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Abstract

Phenotypic plasticity can mask population genetic differentiation, reducing the predictability of trait-environment relationships.
In short-lived plants, reproductive traits may be more genetically determined due to their direct impact on fitness, whereas
vegetative traits may show higher plasticity to buffer short-term perturbations. Combining a multi-treatment greenhouse
experiment with global field observations for the short-lived Plantago lanceolata, we 1) disentangled the genetic and plastic
responses of functional traits to a set of environmental drivers and 2) assessed the utility of trait-environment relationshisps
inferred from observational data for predicting genetic differentiation. Reproductive traits showed distinct genetic differentiation
that was highly predictable from observational data, but only when correcting traits for differences in their (labile) biomass
component. Vegetative traits showed higher plasticity and contrasting genetic and plastic responses, leading to unpredictable
trait patterns. Our study suggests that genetic differentiation may be inferred from observational data only for the traits most

closely related with fitness.
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Abstract

Phenotypic plasticity can mask population genetic differentiation, reducing the predictability of trait-
environment relationships. In short-lived plants, reproductive traits may be more genetically determined
due to their direct impact on fitness, whereas vegetative traits may show higher plasticity to buffer short-
term perturbations. Combining a multi-treatment greenhouse experiment with global field observations for
the short-lived Plantago lanceolata , we 1) disentangled the genetic and plastic responses of functional traits



to a set of environmental drivers and 2) assessed the utility of trait-environment relationshisps inferred from
observational data for predicting genetic differentiation. Reproductive traits showed distinct genetic differen-
tiation that was highly predictable from observational data, but only when correcting traits for differences
in their (labile) biomass component. Vegetative traits showed higher plasticity and contrasting genetic and
plastic responses, leading to unpredictable trait patterns. Our study suggests that genetic differentiation may
be inferred from observational data only for the traits most closely related with fitness.

Introduction

Functional traits are morphological, physiological or phenological features of organisms that influence the
components of fitness, i.e. survival and reproduction (Reich et al . 2003, Violle et al . 2007, Adler et al
. 2014). Intraspecific variation in functional traits is widely documented and has important implications
for population dynamics (Hughes et al . 2008, Villellas & Garcia 2017), evolutionary trajectories (Moran
et el. 2016, Caruso et al. 2020), community assembly (Violle et al . 2012, Des Rocheset al . 2018), and
ecosystem functioning (Crutsinger et al . 2006, Breza et al . 2012). Disentangling the environmental drivers
of functional trait variation is thus of great ecological and evolutionary interest (Liancourt et al. 2013, van
de Pol et al 2016, Bruelheide et al 2018), and can improve predictions of species responses to global change
(Benito Garzoén et al . 2011, Violle et al . 2014, Moran et al . 2016).

The predominant approach to identify the drivers of functional trait variation has relied upon assembling large
databases of observedin situ trait variation (e.g., Enquist et al . 2016, Moranet al . 2016, Iversen et al . 2017,
Kattge et al . 2020) and the association of these trait values with candidate environmental drivers. However,
interpreting trait-environment relationships inferred from observational field datasets requires understanding
the processes underlying trait variation. Intraspecific trait variation observed in situ among populations may
arise from genetic differentiation and/or phenotypic plasticity (Chevin et al . 2010, Merild & Hendry 2014).
Across large environmental gradients, genetic differentiation among populations can result from adaptation
to local conditions (but see the role of neutral and historical processes in Keller et al . (2009), Santagelo et al
. (2018)). Genetically determined traits are thus expected to show correlations with the source environment.
However, genetic differentiation might be obscured by phenotypic plasticity (which can also be adaptive; see
Matesanz et al . 2010, Palacio-Lépez et al. 2015), reducing the consistency of trait-environment relationships
across environmental contexts.

