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Abstract

Background Children are important in community-level influenza transmission. School-based monitoring may inform influenza
surveillance. Methods We used reported weekly confirmed influenza in Allegheny County during the 2007, and 2010-2015
influenza seasons using Pennsylvania’s Allegheny County Health Department all-age influenza cases from health facilities,
and all-cause and influenza-like illness (ILI)-specific absences from nine county school districts. Negative binomial regression
predicted influenza cases using all-cause and illness-specific absence rates, calendar week, average weekly temperature and
relative humidity, using four cross-validations. Results School districts reported 2,184,220 all-cause absences (2010-2015).
Three one-season studies reported 19,577 all-cause and 3,012 ILI-related absences (2007, 2012, 2015). Over seven seasons,
11,946 confirmed influenza cases were reported. Absences improved seasonal model fits and predictions. Multivariate models
using elementary school absences outperformed middle and high school models (relative mean absolute error (relMAE)=0.94,
0.98, 0.99). K-5 grade-specific absence models had lowest mean absolute errors (MAE) in cross-validations. ILI-specific absences
performed marginally better than all-cause absences in two years, adjusting for other covariates, but markedly worse one year.
Conclusions Our findings suggest seasonal models including K-5th grade absences predict all-age confirmed influenza and may

serve as a useful surveillance tool.
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Abstract

Background

Children are important in community-level influenza transmission. School-based monitoring may inform
influenza surveillance.

Methods

We used reported weekly confirmed influenza in Allegheny County during the 2007, and 2010-2015 influenza
seasons using Pennsylvania’s Allegheny County Health Department all-age influenza cases from health facili-
ties, and all-cause and influenza-like illness (ILI)-specific absences from nine county school districts. Negative
binomial regression predicted influenza cases using all-cause and illness-specific absence rates, calendar week,
average weekly temperature and relative humidity, using four cross-validations.

Results

School districts reported 2,184,220 all-cause absences (2010-2015). Three one-season studies reported 19,577
all-cause and 3,012 ILI-related absences (2007, 2012, 2015). Over seven seasons, 11,946 confirmed influenza



cases were reported. Absences improved seasonal model fits and predictions. Multivariate models using
elementary school absences outperformed middle and high school models (relative mean absolute error (rel-
MAE)=0.94, 0.98, 0.99). K-5 grade-specific absence models had lowest mean absolute errors (MAE) in
cross-validations. ILI-specific absences performed marginally better than all-cause absences in two years,
adjusting for other covariates, but markedly worse one year.

Conclusions

5th

Our findings suggest seasonal models including K-5""grade absences predict all-age confirmed influenza and

may serve as a useful surveillance tool.
Keywords: human influenza, surveillance, prediction, school-aged children
Introduction

Influenza surveillance utilizes multiple data sources, including syndromic indicators, laboratory-confirmed
cases, and deaths(1). Non-clinical sources have the potential to complement clinical and laboratory data
and improve influenza prediction efforts(2). Student absenteeism is a real-time school-based indicator for
influenza surveillance tool. It is advantageous for being widely available in real-time, having minimal report-
ing delays, and being relatively low cost and is a reasonable proxy for influenza infections since school-age
children (5-17 year olds) experience higher infections compared to other age-groups(3) and contribute to
household and community-level transmission(4).

Previous studies used school-based surveillance (i.e. absence duration(5) or causes(6, 7)) to identify patterns
correlated with influenza- or ILI-related cases, primarily at a city-level, but usefulness of school absenteeism
as a surveillance indicator in these studies has been mixed. Using ILI-specific absence duration predicted
2005-2008 outbreaks well in Japan with high sensitivity and specificity(5), but a similar approach using
city-level all-cause absences from 2005-2009 had low predictive ability when predicting outbreaks in New
York City(6). Absence patterns correlated well with sentinel surveillance in Hong Kong showing similar
peaks in absenteeism and ILI consultation and influenza detection rates, but ILI-specific absences had low
specificity(8). The varied conclusions of these studies could be from differing school- and absence-types
captured, and short surveillance periods, but other types of absence data could have utility.

