Supporting Information for "Extrapolative Bayesian Optimization with Gaussian Process and Neural Network Ensemble Surrogate Models"

Yee-Fun Lim¹, Chee Koon Ng¹, US Vaitesswar¹, and Kedar Hippalgaonkar¹

 1 Affiliation not available

July 20, 2021

Supporting Information

Yee-Fun Lim,* Chee Koon Ng, US Vaitesswar, Kedar Hippalgaonkar*

Contents

Figures: S1 - S13

Table: S1

Figures with Data and Code:

- 1. Concrete dataset machine learning predictions using Neural Ensemble Regressor
- 2. Visualizing the extrapolative performance of the Neural Ensemble Regressor
- 3. Visualizing the concrete Bayesian Optimization in 1D using the Neural Ensemble as the surrogate model

Data:

- 1. Concrete compressive strength dataset
- 2. Thermoelectrics power factor dataset
- 3. Power plant output dataset

Code:

- 1. Concrete optimization (Jupyter ipython notebook)
- 2. Thermoelectrics optimization (Jupyter ipython notebook)
- 3. Power plant optimizaton (Jupyter ipython notebook)
- 4. Neural Ensemble regressor (python file)
- 5. Neural Dropout regressor (python file)

Concrete mpressive ngth(MPa gapascals	cor strei meg	Age (day)	Fine Aggregate (component 7)(kg in a m^3 mixture)	Coarse Aggregate (component 6)(kg in a m^3 mixture)	Superplasticizer (component 5)(kg in a m^3 mixture)	Water (component 4)(kg in a m^3 mixture)	Fly Ash (component 3)(kg in a m^3 mixture)	Blast Furnace Slag (component 2)(kg in a m^3 mixture)	Cement (component 1)(kg in a m^3 mixture)	
79.986111		28	676.0	1040.0	2.5	162.0	0.0	0.0	540.0	0
61.887366		28	676.0	1055.0	2.5	162.0	0.0	0.0	540.0	1
40.269535		270	594.0	932.0	0.0	228.0	0.0	142.5	332.5	2
41.052780		365	594.0	932.0	0.0	228.0	0.0	142.5	332.5	3
44.296075		360	825.5	978.4	0.0	192.0	0.0	132.4	198.6	4
79.98 61.88 40.26 41.05 44.29		28 28 270 365 360	676.0 676.0 594.0 594.0 825.5	1040.0 1055.0 932.0 932.0 978.4	2.5 2.5 0.0 0.0 0.0	162.0 162.0 228.0 228.0 192.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 142.5 142.5 142.5	540.0 540.0 332.5 332.5 198.6	0 1 2 3 4

Figure. S1. Snapshot of the concrete compressive strength dataset, showing the inputs for composition and processing parameters and the corresponding output target of the compressive strength. There are 8 input columns in total.

Figure. S2. UMAP projection of the concrete dataset, showing in reduced 2D space the data distribution and the spread in the concrete compressive strength values.

Figure. S3. Performance of the Gaussian Process Regressor on the concrete dataset with different choice of the range for the kernel bounds: fixed (top left), moderate (top right), large (bottom left), large and varying independently for each input dimension (bottom right).

Figure. S4. Visualization of the prediction and uncertainty manifolds for the Neural Dropout surrogate model, with the range expanded beyond the bounds of the dataset. Note that within the dataset bounds (50-600), the uncertainty is relatively constant, but it starts to increase in the regions outside the bounds.

Figure. S5. Evolution of the prediction and uncertainty manifolds over the first few optimization iterations for the Gaussian Process surrogate model, with moderate bounds for the Matern kernel length scale.

Figure. S6. Evolution of the prediction and uncertainty manifolds over the first few optimization iterations for the Gaussian Process surrogate model, with large bounds for the Matern kernel length scale.