Combining experimental and in situ field data enables us to assess the potential uses and misuses of obser-
vational trait datasets. A common way to partition trait variation is through a common garden experiment
(Clausen et al. 1940, MacColl 2011, Franks et al . 2014). Specifically, by growing offspring from multiple
provenances together in a set of controlled conditions, we can disentangle the effects of source environments
(leading to genetic differentiation) from those of exposure environments (driving phenotypic plasticity). No-
tably, by evaluating the different scenarios involving genetic and plastic effects on traits, we can assess the
utility of observational data for predicting genetic differentiation (Fig. 1). For example, a predominance of
genetic over plastic effects decreases the relative importance of genotype-by-environment interactions, and
increases the predictability of trait values from average environmental conditions of source populations (Fig.
la,f). In contrast, a high level of plasticity causes traits to be more strongly determined by the exposure
environment, decreasing trait predictability from source environment (Fig. 1b,gh). Source and exposure
environments can have similar or opposing effects on traits (Fig. 1c-e), with opposing effects known as coun-
tergradient variation (Conover & Schultz 1995, Conover et al . 2009). Countergradient variation may lead to
an apparent absence of trait variation among populations in the field (Fig. 1d), or even to patterns counter
to those of genetic differentiation (Fig. le).

The role of genetic differentiation and phenotypic plasticity on intraspecific variation differs among functional
traits (Albert et al . 2010a, Funk et al . 2017, Miinzbergovd et al . 2017). Species may show evolutionary
conservation of the traits most directly related to fitness through genetic differentiation (Scheiner 1993,
Stearns & Kawecki 1994, Sih 2004), and instead display plasticity in underlying morphological or physiological
traits, to buffer environmental perturbations (Sultan 1995, Richards et al . 2006). This view is also supported
by demographic studies finding that the most influential processes on population growth rate show relatively



low variability (Pfister 1998, Burns et al . 2010, Hilde et al . 2020; but see McDonald et al . 2017). In plants,
vegetative traits often show higher plasticity than reproductive traits (Bradshaw 1965, Schlichting & Levin
1984, Frazee & Marquis 1994). For example, both biomass and reproductive investment per unit biomass
determine reproduction, but while biomass is expected to show high plasticity due to its influence on several
demographic parameters (Harper 1977), reproductive investment per unit biomass may be more conserved.
This might be especially true for short-lived taxa, in which reproduction usually has the highest influence on
population growth (Silvertownet al . 1996, Garcia et al . 2008, Shefferson and Roach 2012). Yet reproductive
investment may appear to be strongly driven by plasticity if evaluated at the whole plant level, due to the
inclusion of a more labile biomass-dependent component (Biere 1995, Weineret al . 2009). It is important
therefore to partition reproductive traits into biomass dependent and independent components, to better
understand the role of genetic differentiation and plasticity.

Despite the abundance of studies analysing trait-environment relationships at local or regional scales (e.g.,
Oleksyn et al . 1998, Villellas & Garcia 2013, Preite et al . 2015, Miinzbergovéet al . 2017), there is a
critical gap in knowledge about the drivers of intraspecific trait variation at global scales (MacColl 2011).
Environmental effects may be difficult to detect if drivers are assessed independently from each other, or
if studies omit significant parts of a species’ environmental niche (Matesanz et al . 2010, Hulme & Barrett
2013, Shipley et al. 2016). Widespread plants offer a unique opportunity to unravel the multiple drivers of
trait variation from local to global scales. While some studies have analysed trait genetic differentiation and
plasticity across species’ ranges (e.g., Joshi et al . 2001, Maron et al . 2004, Alexanderet al . 2012), we lack
global assessments of the responses of different types of traits to multiple environmental drivers using the
combined power of experimental and observational data.

