traits using redundancy analysis. In the present
study, the redundancy analysis (RDA, Figure 4) indicated unequal contribution of the regions associated
with both study cultivars, thus suggesting that these regions may contain variation in genes with different
effect sizes. Moreover, different multilocus genotypes across the candidate regions leading to an increase in
quantitative pathogenicity were found among the study populations, suggesting genetic redundancy among
the loci involved in adaptation of a fungus like P. fijiensis to its host (Table 4). Genetic redundancy has been
proven to create heterogeneous signatures of adaptation and therefore to influence the adaptive architecture
of polygenic traits, as already observed in plants or animals facing environmental variations (Yeaman et al.,
2016; Barghi et al., 2019).

Although convergent adaptation was revealed between some P. fijiensis populations in most candidate regions
(Table 2), overall, a low level of convergence was found across all the populations and the 32 candidate
regions analyzed. In some evolve and resequence experiments, parallel evolution was found to be relatively
rare (Graves et al., 2017; Griffin et al., 2017). Barghi et al. 2020 suggested that non-parallel evolution should
be considered as the most likely scenario because the majority of adaptive traits are complex and polygenic.
Non-parallelism is expected for 1) polygenic traits controlled by multiple genes with small effects, 2) when
there is some redundancy between the genes involved in the adaptive trait, and 3) when populations are
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. differentially affected by evolutionary forces (Barghi et al., 2020). The results obtained in this study suggest a
polygenic basis for host adaptation with genetic redundancy. In addition, the 14 natural populations studied
could have been affected by demographic events. As already discussed in Carlier et al. 2021b, the change in
the allele frequency spectrum observed in all the 14 populations, with an increase in intermediate-frequency
alleles (Figure 3), may reflect a concomitant effect in candidate genomic regions of population contraction
and selection on P. fijiensis Cuban populations. Constraints such as crop management, pesticide applications
or introduced resistance create bottlenecks and genetic drift will randomly maintain some mutations that are
putatively beneficial but not others (McDonald & Linde, 2002). Thus, the different history of the populations
studied could play a role in the non-parallelism we observed. Furthermore, theP. fijiensis populations are
panmictic (Carlier et al., 2021a) and recombination should also favor non-parallelism (Barghi et al., 2020).
Finally, other factors such as pleiotropy and epistasis not taken into consideration in the present study can
influence parallelism (Bailey et al., 2017) and further investigations are needed to better understand the
relative role of all the potential factors shaping adaptive architecture in plant pathogen populations.

The results of this study suggest a polygenic basis for adaptation to quantitative resistance and specific host-
pathogen interactions inP. fijiensis . Specific interactions are not always detected in erosion of quantitative
resistance in other plant pathogens (Cowger & Brown, 2019) and general adaptation to quantitative resistance
could emerge is such situations even through selective sweeps in a few genes or through polygenic adaptation.
General adaptation could lead to an impasse in the use of quantitative resistance since greater pathogen
aggressiveness could be selected (Zhan et al., 2015). On the other hand, specific interactions in different
cultivars, as observed in P. fijiensis and other plant pathogens (Montarry et al., 2012; Delmas et al., 2016;
Frézal et al., 2018), can lead to local adaptation patterns (Dumartinet et al., 2019). Specific interactions in
different cultivars associated with fitness cost could lead to antagonist selection pressures on the pathogen
populations. Assuming that cultivars are the main habitat of pathogen populations, such a situation would
resemble the so-called antagonistic pleiotropy process. In this process, alleles have opposite effects on fitness
in different habitats, and this is the most important form of genotype x environment interaction involved
in local adaptation (Kawecki & Ebert, 2004; Mitchell-Olds et al., 2007; Anderson et al., 2013). Antagonistic
adaption to different quantitative-resistant cultivars could thus be exploited to define durable resistance
constraining the evolution of pathogen populations. To this end, fitness cost and adaptive architecture of
pathogen populations need to be first analyzed in a wide range of resistant cultivars using similar approaches
to the ones applied in this study. Finally, from the without a priori approach used in this study, we were
able to highlight major candidate genes which accumulated several characteristics and could now, using
functional analysis, be further investigated to better understand the mechanisms involved in the quantitative
pathogenicity of fungi such as P. fijiensis.
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Barton, N. H., Etheridge, A. M., & Véber, A. (2017). The infinitesimal model: Definition, derivation, and
implications. Theoretical Population Biology , 118 , 50–73. https://doi.org/10.1016/j.tpb.2017.06.001