Grade-specific differences in absences have not been explored as a predictor of influenza but may correlate
better to high-risk infections-groups. Given the variation of infection burden and proportion of illness-
related absences by age, particular individual school levels and grades may serve as a proxy for these high-
risk infection groups. School absenteeism may also be useful for detecting underlying viral changes in
transmission. Unusual patterns of school absences arising across different periods of time have also been
correlated to detecting changes in influenza A and B viruses(9) and have been attributed to detecting the
re-emergence of an influenza B/Victoria antigenic group antigenic group(10). The varied study findings of
school absenteeism suggest further assessment is needed.

Here, we evaluated how school absences models predicted weekly confirmed influenza cases in Allegheny
County, Pennsylvania over multiple influenza seasons. We compared predictions from all-cause absence
models for the 2010-2015 influenza seasons at varying administrative levels. We also compared predictions
for individual influenza seasons (2007-2008, 2012-2013, and 2015-2016) from models including all-cause and
ILI-related absences from three school-based cohort studies.

Methods
Ethics

Our analyses used only de-identified data. We obtained Institutional Research Board approval from Univer-
sity of Pittsburgh (PRO13100580), Johns Hopkins Bloomberg School of Public Health (IRB #5474), Centers
for Disease Control and Prevention (IRB#00000319), and the Allegheny County Department of Health.

Data



Allegheny County Health Department (ACHD) provided virologically-confirmed influenza case data
(N=11,946) for 2007-2008, and 2010-2015 influenza seasons. A reported confirmed influenza case was a
positive laboratory-confirmed test (i.e., rapid diagnostic test, reverse-transcriptase polymerase chain reac-
tion, or viral culture) reported by hospital emergency departments or sentinel medical providers in Allegheny
Country from any individual experiencing influenza-like illness. Weekly all-cause absences and school en-
rollment data for 2010-2015 came from nine Allegheny County school districts. Six districts provided grade-
specific absences (Supplemental Text and Supplemental Table 1). Grade-level served as an age-proxy, since
student demographics (i.e., age, gender, or vaccination status) were unavailable. Additional all-cause and
cause-specific absences came from three school-based cohort studies (Pittsburgh Influenza Prevention Project
(PIPP) during the 2007-2008 season (10 K-5 schools), Social Mixing and Respiratory Transmission in School
study (SMART) during the 2012-2013 season (eight K-12 schools), and Surveillance Monitoring of Absences
and Respiratory Transmission (SMART?) study during the 2015-2016 season (nine K-12 schools)). Cohort
studies used similar absence collection protocols(11).

Greater Pittsburgh area daily minimum and maximum temperature and relative humidity data came from
the National Oceanographic and Atmospheric Administration’s National Climatic Data Center(12). We
used temperature and relative humidity (a proxy for absolute humidity) given their effects on influenza
transmission (i.e., viral dispersal and survival)(13, 14). Allegheny County population data came from US
Census Bureau’s yearly estimates for 2007, 2008, and 2010-2015(15).

Our primary outcome was weekly confirmed influenza infections reported in Allegheny County during 2007-
2008 and 2010-2015 seasons. Influenza infection was defined as any virologically-confirmed case reported by
a health provider in Allegheny County during CDC-defined influenza seasons (i.e., 40*" calendar week to the
20" calendar week of the subsequent year)(16) Weekly influenza cases were the total cases reported each
week, excluding cases occurring during school closures (e.g., spring break, federal holidays, weekends).

All-cause absences were defined as a full or partial school day missed for any reason. Cause-specific absences
were a full or partial school day missed due to influenza-like illness (i.e., fever (>37C) and either cough,
sore throat, runny nose, or congestion). We restricted school absences to periods overlapping the influenza
seasons to examine absence patterns during influenza circulation, and excluded weekends, observed federal
holidays, and school breaks. Weekly school absences were the total absences reported in one school week
(i.e., if no observed holidays, five days in a school week). Weekly absence rates were total absences in a
week, divided by the total students enrolled times the number of school days in a given week.

Daily average minimum and maximum temperatures and relative humidity were used to estimate weekly
average temperature and relative humidity for each influenza season.