Here we analyse responses of vegetative vs. reproductive traits of the short-lived herb Plantago lanceolata to a
set of environmental drivers, both in a common garden and in the field. By growing individuals from multiple
populations under several light and water conditions, we tested 1) whether vegetative traits (plant biomass,
specific leaf area and root:shoot ratio) showed higher levels of plasticity than reproductive traits (probability
of flowering and fecundity), and 2) whether reproductive traits showed more consistent population genetic
differentiation across exposure treatments than vegetative traits, and higher consistency between genetic
and plastic responses. To account for the potential size-dependency of plant reproductive investment, we
examined reproductive traits by both including and excluding plant biomass as a covariate in the analyses.
Finally, by comparing experimental results with trait-environment relationships detected from a global-scale
observational survey, we evaluated 3) whether observational data provided a better prediction of genetic
differentiation for reproductive than vegetative traits.

Material and methods
Study species

Plantago lanceolata L. (Plantaginaceae) is a short-lived perennial herb with a typical lifespan of 2-5 yr (Lacey
et al . 2003, Roach 2003), although some individuals may exceed 12 yr (Caverset al . 1980). Plants have one or
more vegetative rosettes. Inflorescences emerge in late spring or summer; flowers are mostly self-incompatible
and both wind- and insect-pollinated, (Clifford 1962, Sagar & Harper 1964). Plantago lanceolata is native
to Europe, Western Asia and North Africa, although it has been introduced worldwide, mainly during the
eighteenth and nineteenth centuries (Hooker 1867, Cavers et al . 1980, Meyers & Liston 2008). The species
occurs in a range of mostly open habitats, such as grasslands, sand dunes or disturbed sites, showing a wide
environmental niche (Fig. 2; Sagar & Harper 1964).

Field sampling of source populations

Populations of P. lanceolata included in this study were part of the coordinated project PlantPopNet (Buckley
et al. 2019). In the growing seasons of 2015 and 2016, we sampled 46 populations across the species’ range
(29 native and 17 non-native populations; Fig. 2, Table S1, S2 in Supporting Information), spanning a wide
range of climatic, management and plant community conditions, and a wide range of genoypes (Smith et al.
2020). For each population, we monitored all individual plants within 0.25 m? plots along 10 m transects



until we reached a minimum of 100 plants (Buckley et al . 2019). We recorded for each plant the number of
rosettes and the flowering status (flowering vs. non-flowering). For each rosette, we recorded the number of
leaves, the size of the longest leaf, the number of flowering stems if any and the length of the most developed
inflorescence. We used these measurements to estimate biomass and total inflorescence length at the whole
plant level (see further details on Appendix S1). In a subset of populations and outside the monitoring plots,
we collected leaves for the estimation of specific leaf area (SLA; 25 populations) and seeds for the greenhouse
experiment (15 populations; Table S1, Appendix S1).

Environmental conditions in source populations

To analyse the effects of environmental conditions of source populations on traits, we collected information on
climate, land-use and vegetation for each location (Table S2). Mean annual values and seasonality (coefficient
of variation in monthly values) for temperature, precipitation and moisture index were obtained from the
BioClim database (Kriticos et al . 2012, Fick & Hijmans 2017). We used the highest resolution available
for temperature and precipitation (30 s) and for moisture index (10 min). In the field, we recorded whether
populations were subject to mowing or not, and estimated the percentage of vegetation cover and bare
ground for four random plots per population. In two opposite corners of the plots, we quantified community
vegetation height as the height at which a pole was completely obscured by vegetation, looking from a
distance of ca. 4 m.

To avoid collinearity in environmental predictor variables (climate, land-use and vegetation data), we perfor-
med a Principal Component Analysis (psych package in R; R Core Team 2017, Revelle 2018). We performed
a second, orthogonal rotation that improved the interpretation of the components (Quinn & Keough 2002).
The first three rotated components explained 70.4% of the variance (Fig. S1, Table S1). The first component
(hereafter “Aridity”) was positively associated with low mean and high seasonality in precipitation and mean
moisture index. The second component (“Temperature”) was positively associated with high mean and low
seasonality in temperature. The third component (“Vegetation cover”) was positively associated with high
percent vegetation cover, greater height of vegetation and low percent bare ground cover. We used these ro-
tated components and the binary factor Mowing to test the effects of source climate (Aridity, Temperature),
vegetation (Vegetation cover) and land-use (Mowing) on trait variation. We used t-tests to analyse differences
between native and non-native populations in the rotated components and the underlying variables (effects
of native/non-native range on Mowing were tested with a Generalized Linear Model using Binomial errors;
stats package, R Core Team 2017).