Barton, N. H., & Keightley, P. D. (2002). Understanding quantitative genetic variation. Nature Reviews
Genetics , 3 (1), 11–21. https://doi.org/10.1038/nrg700

Bastide, H., Lange, J. D., Lack, J. B., Amir, Y., & Pool, J. E. (2016).Oligogenic Adaptation, Soft Sweeps, and
Parallel Melanic Evolution in Drosophila melanogaster [Preprint]. Genetics. https://doi.org/10.1101/058008
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TABLES

Table 1 Sampling information on the P. fijiensispopulations collected in 2011 and 2013 in three locations
(Provinces) in Cuba on the susceptible (Macho ¾) and the resistant banana cultivar (FHIA18). The phenotype
and genetic group corresponding to the two cultivars of origin and the number of isolates used for each pool
or for individual sequencing are indicated for each population.

Hosted file

image2.wmf available at https://authorea.com/users/437202/articles/538997-complex-adaptive-

architecture-of-quantitative-resistance-erosion-in-a-plant-fungal-pathogen

Table 2 Candidate genomic regions involved in host adaptation detected among Pool-Seq data using genome
scan analysis.

Note: The genome scan results and genetic differentiation (FST) obtained with the pools sampled in 2011
and in 2013 are presented in this table. Information concerning every region detected with genome scan
analyses, i.e., the name of the region, the corresponding scaffold, the position on the scaffold (start/end)
and the size of the region are provided. For each genomic region, tick symbols highlighted in orange indicate
which method (BayPass with the covariate Cov-co for 2011 and 2013, BayPass with the covariates Cov-dR
or Cov-dS for 2011 or poolFreqDiff for 2011 and 2013) and which local score tuning parameter value (ξ=1,
2, or 3) was used to detect the region. Significant FST values (p < 0.05) between each pair of populations
sampled in the same location are indicated in green.

Table 3 Relationship between haplotypes in candidate genomic regions involved in host adaptation and
traits related to quantitative pathogenicity

Hosted file

image3.wmf available at https://authorea.com/users/437202/articles/538997-complex-adaptive-

architecture-of-quantitative-resistance-erosion-in-a-plant-fungal-pathogen

Note: Summary of the results obtained with the Wilcoxon test or the redundancy analysis (RDA) for all
the genomic regions detected using genome scan analyses. Information (name, corresponding scaffold and
size) for each region is given. For the two phenotypic traits investigated (DLA-R or DLA-S), the haplotype
(identified with individual sequencing data) significantly correlated with the corresponding trait (i.e. the
advantageous haplotype) is indicated by a colored circle (blue = Haplotype 1, green = Haplotype 2). Green
ticks or red crosses indicate which method was able to define the advantageous haplotype. The regions in
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. which haplotypes were identified as being significantly associated with a higher diseased leaf area measured
on the resistant cultivars are written in blue, on the susceptible cultivar in green, and on both cultivars in
blue and green. DLA-R and DLA-S=Diseased Leaf Area measured on the resistant (R) or the susceptible
(S) cultivars.