	Ambient Temperature (°C)	Exhaust Vacuum (cm Hg)	Ambient Pressure (mbar)	Relative Humidity (%)	Energy Output (MW)
0	14.96	41.76	1024.07	73.17	463.26
1	25.18	62.96	1020.04	59.08	444.37
2	5.11	39.40	1012.16	92.14	488.56
3	20.86	57.32	1010.24	76.64	446.48
4	10.82	37.50	1009.23	96.62	473.90

Figure. S7. Snapshot of the combined cycle power plant dataset, showing the inputs for operating conditions and the corresponding output target of the energy output. This is a simple dataset with just 4 input columns.

Figure. S8. Histograms illustrating the data distribution of the various inputs of the power plant dataset. In general, the data is well distributed, although the variations in the Ambient Pressure and Energy Output are small.

Figure. S9. Best power plant energy output evaluations averaged over 10 runs, using the trained Polynomial Regression (degree 2) algorithm as the predictive oracle and compared across different surrogate models. For this simple dataset, the Polynomial Regression turned out to be one of the better performing algorithms for extrapolative purposes. Here, there does not appear to be perceptible difference in the performance of the various models.

	range AtomicWeight	mean AtomicWeight	avg_ AtomicWe	dev ight Cova	range alentRadius	me CovalentRad	ean ius Cova	avg_dev lentRadius	range Electronegativity	mea Electronegativit	in ty
45821	136.319060	29.458364	43.147	454	184	87.2000	000	67.440000	1.31	1.69400)0
65075	16.074800	15.447671	3.610	808	40	78.1428	357	9.387755	1.14	2.73714	13
23106	150.064231	79.455291	49.100	454	48	152.8260)87	14.427221	1.03	1.48173	39
83647	116.906052	38.726009	31.393	148	178	101.6666	67	47.555556	2.65	2.95166	57
60362	48.904000	25.407667	14.773	333	30	114.4000	000	13.226667	2.18	2.19933	33
	avg_dev Electronegativity	/ molecular_v	weight Ten	nperature	dopin	g s_fraction	d_fractio	on p_fractio	on formation_ene	rgy_per_atom	
45821	0.607200) 147.2	91820	900	1.000000e+1	7 0.280166	0.4082	64 0.31156	59	-0.594464	
65075	0.346122	2 108.1	33700	1100	1.00000e+1	6 0.249139	0.7508	0.0000	00	-0.410709	
23106	0.499055	5 1827.4	57693	300	1.000000e+1	7 0.272837	0.1694	0.55772	23	-0.271880	
83647	0.720556	6 232.3	56052	800	1.000000e+1	8 0.119776	0.7895	0.0906	36	-1.206258	
60362	1.024711	1 381.1	15000	500	1.000000e+1	8 0.278361	0.5956	0.1260	17	-1.893060	
	e_above_hull	l final_energy	_per_atom	volun	ne density	bandgap	efermi	Power Factor	Cbrt_PF		
45821	0.000000)	-3.304820	64.9046	03 3.768359	2.2130	0.808213	0.041902 0	.347331		
65075	0.029398	}	-8.365881	298.6640	71 1.202423	4.2444 -	1.728879	0.002759 0	.140253		
23106	0.000000)	-3.000903	719.8885	92 4.215326	0.6806	3.229650	0.022410 0	281933		
83647	0.011967	,	-4.386624	133.1363	11 2.898055	5.3068 -	1.502903	0.139385 0	518488		
60362	0.030933	3	-3.888959	274.9472	02 2.301738	0.6533	2.353798	0.044309 0	.353860		

Figure. S10. Snapshot of the thermoelectrics power factor dataset, showing the inputs corresponding to various material electronic properties and the output target which is the cube root of the power factor. This is a significantly more complex dataset with 22 input columns.

Figure. S11. Scatter plot visualizations of the actual thermoelectric power factor (cube root) vs values predicted by each of the trained regressors, with the training and test sets labeled separately. Also indicated are the RMSE scores for each regressor.

Figure. S12. Visualization of the prediction and uncertainty manifold for the Gaussian Process surrogate model applied to the thermoelectric dataset, for different values of *alpha*. The *alpha* parameter is an indication of the noise level inherent in the dataset. It should be noted that if *alpha* is set inappropriately, the

GP is unable to accurately model the given data.