Greenhouse experiment

We performed a common garden experiment in a greenhouse with a subset of 15 populations (Fig. 2, Table
S1). The experiment spanned almost the entire geographical and environmental native range, and included
three non-native populations to increase the breadth of source environmental conditions (Appendix S2).
We pooled all the collected seeds at the population level. We sowed 2,728 seeds (180-200 per population)
and obtained 1485 seedlings in individual pots after 25 days. Seedlings were then exposed to treatments
with two levels of water supply crossed with three levels of light availability (one block with six treatment
combinations). We used 18 seedlings per treatment combination for each population (except for BG, RO
and TW populations with, respectively, 14, 10 and 8 seedlings per treatment combination; Table S1). The
treatments were chosen to compare their effects with those of two source environmental drivers: Aridity
(related to water availability) and Vegetation cover (related to light availability). These treatments also
represent parameters likely affected by climate and land-use change. For the water treatments, half of the
plants were watered every three days (“wet” treatment), and the other half every nine days (“dry” treatment),
by flooding the supporting trays until soil was soaked with water. Each water treatment level was divided
into three light levels: 1) 100% light, 2) 64% light and 3) 33% light (Appendix S2). Watering and light levels
were designed to span a wide environmental range, characteristic of cosmopolitan plants.

To collect trait data in the greenhouse, we measured plant leaves, flowering status and inflorescences 2.5
months after the onset of treatments in the same way as in field populations. To account for possible



maternal effects, usually more manifest in early life stages (Roach & Wulff 1987), control leaf measurements
were also taken 1 month after the onset of treatments. At the end of the experiment, the longest healthy leaf
was collected from each of 10 individuals per population and treatment combination. Leaves were scanned
to estimate leaf area, oven-dried (60°C), and weighed to calculate SLA. Root:shoot ratio (RSR) was also
calculated in the individuals used for SLA measurements, but only for eight populations (Table S1) and
excluding the intermediate light treatment due to logistical constraints. To measure RSR, the remaining
leaves and the roots were collected, roots were washed, and both leaves and roots were oven-dried.

Analyses of trait variation in greenhouse and field conditions

We used data from three vegetative and two reproductive traits to analyse the drivers of intraspecific variation
in greenhouse and field conditions. Vegetative traits were biomass, SLA and RSR (the latter only measured
in greenhouse conditions), and reproductive traits were probability of flowering and fecundity. Biomass was
estimated for all greenhouse and field individuals using leaf measurements and an equation obtained for a
subset of plants (Appendix S3). Probability of flowering was modelled as a binary variable with data from
the flowering vs. non-flowering plant status. Total inflorescence length was used as a proxy for fecundity, as
we found a strong correlation between total inflorescence length and seed production (conditional R? = 0.77;
Appendix S3). In a preliminary analysis of field data, we found generally weak correlations among traits
(Appendix S3). Thus we did not systematically consider trait covariation when analysing the sources of trait
variation. However, the correlation between biomass and fecundity was moderately strong, so reproductive
traits were analysed by controlling for biomass. This allowed us to assess size-independent reproductive
investment (see below).

