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This paper describes a machine learning guided framework for screening the potential toxicity impact of amine chemistries used

in the synthesis of hybrid organic-inorganic perovskites. Using a combination of a probabilistic molecular fingerprint technique

that encodes bond connectivity (MinHash) coupled to non-linear data dimensionality reduction methods (UMAP), we develop

an “Amine Atlas’. We show how the Amine Atlas can be used to rapidly screen the relative toxicity levels of amine molecules

used in the synthesis of 2D and 3D perovskites and help identify safer alternatives. Our work also serves as a framework

for rapidly identifying molecular similarity guided, structure-function relationships for safer materials chemistries that also

incorporate sustainability/ toxicity concerns.

AI Informed Toxicity Screening of Amine Chemistries used in the Synthesis of Hybrid Organic-
Inorganic Perovskites

An Su1,2, Haotian Xue3, Yuanbin She1, and Krishna Rajan2*

1. College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China

2. Department of Materials Design and Innovation, University at Buffalo, Buffalo, New York 14260-1660,
United States

3. Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang Univer-
sity of Technology, Hangzhou, Zhejiang, 310014, China

*Corresponding Author:

Krishna Rajan

orcid.org/0000-0001-9303-2797

Email: krajan3@buffalo.edu

Abstract

This paper describes a machine learning guided framework for screening the potential toxicity impact of
amine chemistries used in the synthesis of hybrid organic-inorganic perovskites. Using a combination of
a probabilistic molecular fingerprint technique that encodes bond connectivity (MinHash) coupled to non-
linear data dimensionality reduction methods (UMAP), we develop an “Amine Atlas’. We show how the
Amine Atlas can be used to rapidly screen the relative toxicity levels of amine molecules used in the synthesis
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. of 2D and 3D perovskites and help identify safer alternatives. Our work also serves as a framework for rapidly
identifying molecular similarity guided, structure-function relationships for safer materials chemistries that
also incorporate sustainability/ toxicity concerns.

Topical Heading

AIChE Journal Special Issue on “Artificial Intelligence in Chemical Engineering”.

Keywords

artificial intelligence, machine learning, hybrid organic-inorganic perovskite, amine chemistry, toxicity screen-
ing

Introduction

In recent years, organic-inorganic perovskites have received a huge amount of attention due to their promise
for photovoltaic application1-3. Generally, perovskite refers to the ABX3 three-dimensional structural frame-
works with “A” as an organic cation (usually the cation of amines), “B” as a metal, and “X” as a halogen.1,2.
The chemical diversity of amines used in perovskites for PV applications is large as they appear in both 3D
and 2D perovskite structures.4,5 For instance, in a recent review study by Saparov and Mitzi, more than 60
distinct perovskite amine structures have been mentioned for the design of versatile perovskite materials.6

With the rapid development of new classes of perovskite chemistry with promising physical properties, the
concerns in identifying amine chemistries that have a minimal environmental/ health footprint become more
challenging.7 In looking at the full life cycle of perovskites used in PV applications, we now need to consider
the toxicity of the organic molecules, along with metal elements such as Pb, at all stages of the materials
synthesis and degradation.8-17 For example, previous studies on the toxicity of amines have concluded that
many aromatic amines (e.g. aniline, diphenylamine) are potential carcinogens, while the aliphatic amines
are less hazardous.18-21 However, in aquatic environments, there are potential formations of toxic compounds
including nitrosamines and nitramines from the reaction between amines and nitrite oxidants.19,21 As the
perovskite materials become more and more popular, it is critical to perform a systematic study on the
toxicity of both the existing amines that have been part of the 3-D and lower-dimensional perovskites and
the potential perovskite amines that have similar structures to the existing ones. In this study, we present a
machine learning aided molecular structure-toxicity analysis to screen the potential toxicity of amines used
for the synthesis of hybrid organic-inorganic perovskites.