Statistical analysis

We predicted weekly influenza cases over seven influenza seasons using negative binomial regression models.
Continuous predictor variables were weekly absence rates (lagged by one-week), calendar week, average
weekly temperature, and relative humidity. Models used predictors individually and in combination. The
offset term represented the estimated annual Allegheny Country population for 2007 and 2010-2015 influenza
seasons. Seasonal variables (calendar week, temperature, and relative humidity) accounted for temporal and
climatic variation of influenza. We modeled calendar week, average weekly temperature, and average weekly
relative humidity as nonlinear terms using thin-plate penalized splines in generalized additive models (mgev R
package)(17). Models including school- (i.e., elementary, middle and high school) and grade-specific absences
(alone and in combination) were evaluated to determine if finer administrative-level absences improved model
fits and predictions. From three school-based cohort studies, we compared all-cause and cause-specific
absence model performance for single seasons (2007, 2012, and 2015), and pooled over these seasons.

Sensitivity analyses examined absence duration, and lagged influenza, and kindergarten-specific absences.
We used one-day and two-day or longer absences to assess the impact of absence duration on weekly influenza
predictions from 2010 to 2015. Models used one-day absences, and absences two days or longer individually,
together, and in models containing average temperature, relative humidity, and calendar week. We also



assessed weekly influenza predictions from models including one-week lagged influenza cases, and county-
level and kindergarten-specific all-cause absences.

We compared nested and non-nested models using Akaike’s Information Criterion corrected for small sample
sizes (AICc). Decreased AICc signified improved model fits. Two-sided 5% alpha-level determined statistical
significance. Analyses used R version 3.1.3 (R Foundation for Statistical Computing, Vienna, Austria, 2016).

Model validation and predictions

Using in-sample data for model training and out-of-sample data for model testing, we used the following
four validations: 1) randomly sampled 80% of weeks without replacement; 2) leave out 52 non-contiguous
randomly sampled weeks; 3) leave out 20% of randomly sampled schools, and 4) leave one influenza season
out (i.e., model training used all but one season and the out-of-sample season was used for model testing)
to account for influenzas’ seasonal variation. Estimated R? used linear regressions of out-of-sample observed
influenza cases (outcome) and predicted cases (independent variable). Prediction metrics used mean absolute
error (MAE) and relative mean absolute error (relMAE). Mean absolute error was defined as the mean of
the absolute value of model prediction errors(18). Relative MAE is the ratio comparing a model’s MAE to
a reference MAE (i.e., from a model including calendar week, and average weekly temperature, and relative
humidity), where relMAE of 1.0 indicated the same prediction error for two models. We visually compared
observed and predicted cumulative distributions and time-series of influenza cases.

Results
Characteristics of influenza and school absences

Over seven influenza seasons, 11,946 confirmed influenza cases were reported to ACHD (Supplemental Table
1). Influenza type A predominated most seasons, similar to national patterns(19-24). Overall, 9,350 type
A (1,397 A/H3N2 and 1,115 A/HIN1 subtypes) cases, 2,453 type B cases and 143 un-typed cases were
reported. The 2011-2012 and 2014-2015 seasons were the lowest (301 cases) and highest (3,150 cases)
transmission seasons in Allegheny Country, like national trends. Within seasons, cases peaked in the winter
whereas county-level absences varied throughout the year (Figure 1).

During the 2010-2015 seasons, county school districts reported 2,184,200 total absences (Figurel), averaging
6.5 weekly absences/100 students (interquartile range [IQR: 5.6, 7.7]) (Supplemental Table 1). High schools
had the highest average absence rates (9.4 weekly absences/100 students, IQR: 8.1,10.8), followed by middle
schools (6.3 weekly absences/100 students, IQR: 5.4, 7.7) and elementary schools (5.3 weekly absences/100
students, IQR: 4.0, 6.6). Study schools reported 20,128 all-cause and 3,012 ILI-specific absences among
11,660 students (Supplemental Table 1). The SMART? study had the highest average weekly all-cause
absence rates (2.2 weekly absences/100 students (IQR: 1.8, 2.5)), while the SMART study had the highest
ILI-specific absence rates (1.1 weekly absences/100 students (IQR: 0.7, 1.4)).