To analyse the effects of source and exposure environment on traits in the greenhouse, we applied 1) Linear
Mixed Models (LMM) to plant biomass, SLA, fecundity and RSR and 2) Generalized Linear Mixed Models
(GLMM) with a binomial error for probability of flowering (see details on Appendix S3). For each trait, we
constructed a full model with four source environmental drivers (rotated components for Aridity, Temperature
and Vegetation cover, and the binary variable Mowing), Water and Light treatments, interactions between
environmental drivers and treatments, and Population as a random effect (Table S3). Full models for biomass,
probability of flowering and fecundity included control biomass as a covariate. For a comparison of the role
of genetic differentiation vs. plasticity, we assessed whether the effects of two source environmental drivers
(Aridity and Vegetation Cover) were higher, similar to, or lower than the effects from their corresponding
exposure treatments (Water and Light) and their interactions.

To test for the effects of environmental drivers on traits in field populations, we applied 1) LMMs to biomass,
SLA and fecundity, and 2) GLMM with a binomial error distribution for probability of flowering (see details
on Appendix S3). We constructed full models including the four source environmental drivers. To account
for the possible influence of range (native vs. non-native), the models included the effect of range and
its interaction with each environmental driver (Table S4). We added Population and Plot nested within
Population as random effects. For probability of flowering and fecundity, we included biomass as a covariate.

Full models of the analyses with either greenhouse or field data were compared with all possible model
subsets using the Akaike Information Criterion corrected for finite sample sizes (AIC.) and the AIC. weights
(Burnham & Anderson 2002, Johnson & Omland 2004). We focused on the best AIC. models, since they
had high support and parameter values were overall consistent across competing models (see Appendix S3,
Table S5, S6). Finally, we evaluated the utility of observational datasets to predict genetic differentiation.
Genetic differentiation was considered predictable if the presence and direction of source environment effects
on traits were the same in greenhouse and field conditions, and unpredictable otherwise. For probability of
flowering and fecundity, we also assessed whether excluding the covariate biomass from the original analyses
modified our evaluation of the predictability of genetic differentiation.

Results

Effects of source and exposure environment in the greenhouse



In the analyses of drivers of trait variation in the greenhouse, the best models always included effects of at
least one source environmental driver and both light and water exposure treatments (see blue lines in Fig. 3;
Table S3; Fig. S2-S6), but results differed between vegetative and reproductive traits. For vegetative traits
(biomass, SLA and RSR), light or water treatments showed the strongest effect sizes when compared with
source drivers (Fig. 4c,f,i). The effect of source drivers on biomass and SLA frequently changed between
positive and negative directions depending on the treatment (see interactions in Fig. 3a,b; Fig. 4a,b,e). For
biomass, the effects of Aridity, Vegetation cover and Mowing differed among treatments, although effect
sizes were low and had 95% confidence intervals (CI) that mostly overlapped with zero (Fig. 3a). For SLA,
all source drivers were selected in the best model except for Mowing. SLA showed two contrasting effects
between source and exposure environments: 1) SLA was lower in the Dry treatment, but higher in plants
from the most arid populations (Fig. 4d); 2) SLA was higher in the treatment with lowest light, but also
higher in populations with lowest source vegetation cover and thus highest light availability (this took place
in treatment L3s; Fig. 4e). RSR increased with source Aridity, although the effect was smaller than the effect
of the Dry treatment (Fig. 4g,i).

For reproductive traits (biomass-corrected probability of flowering and fecundity), exposure treatments exer-
ted equivalent or smaller effects than source drivers (Fig. 41,0) and the effects of source drivers were consistent
in direction across treatments (Fig. 3d,e, 4k,m). Probability of flowering was negatively affected by source
Vegetation cover and positively affected by Mowing, and exposure treatments changed the magnitude of
these source effects but not their sign (Fig. 3d, 4k). Fecundity was positively affected by source Aridity and
Temperature, and showed no interactions between source and exposure environments (Fig. 3e, 4m). When
biomass was excluded as a covariate from the analyses, 1) source effects decreased in magnitude and exposure
effects generally increased for probability of flowering, and 2) source effects were not included in the best
model of fecundity (Table S7).

