Method to Generate Sequences

Benedict Irwin ${ }^{1}$

${ }^{1}$ University of Cambridge
January 7, 2021

Consider a general template to generate sequences (or polynomials) using the inverse Mellin transform and a kernel function $\phi(s)$

$$
p_{k}(x)=f(x) \mathcal{M}^{-1}\left[\phi(s) q_{k}(s)\right](x)
$$

here $p_{k}(x)$ and $q_{k}(x)$ are polynomials, and $f(x)$ is a function that cancels out with the generating form from the inverse Mellin transform. This is observed with an example setting $q_{k}(s)=s^{k}, \phi(s)=\Gamma(s)$ and $f(x)=e^{x}$, we have

$$
B_{k}^{\prime}(x)=e^{x} \mathcal{M}^{-1}\left[\Gamma(s) s^{k}\right](x)
$$

where $B_{k}^{\prime}(x)$ appear to be some form of alternating Bell polynomials, and the coefficients of these polynomials are made up of Stirling numbers of the second kind $S_{2}(n, k)$ as

$$
B_{n}^{\prime}(x)=\sum_{k=0}^{n}(-1)^{n-k} S_{2}(n, k) x^{k}
$$

we also find that

$$
\sum_{k=0}^{n} \frac{(-1)^{n-k} S_{2}(n, k)}{2^{n}} x^{k / 2}=e^{\sqrt{x}} \mathcal{M}^{-1}\left[\Gamma(2 s) s^{n}\right](x)
$$

very interestingly

$$
(1+x)^{n+1} \mathcal{M}^{-1}\left[\Gamma(s) \Gamma(1-s) s^{n}\right](x) \sum_{k=0}^{n}(-1)^{n-k-1} A[n, k] x^{k+1}, k>0
$$

where $A(n, k)$ as the Eulerian numbers. The agreement is off slightly for $k=0$. There is a more general form to this

$$
(1+x)^{n+t} \mathcal{M}^{-1}\left[\frac{\Gamma(s) \Gamma(t-s)}{\Gamma(t)} s^{n}\right](x)
$$

which for $t=1$ gives the Eulerian numbers, and for $t=2$ is related to A199335. We can even insert $t=1 / 2$, and get a sequence which is related to A185411 (with an additional factor to $1 / 2^{n}$).

Fixing the Signs

We now consider a modification to the transform to fix the signs, define the inverse-Q transform as

$$
p_{n}(x)=\mathcal{Q}^{-1}[\phi(s)](n, x)=\mathcal{M}^{-1}\left[\phi(s)(-s)^{n}\right](-x)
$$

where we have chosen the inverse because of the inverse Mellin transforms, now we have

$$
\mathcal{M}^{-1}[\Gamma(s)](x) \mathcal{Q}^{-1}[\Gamma(s)](n, x)=B_{n}(x)=\sum_{k=0}^{n} S_{2}(n, k) x^{k}
$$

for Bell polynomials $B_{n}(x)$ and interpreting 0^{0} as 1 which is common in combinatorics. It's still (perhaps) not entirely right, because for $\phi(s)=\Gamma(s) \Gamma(1-s)$ we have

$$
(1-x)^{n+1} \mathcal{Q}^{-1}[\Gamma(s) \Gamma(1-s)](n, x)=x A_{n}(x), n>0
$$

relating to Eularian polynomials, equally one could say

$$
(1-x) \mathcal{Q}^{-1}[\Gamma(s) \Gamma(1-s)](x)=\frac{x A_{n}(x)}{(1-x)^{n}}, n>0
$$

Table of Relations

we can see that the function $f(x)$ is clearly related to $\mathcal{M}^{-1}[\phi(s)]$, which is exciting because, by assuming $q_{k}(s)=s^{k}$ for all inputs it links the function $\phi(s)$ directly a special class of numbers $T(n, k)$. We can as questiosn such as, which kernel $\phi(s)$ produces the binomials?

Function Numbers	Function
$\Gamma(s)$	e^{x}
StirlingS2 $\Gamma(s) \Gamma(1-s)$ Eulerian Numbers	$(1+x)^{n+1}$