Influenza predictions using county-level absences

We evaluated negative binomial models of seasonal variables (i.e., calendar week, average weekly temperature,
and relative humidity) alone, and including weekly all-cause county-level school absences at one-, two-, and
three-week lags. One- and third-week lagged absences had similar model performance (Supplemental Table
2), therefore, we used one-week lagged absences in all models to better reflect influenza’s infectious period
(i.e. one-week spread)(25). Compared to seasonal models, AICs of in-sample models including calendar
week, average weekly temperature, average weekly relative humidity, and one-week lagged weekly county-
level all-cause absences either stayed the same or slightly worsened ([?] AICc=2, 1, and 0, Table 1), whereas
models of calendar week, average weekly temperature, and one-week lagged weekly absences had slightly
improved fits ([?] AICc=-4, -4, -4, Table 1). For prediction performance, MAEs either stayed the same
or decreased when including one-week lagged weekly absences in models of calendar week, average weekly
temperature and relative humidity relative to seasonal-only models (relMAE=0.95, 1.0, & 0.95, Table 1).

For individual influenza seasons, weekly-lagged country-level absence multivariate models predicted atypical



seasons poorly, but predicted more typical seasons (i.e., 2013-2014, 2014-2015) with relatively high accuracy
(R? of 0.91 and 0.57) (Figure 2A). Predicted seasonal peaks were earlier and over-predicted during low
transmission seasons (i.e., 2010-2011 and 2011-2012), whereas during high transmission seasons (2014-2015)
had later predicted peaks, but of equal magnitude (Figure 2A & 2C). Compared to seasonal models, predicted
cases from all-cause absence models varied (either increased or decreased) over the five seasons (Figure 2B),
with seasonal peak timing varying most (Figure 2B). Calendar week, average weekly temperature, and
absence models varied the most across seasons (Figure 2B). The model containing all seasonal variables and
weekly absences had the smallest changes in predicted cases. Lowest MAE models depended on the withheld
validation season (Supplemental Table 5). Given the consistently low MAEs of the model including calendar
week, average weekly temperature, average weekly relative humidity and school absence, we present results
from this model.

Influenza predictions using school-type and grade-specific absences

We compared the performance of different school-types (elementary, middle, and high school) and grade-
specific absences in seasonal models. Elementary school models had lower relMAEs compared to middle
and high school models across validations (Supplemental Table 6). Given varied model performance across
school types, we also considered one-week lagged grade-specific all-cause absences in seasonal models to
assess heterogeneity in predictions by grades.

Univariate analyses found K, 1, 2, 3,4 and 5" grade absence models had lower MAEs than (individual)
middle school and high school grade-specific absence models, particularly in leave 20% of schools’ out valida-
tion (Figure 3A). Multivariate grade-specific absence models also had lower MAEs relative to seasonal models
across three cross-validations (Figure 3B). We observed consistently lower relMAEs for kindergarten-specific
absences (relMAE: 0.91, 0.98. 0.92 in three validations). Overall, middle and high school grade-specific
absence models did not decrease MAEs relative to seasonal models, although 8, 9, & 10*" grade models in
leave 20% of weeks out and 6 grade models in leave 20% schools out had lower MAEs.

We investigated whether absenteeism can be used to create more accurate predictions of virologically con-
firmed influenza only in school aged children, we built models of virologically confirmed influenza only in
those 5-17 years old, rather than of all ages. We found modest improvements in two of three validations
when including absences compared to not using absences in models that incorporated week of year, relative
humidity and temperature. Predictions were more accurate when predicting virologically confirmed influenza
in children then when predicting all ages.