Effects of environmental drivers in field populations

Trait variation for in situ field populations was associated with both environmental drivers and biogeogra-
phic range (native vs. non-native) in the best models, although their effects did not interact in most cases
(see blue lines in Fig. 5; Table S4; Fig. S7-S9). Biomass was positively correlated with Vegetation Cover and
Mowing, and was higher in non-native populations (Fig. 5a). SLA did not differ between ranges, although we
found an interaction between Temperature and biogeographic range, whereby SLA decreased with increasing
Temperature in the native but not the non-native range (Fig. 5b). Biomass-corrected probability of flowering
was affected negatively by Vegetation Cover and positively by Mowing, and was lower in non-native popu-
lations (Fig. 5c). Biomass-corrected fecundity was positively affected by Aridity and Temperature, and the
effect of Aridity was stronger in the native than the non-native range (Fig. 5d). When biomass was excluded
as a covariate from the analyses, the best model of probability of flowering lost the effects of Vegetation
Cover and Range, and the best model of fecundity incorporated the effects of Mowing and the interaction
between Range and several source drivers (Table S8). Non-native populations showed significantly higher
temperature and seasonality of moisture index than native populations, and lower values in moisture index
(Table S9).

Utility of observational datasets to predict genetic differentiation

Biomass corrected reproductive traits, compared to vegetative traits, showed a better match between obser-
vational trait-environment relationships and response to source environmental gradients in the greenhouse
(Table 1). For vegetative traits, there were two cases of predictable genetic differentiation out of eight. In
both cases, field data correctly predicted not the presence but the absence of genetic differentiation. The
low predictability in vegetative traits originated in some cases from interacting (e.g., Fig. 4b) or opposing
(Fig. 4d,e) effects of source and exposure environments. In other cases, field patterns did not match with
those expected from the combined source and exposure greenhouse effects (Fig. 4a). For biomass-corrected
reproductive traits, observational data predicted the presence and direction of all seven source environment
effects in the greenhouse. However, when reproductive traits were analysed without biomass as a covariate,
observational data only predicted the presence and direction of three out of seven source environment effects



(Table S10).
Discussion

Combining a multi-treatment greenhouse experiment with global-scale field observations, we disentangled
the main sources of intraspecific trait variation for the short-lived herb Plantago lanceolata . Expression of
functional traits along environmental gradients in the field was retained to some extent in the greenhouse,
indicative of population genetic differentiation. However, while reproductive traits (biomass-corrected pro-
bability of flowering and fecundity) showed similar effects of source environment across exposure treatments,
vegetative traits (biomass, specific leaf area and root:shoot ratio) showed more plastic responses and some
contrasting effects of source and exposure environments. These results imply a higher predictability of genetic
differentiation from field observations in reproductive than vegetative traits.

Effects of source and exposure environment on vegetative and reproductive traits

Vegetative and reproductive traits responded differently to source and exposure environments in the green-
house, as expected based on the fundamental relationship of each type of trait with overall fitness. Repro-
ductive traits corrected for biomass showed stronger source effects than vegetative traits, and less variability
across environmental treatments. According to evolutionary theory, traits with the strongest impact on fit-
ness should show evolutionary conservation (Scheiner 1993, Stearns & Kawecki 1994, Sih 2004). In parallel,
the demographic buffering theory predicts that the most influential processes in species life cycles should be
maintained relatively constant around local optimal values, to reduce variation in population growth rates
(Pfister 1998, Burns et al . 2010, Hilde et al . 2020). For short-lived plants like P. lanceolata , reproduction
has been identified as the most influential fitness component (Silvertownet al . 1996, Garcia et al . 2008,
Shefferson and Roach 2012), which may explain the smaller role of plasticity and the higher consistency in
genetic differentiation found for biomass corrected reproductive traits.