Our training and test database of perovskite amines is based on open source literature along with a struc-
tural similarity search on PubChem (https://pubchem.ncbi.nlm.nih.gov), a well-acknowledged database for
chemical structure and functionality22. For toxicity data of perovskite amines, instead of fetching data
from different literature without a common standard, we performed searches on PubChem Bioactivity As-
says database23 which is based on similar data standards that are more suitable to study at a systematic
level. This study aims to establish a structure-toxicity relationship of perovskite amines, help identify safer
alternatives for use in perovskite structures.

Methods

As shown in Figure 1, the research consists of five main steps: the curation of perovskite amines database, the
two-level classifications of perovskite amines, the chemical informatics and machine learning computations,
the search for toxicity data, and the visualization of Amine Atlas.

Curation of perovskite amines database. The amines corresponding to the perovskite ammonium
cations mentioned in recently published reviews6,24 and database25are sorted into the “existing perovskite
amines” list (e.g., ethylamine corresponds to ethyl ammonium). This list is the basis of the perovskite amines

2
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. database. Next, the database is further expanded by including “potential perovskite amines”, which have
similar structures to existing amines. The PubChem similar structure search is performed on each existing
perovskite amine, and the similarity threshold is 95%. By removing ions, non-amines, and existing structures
in the database, the amines in the search results are further screened. In addition, these amines must have
been tested by at least one activity assay in PubChem BioAssay database23,26 in order to be included as
potential perovskite amines. The above search and filtering steps are completed by our programming tool
based on the open-source Python packages PubChemPy (https://pubchempy.readthedocs.io/en/latest/ ) and
RDKit (https://www.rdkit.org/docs/api-docs.html). In the final database, each amine has its PubChem
Compound ID (CID), name, SMILES, and a list of its corresponding PubChem Bioassay ID (AID). The
CID and name of their corresponding ammonium cations are also included.

Two-level classification. The amines are first classified according to their aromaticity and the position of
their amine group (e.g. on aromatic ring, directly attached to the aromatic ring, or on the alkyl substituent
of the aromatic ring). Further subclass classifications are established based on more detailed structures such
as functional groups and linearity of alkyl chains). The identification of functional groups and chemical
fragments is achieved through our RDKit-based programming tool (provided in supplementary material). It
is worth noting that the purpose of classification here is not to establish a new standard of amine classification
but to distinguish the amines in our database as much as possible.

Chemical informatics and machine learning computations. The MHFP6 fingerprint27

is calculated for each perovskite amine molecule using the open-source Python package MHFP
(https://github.com/reymond-group/mhfp). The dimensionality of the fingerprint is then reduced by Uni-
form Manifold Approximation and Projection (UMAP)28 with the open-source Python package UMAP
(https://umap-learn.readthedocs.io/en/latest/index.html). The parameters of these two tools, including the
number of permutations of MHFP and the number of neighborhoods and the minimum distance of UMAP, are
optimized for the clustering of different amine classes and subclasses. The data processing steps during the
computations are achieved with the open-source Python packages Pandas (https://pandas.pydata.org/docs/ )
and Scikit-learn29. The code for the computations is provided in the supplementary material.

Search for toxicity data. The detailed information of all the bioassays with AID recorded in our per-
ovskite amines database is retrieved from PubChem Bioassay Database23,26 using our PubChemPy-based
programming tool. Only the bioassays with more than one perovskite amine showing “active” are kept. In
addition, the bioassays showing bioactivity other than toxicity are eliminated. Finally, a table of PubChem
Bioassays with their AID, number of perovskite amines tested as active, and assay name is obtained.

Visualization of Amine Atlas. The Amine Atlas is visualized using Plotly, a Python open-source graphing
library (https://plotly.com/python/ ). The Amine Atlas can be viewed with or without amine toxicity data.
In Amine Atlas, each data point represents an amine—UMAP calculation results are used as the two-
dimensional coordinates of the data point, and the classification results or the hit ratio of the compound
is displayed in the color of the data point. The detailed information of the corresponding compounds of
the data point is displayed in the hover data tab, such as CID, SMILES, type (existing or potential), and
classifications. All Amine Atlas shown in the following sections have corresponding interactive versions in
the supplementary material.