Figure. S13. Comparison of the speed of the optimization for the thermoelectric dataset with different surrogate models. Here, the Gaussian Process model parameters have not been optimized. With an alpha value of 2 (similar to that used for the concrete dataset), the GP model can barely outperform random search, whereas a tuned GP model can be the top performer. These results illustrate the importance of proper tuning of the GP parameters.

Index	Input Name	Lambda parameter
1	Atomic Weight Range	0.73
2	Mean Atomic Weight	0.37
3	Atomic Weight Deviation	0.50
4	Covalent Radius Range	1.00
5	Mean Covalent Radius	0.72
6	Covalent Radius Deviation	0.88
7	Electronegativity Range	1.14
8	Mean Electronegativity	1.30
9	Electronegativity Deviation	0.98
10	Molecular Weight	0.01
11	Temperature	1.00
12	Doping	-1.74
13	S Fraction	0.33
14	D Fraction	1.16
15	P Fraction	0.72
16	Formation Energy Per Atom	1.12

17	Energy Above Hull	-2.33
18	Final Energy Per Atom	1.08
19	Volume	-0.70
20	Density	0.47
21	Bandgap	0.52
22	Fermi Level	1.02

Table S1. Fitted Yeo-Johnson Lambda parameters for the thermoelectric dataset inputs

Figures with Data and Code

Figure 1: Concrete dataset machine learning compressive strength predictions using Neural Ensemble Regressor

Figure 2: Visualizing the extrapolative performance of the Neural Ensemble Regressor

Figure 3: Visualizing the concrete Bayesian Optimization in 1D using the Neural Ensemble as the surrogate model

Data

Concrete compressive strength dataset

Hosted file

Concrete_Data.xls available at https://authorea.com/users/418278/articles/525086-supportinginformation-for-extrapolative-bayesian-optimization-with-gaussian-process-and-neuralnetwork-ensemble-surrogate-models

Thermoelectrics power factor dataset

Hosted file

cubic.xlsx available at https://authorea.com/users/418278/articles/525086-supportinginformation-for-extrapolative-bayesian-optimization-with-gaussian-process-and-neuralnetwork-ensemble-surrogate-models

Power plant output dataset

Hosted file

Power Plant.xlsx available at https://authorea.com/users/418278/articles/525086-supportinginformation-for-extrapolative-bayesian-optimization-with-gaussian-process-and-neural-

Code

Concrete optimization (Jupyter ipython notebook)

Hosted file

Concrete Optimization.ipynb available at https://authorea.com/users/418278/articles/525086supporting-information-for-extrapolative-bayesian-optimization-with-gaussian-processand-neural-network-ensemble-surrogate-models

Thermoelectrics optimization (Jupyter ipython notebook)

Hosted file

Thermoelectric Optimization.ipynb available at https://authorea.com/users/418278/articles/ 525086-supporting-information-for-extrapolative-bayesian-optimization-with-gaussianprocess-and-neural-network-ensemble-surrogate-models

Power plant optimizaton (Jupyter ipython notebook)

Hosted file

Power Optimization.ipynb available at https://authorea.com/users/418278/articles/525086supporting-information-for-extrapolative-bayesian-optimization-with-gaussian-processand-neural-network-ensemble-surrogate-models

Synthetic functions optimization (Jupyter ipython notebook)

Hosted file

SynFn Optimization.ipynb available at https://authorea.com/users/418278/articles/525086supporting-information-for-extrapolative-bayesian-optimization-with-gaussian-processand-neural-network-ensemble-surrogate-models

Neural Ensemble regressor (python file)

Hosted file

NeuralEnsemble.py available at https://authorea.com/users/418278/articles/525086-supportinginformation-for-extrapolative-bayesian-optimization-with-gaussian-process-and-neuralnetwork-ensemble-surrogate-models

Neural Dropout regressor (python file)

Hosted file

NeuralEnsembleDropout.py available at https://authorea.com/users/418278/articles/525086supporting-information-for-extrapolative-bayesian-optimization-with-gaussian-processand-neural-network-ensemble-surrogate-models