Table 4 Architecture of host adaptation in P. fijiensispopulations

Hosted file

image4.wmf available at https://authorea.com/users/437202/articles/538997-complex-adaptive-

architecture-of-quantitative-resistance-erosion-in-a-plant-fungal-pathogen

Note: The predominant haplotype in the 14 Cuban populations and 13 candidate regions was identified by
comparing haplotype frequencies between each population pair (susceptible versus resistant). The regions in
which haplotypes were previously identified as being significantly associated with a higher diseased leaf area
(DLA) measured on the resistant cultivars are written in blue, on the susceptible cultivar in green, and on
both cultivars in blue and green. The predominant haplotype in each population is identified by a blue circle
when haplotype 1 is predominant and by a green circle when haplotype 2 is predominant. Darker shades of
each color indicate that the Fisher’s exact used to test for difference in haplotype frequencies was significant
at a 5% threshold, and paler colors at a 10% threshold.

Hosted file

image5.wmf available at https://authorea.com/users/437202/articles/538997-complex-adaptive-

architecture-of-quantitative-resistance-erosion-in-a-plant-fungal-pathogen

Table 5 Summary of the gene annotation results in candidate genomic regions involved in host adaptation

Note: For each candidate genomic region, the total number of genes identified and the number of genes
detected in the different annotation databases consulted (i.e. presence of a peptide signal, in thein-vitro
secretome of P. fijiensis , in thein-planta transcriptome of P. fijiensis and of homologs in the Pathogen-Host
Interactions database (PHI-Base)) are indicated. Major gene candidates involved in quantitative pathogenic-
ity and host adaptation (highlighted in red) were located in regions significantly correlated to DLA-R or
DLA-S and had several hits in the databases consulted. Other good candidates (highlighted in grey) were
located in regions significantly correlated to DLA-R or DLA-S but had only one hit in the databases con-
sulted or were not in correlated regions but have several hits in the databases (details and references are
given in Table S5). DLA-R and DLA-S=Diseased Leaf Area measured on the resistant (R) or the susceptible
(S) cultivars.

FIGURES
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.

Figure 1 Map detailing the paired population design for samples of P. fijiensis collected in Cuba. The
three Cuban provinces sampled are shown in red. The 14 populations studied were collected from either
a susceptible (green) or a resistant cultivar (blue) and the locations of the sampled plots are indicated by
triangles for populations collected in 2011 and by dots for populations collected in 2013.

Figure 2 Manhattan plots showing selection footprints detected between samples collected from susceptible
or resistant cultivars in Cuba in 2011 (A) and in 2013 (B). The x axis shows the distribution of each SNP
along the core genome of P. fijiensis (scaffolds are represented by different colors) and the y axis indicates
the p-value of each SNP obtained with the association test using BayPass and the covariate Cov-Co or the
local score obtained with ξ=2. The horizontal dashed lines correspond to the chromosome-wide threshold α
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. = 1% calculated for each scaffold. For both sampling years, all genomic regions containing SNPs with local
scores above the significance threshold are indicated by gray vertical bars. Regions identified in populations
sampled in 2011 and 2013 are indicated with a * symbol.

Figure 3 Boxplots representing Tajima’s D distribution for the whole genome (dark colors) or for the
candidate genomic regions (pale colors) in all the populations sampled on the susceptible variety (green) and
the resistant variety (blue) for the 63 sequenced isolates collected from location 1 in 2011 (A), or for the
pool sampled in 2011 (B) and for the pool sampled in 2013 (C). For each population, the two distributions
(whole genome versus candidate genomic regions) were compared using a Wilcoxon-Mann-Whitney test and
the significance of the p-values is indicated with symbols (***: p-values < 0.001, **: < 0.01, *: < 0.05).

Figure 4 Redundancy analysis (RDA) computed with DLA-R and DLA-S traits and in candidate genomic
regions. This figure shows the projection of all isolates sampled from FHIA 18 (blue) or Macho ¾ (green) and
the two variables (DLA-R and DLA-S) in the RDA space (A) and the projection showing the contribution
to the two variables of the 28 genomic regions (B), with regions significantly correlated with DLA-R and
DLA-S indicated in blue and green, respectively. Regions in black were correlated to none of both traits.
DLA-R and DLA-S=Diseased Leaf Area measured on the resistant (R) or the susceptible (S) cultivars.
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