Results and Discussion

The first part of our curated perovskite amine database consists of 184 amines that correspond to the
ammonium cations in literature, named “existing perovskite amines”. The structural similarity search on
PubChem and further screening process give an additional 264 amines that are considered “potential per-
ovskite amines” —the amines that have similar structures to existing ones. Finally, the curated perovskite
amine database contains 448 amine structures. The full table of the database is provided in the supplemen-
tary material. The main reason for expanding the database is to make full use of data on amines that have
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. been tested for bioactivity or toxicity, regardless of whether they have been studied as perovskite amines.
As more amines are included in the analysis, it may be easier to find toxicity trends and their relationship
to the amine structure.

The introduction of artificial intelligence to the creation of Amine Atlas and toxicity screening of amine
chemistries involves the calculation of MinHash fingerprint, up to six bonds (MHFP6) and Uniform Mani-
fold Approximation and Projection (UMAP). MHFP6 is an improved version of the extended connectivity
fingerprint (ECFP)27 that lowers the dimensionality needed to describe the detailed molecular substructures
as well as increases the performance of the nearest neighbor search.30 The MHFP6 fingerprint has been used
in recently published chemistry databases31,32 and data visualization tool33 with big data settings. MinHash
is a locality sensitive hashing (LSH) scheme that applies a family of hashing functions to the substrings in
molecular shingling and stores the minimum hash generated from each hashing function in a set. These sets,
containing the minimum hash values, have the interesting property that they can be indexed by an LSH
algorithm for approximate nearest neighbor search (ANN), removing the curse of dimensionality.30MinHash
allows for the indexing of chemical structures in extremely sparse Jaccard (Tanimoto) space, a metric more
appropriate for fingerprint-based similarity calculations. 30 On the other hand, UMAP is a recently developed
non-linear dimensionality reduction algorithm28 that has been used to analyze various types of scientific data,
mainly in the field of biological sciences including genome aggregation34, single-cell mass flow cytometry35,
and single-cell RNA sequencing (scRNA-seq)35-37. UMAP is a manifold learning method that preserves local
and global structure of the high-dimensional data points by minimizing data/information loss. It explores
the network connectivity using K-nearest neighbor distance (KNN) over a high-dimensional hyperplane and
then estimates a low-dimensional coordinate system that replicates the same graph structure, preserving the
edge connectivity of the high-dimensional by keeping graphical representation intact in the low-dimensional
space. Compared with the more frequently used t -distributed stochastic neighborhood embedding (t-SNE)
algorithm which has limited capability to represent the global structure of the data, it is found that UMAP
retains the local and global structure of the data by simultaneously capturing the small differences and the
continuity between the data subsets.

The higher level of classification gets amines categorized into aliphatic amines (cyclic and noncyclic), hete-
rocyclic aromatic amines, and other aromatic amines including phenylalkyl amines and anilines. Combining
this classification information with the results of the UMAP on the MHFP6 fingerprint of perovskite amines,
the clustering of these amine classes can be observed on Amine Atlas. The optimized clustering is reached
when MHFP permutation number, UMAP number of neighbors, UMAP minimum distance are set to 2048,
50, and 0.25, respectively. Using this combination of parameters, the main classes are well-separated from
each other on the Amine-Atlas (Figure 2), and the same parameters are used for all the Amine Atlas below.

For each amine class, the Amine-Atlas can display further classifications as subclasses. The subclasses of
heterocyclic aromatic amines are shown in Figure 3. This class of amines is clearly divided into common
nitrogen-containing aromatics, including pyrrole, imidazole, pyridine, and thiazole, and sulfur-containing
thiophene. No overlap is observed between the clusters, which may be due to the effectiveness of MHFP6
fingerprint in capturing the characteristics of common aromatic compounds.

Similarly, for the class of phenylalkyl amines, the subclasses are well-separated in Amine-Atlas (Figure 4).
This figure shows the power of UMAP in capturing both the local and global structure of the data. Here,
the UMAP captures subtle differences between subclasses (such as those with the same carbon number)
by dividing them into different clusters (e.g. 1-phenylethylamines (C6H5-C(C)NH3) and phenylethylamines
(C6H5-CCNH3)). At the same time, the UMAP shows the continuity of close subclasses by placing them in
adjacent positions, such as the benzylamines (C6H5-CNH3) and phenylethylamines (C6H5-CCNH3) whose
alkyl substituents differ in chain length by 1.