Influenza predictions comparing all-cause and influenza-like illness-specific absences from cohort data

Using school-based cohort studies, we compared the performance of all-cause absences to ILI-specific ab-
sences, a better proxy for influenza infection. Because the cohorts had short time-series (i.e., one influenza
season), we were unable to examine models containing all seasonal variables and to include average temper-
ature in some models. Multivariate ILI absence models had higher R2estimates and lower relMAEs than
all-cause absence models in analyses using PIPP, 2012-2013 SMART, and pooled absence data (Table 2).
From the 2015-2016 SMART? data, the all-cause absence model had a lower relMAE (relMAE: 0.59) than
the ILI-specific model (relMAE: 2.17), but similar R? estimates (Table 2). Pooling across studies, the ILI-
specific absence model had a lower relMAE (relMAE:0.99) than the all-cause absence model (relMAE: 1.02),
and similar R? estimates (all-cause R?: 0.30 and ILI-specific R?: 0.37) (Table 2).

Sensitivity analyses

In sensitivity analyses, we found using absence duration did not improve model predictions. One-day absence
models and those including both one-day and absences two-days or more had lower relMAEs compared
to models containing absences two-days or more (Supplemental Table 9), but predictions from the three
model did not substantially vary (Supplemental Figure 2). Evaluation of models including one-week lagged
influenza cases found little improvement of model prediction and performance when compared to seasonal
models. Higher MAEs were observed for one-week lagged influenza models, and one-week lagged influenza



and absence models but had similar R? estimates (Supplemental Table 8). One exception was the one-week
lagged influenza model from the leave 20% schools’ out validation, which had a lower relMAE (relMAE:
0.97) (Supplemental Table 8). One-week lagged influenza and one-week lagged influenza and kindergarten
absence models performed similarly to one-week lagged influenza models in three cross-validations, except
in the leave 52-weeks out validation (relMAE: 0.97).

Discussion

We found including school absences in seasonal models improved community-level confirmed influenza predic-
tions over multiple seasons within Allegheny County. All-school absence models subtly improved predictions,
reducing MAE by 5% across multiple validations, but school- and grade-specific absence models had better
predictions, reflecting underlying age-specific differences in infections. Elementary school absence (K to 5"
grades) models decreased MAEs by 1-16% compared to 6-12'" grades, suggesting younger student absences
were illness-related and older children’s absences were non-influenza and non-illness related. From school
cohort data, ILI- and all-cause absences performed better in single season (2007-2008 and 2012-2013) val-
idations and when pooled across seasons. Elementary school, K-5" grade-specific all-cause absences, and
potentially ILI-specific absences, may serve surveillance indicators for the larger community.

Compared to seasonal models, those including all-cause absences improved MAE and R? estimates, and
suggests that after accounting for seasonal factors, school absences improved influenza predictions. Our
analysis is one of few using weekly all-cause absences at various administrative levels (i.e., school type
and grades) to predict influenza. Whereas other studies used cause-specific absences to detect elementary
school influenza outbreaks(6), ours evaluated how different school and grade all-cause absences performed
as predictors. As evidenced by higher R? and lower relMAEs from elementary school absence models,
absences from younger school-aged children better reflect infections during the influenza season and are a
proxy to the younger age groups that experience higher infections and increased susceptibility(5, 25, 26). In
contrast, middle and high schools’ absences were noisier prediction signals, possible because older students
had more non-influenza related absences (consistent with the overall higher absenteeism rates observed in
these schools over time). Lower relMAEs from lower individual grade (K-5'" grades) absence models from
multiple validations further support our findings. Hence, elementary school absences could be useful for
influenza surveillance.

ILI-specific absences predicted influenza better than all-cause absences when evaluating predictions from
weekly all-cause and ILI-specific absence models (using school-based cohort studies), based on lower MAEs
and higher R? for specific seasons and when pooled. Other studies also found ILI-specific absences were
a proxy for influenza when evaluating vaccine impacts(27), suggesting ILI-specific absences likely capture
actual influenza infections. We could not conduct cause-specific absence surveillance for more than one
influenza season for each study nor could we perform school-type and grade-specific comparisons of all-cause
and ILI-specific absences due to small time-period, but these may also be important predictors of influenza
incidence.

