Impact of a formula combining local impedance and conventional parameters on lesion size prediction

Masateru Takigawa¹, Masahiko Goya², Hidehiro Iwakawa³, Claire Martin⁴, Tatsuhiko Anzai¹, Kunihiko takahashi¹, Tatsuaki Kamata¹, Yu Matsumura¹, Miki Amemiya¹, Tasuku Yamamoto¹, Tatsuhiko Hirao¹, Masahiro Sekigawa¹, Yasuhiro Shirai¹, Susumu Tao¹, Yoshihide Takahashi¹, and Tetsuo Sasano¹

February 23, 2021

Abstract

Background: Although ablation energy (AE) and force-time integral (FTI) are well-known active predictors of lesion characteristics, these parameters do not reflect passive tissue reactions during ablation, which may instead be represented by drops in local impedance (LI). This study aimed to investigate if additional LI-data improves predicting lesion characteristics and steam-pops. Methods: RF applications at a range of powers (30W, 40W, and 50W), contact forces (8g, 15g, 25g, and 35g), and durations (10-180s) using perpendicular/parallel catheter orientations, were performed in excised porcine hearts (N=30). The correlation between AE, FTI and lesion characteristics was examined and the impact of LI (%LI-drop [%LID] defined by the Δ LI/Initial LI) was additionally assessed. Results: 375 lesions without steam-pops were examined. Ablation energy (W*s) and FTI (g*s) showed a positive correlation with lesion depth (ρ=0.824:P<0.0001 and ρ=0.708:P<0.0001), surface area (ρ =0.507:P<0.0001 and ρ =0.562:P<0.0001) and volume (ρ =0.807:P<0.0001 and ρ =0.685:P<0.0001). %LID also showed positive correlation individually with lesion depth (ρ =0.643:P<0.0001), surface area (ρ =0.547:P<0.0001) and volume (ρ=0.733, P<0.0001). However, the combined indices of AE*%LID and FTI*%LID provided significantly stronger correlation with lesion depth (ρ =0.834:P<0.0001 and ρ =0.809P<0.0001), surface area (ρ =0.529:P<0.0001 and ρ =0.656:P<0.0001) and volume (ρ =0.864:P<0.0001 and ρ =0.838:P<0.0001). This tendency was observed regardless of the catheter placement (parallel/perpendicular). AE (P=0.02) and %LID (P=0.002) independently remained as significant predictors to predict steam-pops (N=27). However, the AE*%LID did not increase the predictive power of steam-pops compared to the AE alone. Conclusion: LI, when combined with conventional parameters (AE and FTI), may provide stronger correlation with lesion characteristics.

Hosted file

New algorithm with LI_CAM JCE.pdf available at https://authorea.com/users/335855/articles/510503-impact-of-a-formula-combining-local-impedance-and-conventional-parameters-on-lesion-size-prediction

¹Tokyo Medical and Dental University

²Tokyo Medical and Dental University Hospital

³Akita University Graduate School of Medicine

⁴University of Cambridge