Due to the complex structure of branched alkyl chains, the noncyclic aliphatic amines have some clusters
with less organization (Figure 5). However, the trend still exists in the amines with linear alkyl chains, such
as the linear diamines (purple) and linear monoamines (orange) subclasses, where the length of the alkyl
chain decreases along the UMAP-1 axis. In addition, amines that have functional groups in addition to
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. amine groups (dark green) are distant from unsubstituted amines (purple and orange).

One important purpose of this study is to screen the relative hazard of amines being used in 2D and 3D per-
ovskite synthesis – those most hazardous and those not so. We retrieve the toxicity data of perovskite amines
from PubChem Bioassay Database23,26, an open-source repository holding a collection of bioactivity and tox-
icity data of small molecules—these molecules are cross-linked to the data of their chemical structures stored
in PubChem Compounds Database22. After a search using our programming tools, we summarized a list of
PubChem Bioassays that focus on the toxicity of chemicals and in the meantime include perovskite amines
as test substances, and the complete list of assays is provided in the supplementary material. Examples of
the toxicity effects and corresponding AID are shown in Table 1.

Table 1. Examples of selected PubChem Bioassays and the toxicity effect they study

AID Toxicity effect

743122 Activator of the aryl hydrocarbon receptor (AhR)
1224892 Agonists of the constitutive androstane receptor (CAR)
1347033 Agonists of Human pregnane X receptor (PXR)
720637 Disruptors of the mitochondrial membrane potential (MMP)
743219 Agonists of the antioxidant response element (ARE)
1159553 Agonists of the retinoic acid receptor (RAR)
743079 Agonists of the estrogen receptor alpha (ER-alpha)
743078 Antagonists of the estrogen receptor alpha (ER-alpha)
1259247 Antagonists of the androgen receptor (AR)
1259396 Antagonists of the estrogen receptor beta (ER-beta)

According to the test results of PubChem Bioassays, we use the hit ratio (the ratio of active substances to the
total number of screening targets) to indicate the overall toxicity of our perovskite amines. By plotting hit
ratio data on Amine Atlas (Figure 6), rapid screening of structure-toxicity relationships can be established.
By comparing Figure 6 with Figure 2 and Figure 3, it is found that most of the toxic perovskite amines are
in the anilines cluster, while a few pyrroles and pyridines in the heterocyclic aromatics also have a hit ratio
> 0.3. Meanwhile, the aliphatic amines are less toxic, and most of the toxic aliphatic amines are cyclic. It
should be noted that compared with other amines, phenylalkyl amines have very little toxicity data, so care
should also be taken when using these amines.

In addition to providing the information extracted from the Amine Atlas, we also provide statistical analysis
on the toxicity data from PubChem Bioassays without the involvement of AI. We recommend that researchers
and manufacturers use the 10 safest existing perovskite amines (Table 2) and potential perovskite amines
(Table 3) as they have the lowest hit ratio, and, if possible, avoid using amines with high hit ratio (Table
4). It is worth noting that our recommendation of the safer potential perovskites is entirely based on our
research from the perspective of toxicity—people should determine the chemical or physical properties of
these amines according to their scientific or industrial needs.

Table 2. Ten safest existing perovskite amines ranked by hit ratio (the fraction of actives out of the total
number of screened targets)

CID Name SMILES Class Subclass Hit Ratio

674 Dimethylamine CNC Aliphatic (noncyclic) Short amine (heavy atoms < 5) 0/44
1146 Trimethylamine CN(C)C Aliphatic (noncyclic) Short amine (heavy atoms < 5) 0/44
1390 1-Methylimidazole Cn1ccnc1 Heterocyclic aromatic Imidazole 0/28
24874 2-Butanamine CCC(C)N Aliphatic (noncyclic) Branched monoamine 1/45
10009 3-Aminopyridine Nc1cccnc1 Heterocyclic aromatic Pyridine 1/44
31018 3-(Aminomethyl)pyridine NCc1cccnc1 Heterocyclic aromatic Pyridine 1/44