Our study has some limitations. We did not evaluate our predictions during the 2009 pandemic because our
county absence data were either limited to single seasons, or available after 2009 because participating schools’
electronic absence surveillance began after 2009. Similarly, cohort studies were funded for and conducted
during the 2007, 2012, and 2015 seasons, therefore we could not assess predictions during the 2009 pandemic.
In the school-based cohort studies, not all absences were identified due to challenges contacting parents
regarding absences and our studies may underestimate the number of all-cause absences, and possibly, ILI-
specific absences. Our predictions used school-based data from school districts within Allegheny County only,
therefore our results may not be generalizable to influenza transmission in other US counties. Additional
data from other Pennsylvania counties or a representative sampling from other state counties would improve
the generalizability of our predictions.

Recently, others, like those participating in the CDC FluSight Challenge — an influenza prediction competition
— have used climate data, past influenza incidence and other data streams in recent efforts. In the CDC



FluSight Challenge, external research teams predict weekly influenza cases, and evaluation metrics include
the mean absolute scaled error, a measure of forecast accuracy(28, 29). Our MAE decreased by 5% when
using county-level all-cause absences models and is equivalent an additional 8 weeks of data included in a
nowcast model, like those used in the FluSight Challenge. This equates to a 5% reduction in mean absolute
scaled error(30). Our results suggest that models including lower grades’ absences may improve predictions,
as seen by the 10% MAE decrease, and may improve predictions more when incorporated into ensemble
models, like those used in FluSight(29).

Our findings suggest models using absences of younger students improves predictive performance. Real-
time, day-to-day absence data are easy to collect, readily available in many schools, and can provide more
accurate predictions than other surveillance mechanisms reliant on virologic confirmation, and susceptible
to laboratory testing delays. Future studies could apply absence data to other prediction methodologies,
like ensemble methods and machine-learning algorithms, which may improve prediction accuracy and iden-
tify absence-related patterns not considered here. We demonstrate grade-specific all-cause absences predict
community level influenza one-week forward, when influenza- or cause-specific absences are unavailable and
suggest elementary school or lower grade absenteeism during the influenza season can reflect influenza cir-
culation. Using school indicators can inform influenza surveillance and control efforts, including annual
vaccination; antiviral treatment or prophylaxis; and promotion of everyday preventive measures (i.e., stay-
ing home when sick, respiratory hygiene, and hand hygiene) to reduce school- and community-level influenza
transmission.
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Tables

Table 1. Fit and Performance of Negative Binomial Models of Seasonal Variables Including and
Excluding One-week Lagged County-level All-cause School Absence Rates to Predict Weekly
Confirmed Influenza Cases in Allegheny County, Pennsylvania During the 2010-2015 Seasons

Model Validation Model Validation Leave 20% randomly sampled out data (n=:
Modelt Variables D.f.

1 (Ref.) Week, temperature, RH 8.5

2 Week, temperature, all-cause absence rates 7.3

3 Week, RH, all-cause absence rates 7.9

4 Week, temperature, RH, all-cause absence rates 8.8

TEach model used negative binomial regression and used generalized additive models to estimate degrees
of freedom for non-linear (i.e. spline) variables. T*Changes in AICc and relMAE compared all models
to the reference (model 1), a seasonal variables-only model that contains calendar week, average weekly
temperature, and average weekly relative humidity. Abbreviations: [?]AICc, change in Akaike’s Information
Criterion corrected for small sample size; RH, relative humidity.

Table 2. All-cause and Cause-specific Absences Model Performance Using Three School-based
Cohorts’ Data to Predict Confirmed Influenza Cases in Allegheny County, Pennsylvania, USA
During the 2007-2008, 2012-2013, and 2015-2016 Influenza Seasons

Flu Season Cohort Model > ++ In-sample AICc ([?]) R? MAE Relative M
2007-2008 PIPP Week-only 183 (0) 097 89 1.0 (Ref)
All-cause absence 215 (32) 0.44 158.6  17.8
ILI-specific absence 185 (2) 0.49 451 5.07
2012-2013 SMART Week-only 161 (0) 093 144 1.0 (Ref)
All-cause absence 187 (26) 098 11.2 0.78
ILI-specific absence 174 (13) 0.99 8.6 0.60
2015-2016 SMART? Week-only 204 (0) 1.0 86 1.0 (Ref.)
All-cause absence 214 (10) 0.82 5.0 0.59
ILI-specific absence 206 (2) 0.84 18.6 2.17
Pooled analysis PIPP, SMART, SMART? Week-only 664 (0) 0.35 51.6 1.0 (Ref.)
All-cause absence 665 (1) 0.30 524 1.02
ILI-specific absence 667 (3) 0.37 515 0.99

