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Consider a transform that acts on a function to extract the product series coefficient. For example if a
function allows a series expansion

flx) = H(l + apx®) = Zbkazk (1)
k=0

k=1

then we define the transform K of f to be

K2 [f](s) = as (2)
likewise the inverse transform gives
K as)(z) = f(x) (3)
then by definition of the Pochhammer-q function we have
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for functions A(s), u(s),.. the Liouville function, Moebius function, totient function etc. If we attempt to
extract the coefficeints of a well known function, for example

exp(z) = (1+12)(1+ )1~ T) 1+ 2)(1 = T)1+ Ton) o (1)

we find that the coefficients of odd prime powers p are —1/p. We find that
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which is the characteristic function of non-zero powers of 2, which comes from the interpretation of that
number of ways to partition each number into powers of 2 is 1.



We have

b7 = (ar1asa4 + agas + asas + arag + ar)

which is clearly a sum over the ways to make 7 from unique choices of k. Whereas terms like

as = bs — babz + b1baby — b1by + b101b3 — b1b1b1D2

where the signs seem to correspond to the number of terms and repeats are now allowed. This gives
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and then
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where the gg; correct for multiplicities.
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