5
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. CID Name SMILES Class Subclass Hit Ratio

774 Histamine NCCc1cnc[nH]1 Heterocyclic aromatic Pyrrole 1/44
7515 N-Methylaniline CNc1ccccc1 Aniline Aniline 2/48
9257 1,2,4-Triazole c1nc[nH]n1 Heterocyclic aromatic Pyrrole 2/44
4091 Metformin CN(C)C(=N)N=C(N)N Aliphatic (noncyclic) Multi-amine 2/44

Table 3. Ten safest potential perovskite amines ranked by hit ratio

CID Name SMILES Class Subclass Hit Ratio

13032 N-Isopropylaniline CC(C)Nc1ccccc1 Aniline Aniline 0/47
119716 Isononanamine CC(C)CCCCCCN Aliphatic (noncyclic) Branched monoamine 0/44
7096 1-Phenylpiperazine c1ccc(N2CCNCC2)cc1 Aniline Aniline 0/32
60993 N,N-Diethylethylenediamine CCN(CC)CCN Aliphatic (noncyclic) Branched diamine 0/32
1727 4-Aminopyridine Nc1ccncc1 Heterocyclic aromatic Pyridine 0/48
7973 2-Bromopyridine Brc1ccccn1 Heterocyclic aromatic Pyridine 0/27
14310 N-Butylaniline CCCCNc1ccccc1 Aniline Aniline 0/44
1049 Pyridine c1ccncc1 Heterocyclic aromatic Pyridine 1/48
6115 Aniline Nc1ccccc1 Aniline Aniline 1/48
13195 4-Methylimidazole Cc1cnc[nH]1 Heterocyclic aromatic Pyrrole 1/47

Table 4. Ten most hazardous existing perovskite amines ranked by hit ratio

CID Name SMILES Class Subclass Hit Ratio

7472 N,N-Dimethyl-
p-
phenylenediamine

CN(C)c1ccc(N)cc1 Aniline Aniline 35/47

7814 p-
Phenylenediamine

Nc1ccc(N)cc1 Aniline Aniline 29/44

7111 Benzidine Nc1ccc(-
c2ccc(N)cc2)cc1

Aniline Aniline 28/47

7807 4-
Bromoaniline

Nc1ccc(Br)cc1 Aniline Aniline 24/48

7102 4-
Aminobiphenyl

Nc1ccc(-
c2ccccc2)cc1

Aniline Aniline 23/47

16720 1,5-
Naphthalenediamine

Nc1cccc2c(N)cccc12Aniline Aniline 21/48

4837 Piperazine C1CNCCN1 Aliphatic
(cyclic)

Piperazine 19/44

13583 Dodecylamine CCCCCCCCCCCCNAliphatic
(noncyclic)

Linear
monoamine

18/48

70248 1,8-Diamino-3,6-
dioxaoctane

NCCOCCOCCN Aliphatic
(noncyclic)

Functionalized
amine

12/44

7812 4-
Chloroaniline

Nc1ccc(Cl)cc1 Aniline Aniline 13/49

6
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. Conclusions

In this study, we have provided a new data-driven / AI framework for environmentally conscious selection
of amine chemistries used in the synthesis of hybrid organic-inorganic perovskites. The selection strategy is
based on exploring high dimensional data capturing structure-function- toxicity driven by molecular-scale
information. To the best of our knowledge, this is the first such study to critically explore AI methods to rank
toxicity impact from the perspective of molecular descriptors; and to harness this information to identify
safer alternatives that also have been shown to be preserving the functional performance of such perovskites
for photovoltaic applications. By coupling new probabilistic-based molecular descriptors with advanced data
dimensionality such as UMAP, we have also established a database resource to explore other families of yet
unexplored amine chemistries that may be used for hybrid perovskite structures. The need for searching and
identifying alternative and safer chemistries for establishing a “benign-by-design’ has long been recognized,
our work provides an example of how AI coupled to foundational materials chemistry principles can actually
facilitate an a priori approach to select chemicals for materials synthesis that meet the structure-function
and sustainability metrics.
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