TThe week-only model included only week of the year and absence models included weekly lagged absence
rates from the previous week, week of the year, and average temperature. ™ SMART models included weekly
lagged absence rates and week of the year. “Cross-validation used leave 20% of schools out. Abbreviations:
[?JAICc: change in corrected Akaike’s Information Criterion; ILI: influenza-like-illness; MAE: mean absolute
error; PIPP: Pittsburgh Influenza Prevention Project; SMART: Social Mixing and Respiratory Transmission
in Schools study; SMART?2: Surveillance, Monitoring of Absences & Respiratory Transmission Study; R2:
coefficient of determination.

Figure legends

Figure 1. Weekly reported virologically-confirmed influenza cases, and all-cause and influenza-
like-illness (ILI) specific absences in Allegheny County, Pennsylvania, USA, during influenza
seasons from 2007 to 2015 . Surveillance of influenza cases during each influenza season in Allegheny
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County occurred from the 40th week of one year to the 20th week of the following year (solid black lines).
All-cause absences were collected for the entire school year for each school district, and data were restricted to
their respective influenza seasons. Nine school districts within Allegheny contributed to weekly counts of all-
cause absences. Additionally, all-cause and ILI-specific absences were collected during independent influenza
seasons for three separate studies: 2007-2008 (PIPP study), 2012-2013 (SMART study), and 2015-2016
(SMART? study). Absence surveillance data were not collected during the 2008-2009 or 2009-2010 influenza
seasons. White space on the x-axis reflects periods when data were not collected for this analysis, whereas
black lines on the x-axis (in negative y values) indicate time periods when data is available. The Allegheny
County student population averaged 43,636 students across the nine school districts, comprising 122 schools
(57 elementary, 20 middle, and 18 high schools, and 24 charter/independent schools). County-level data for
2010-2011 season were not available for 3 school districts.

Figure 2. Four model predictions of confirmed influenza in Allegheny County using leave one
season out validations for the 2010 to 2014 influenza seasons. Model predictions of four negative
binomial models (calendar week, average weekly temperature, average weekly relative humidity (red), one-
week lagged county-level all-cause absences, temperature, and week model (yellow), one-week lagged county-
level all-cause absences, relative humidity, and week model (blue), and one-week lagged county-level all-cause
absences, temperature, relative humidity, and week model (purple)) using leave-one-season-out validation
approaches showing model predictions compared to observed virologically-confirmed influenza cases (black
line) in Allegheny County, Pennsylvania, USA, A) weekly counts during each of the 2010-2011 to 2014-2015
influenza seasons, B) the change in predicted cases using modeling including absences compared to a seasonal
model excluding absences (red), and C) the cumulative proportions of predicted and observed influenza cases
for each season. R? was obtained using a linear regression, where the observed cases from the left-out season
are the dependent variable and the independent variable were predicted cases from a negative binomial model
of week-lagged county-level all-cause absences, relative humidity, temperature, and calendar week.

Figure 3. Mean and relative absolute errors for predictions using grade-specific absence models
to predict influenza in Allegheny County Pennsylvania from 2010 to 2014 influenza seasons.
Mean absolute errors were estimated from univariate grade-specific weekly absences models (A), and the
relative mean absolute error compared models of grade-specific weekly absences, week of the year, average
weekly relative humidity, average weekly temperature to models of calendar week, average weekly relative
humidity, and average weekly temperature (B). Colors reflect the three different school types: red is elemen-
tary school, green is middle school, and blue is high school. Solid black line refers to a relMAE of 1, where
mean absolute errors of the grade-specific absence models and models excluding absences are the same.
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