Stronger genetic differentiation in reproductive investment seemed to be facilitated by a higher plasticity in
vegetative traits, buffering short-term environmental perturbations (Scheiner 1993, Alpert & Simms 2002,
Sih 2004). This phenomenon, known as fitness homeostasis, has been highlighted before as a mechanism
for maintaining high individual performance across a range of environments (Sultan 1995, Richardset al
. 2006). The adjustment of vegetative traits to environmental conditions was manifest in our greenhouse
experiment in several ways, and is best exemplified by SLA patterns. SLA increased in the shade treatment
to optimize light capture and decreased in dry conditions to reduce water loss through leaf surface, common
plastic responses in herbaceous plants (Poorter et al . 2009, Dwyeret al . 2014). Remarkably, some effects of
exposure treatments on SLA were opposed by source environment effects suggesting countergradient variation
(sensu Conover & Schultz 1995), such as the positive effect of source Aridity combined with the negative
effect of the dry treatment. This apparent contradiction possibly arises because water scarcity in populations
from dry sites is compensated through selection for higher RSR and/or stomatal function.

The complex interplay between plasticity and genetic differentiation, and the trait-specific nature of envi-
ronmental effects found in our study highlight the variety of strategies for plant response to local conditions
(see also Albert et al . 2010b, Le Bagousse-Pinguetet al . 2015, Roybal & Butterfield 2019), but also the
difficulty of assessing the mechanisms and drivers of trait variation. The trait patterns found in P. lanceo-
lata , including countergradient variation, could be partly explained by the influence of additional drivers
not considered in the analyses, such as nutrient availability or biotic interactions (Chevin & Lande 2015).
Additionally, further research could be undertaken to disentangle genetic differentiation from unaccounted
maternal environment effects.

Accounting for size effects and life history to refine analyses of trait variation

The effect of plasticity on reproductive traits increased in our greenhouse experiment when plant biomass
was not accounted for in the models. We thus show here that variance in reproductive effort at the indi-
vidual scale has a “biomass” component that is strongly driven by plasticity, and an “investment per unit
biomass” component that is more genetically determined. Our results emphasize the importance of dissec-
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ting reproduction into size dependent and independent components. These dependencies among traits have
implications for the expectations of demographic buffering and may explain some of the cases contradicting
this theory (see McDonald et al . 2017, Hilde et al . 2020), e.g. when reproductive traits are strongly driven
by underlying individual biomass.

Our study organism is a short-lived plant, with reproduction having a strong influence on population perfor-
mance. However, in species with different life histories, other demographic rates and their underlying traits
might exert the largest effects on fitness. For example, longer-lived taxa usually depend more on survival
rates for population persistence (Silvertown et al . 1996, Morris & Doak 2005), and may display low variance
in survival-related traits. In fact, Preiteet al . (2015) found stronger genetic differentiation for survival than
reproduction in a long-lived herb. Environmental drivers of trait variation for various taxa with different life
histories and ecological strategies should be analysed in order to better generalise the results presented here.

Plant size or biomass is likely to structure the most relevant demographic rates (Harper 1977, Easterling et al
. 2000, Biere 1995), and decomposition of trait variability into size dependent and independent components
will also help to shed light on the drivers of trait variability, as shown in our study. Accounting for biomass
dependency in trait variation across different life histories may refine previous findings of stronger local
adaptation in reproduction than in survival across plant and animal species (Hereford 2009), of higher
levels of plasticity vs. local adaptation in reproductive traits of invasive plants (Liao et al . 2016), and of
an absent relationship between trait plasticity and its proximity to fitness (Acasuso-Riveroet al . 2019).
The detection of more common genotype-by-environment interactions in short-lived than long-lived plants
(Matesanz and Ramirez-Valiente 2019) could also be evaluated for different trait categories separately. These
additional interpretations from functional and demographic perspectives may advance our understanding of
trait-environment relationships and improve our predictions of species responses to climate change.

Observational datasets and their utility for predicting genetic differentiation

Our global observational dataset revealed that different combinations of biotic and abiotic factors drove varia-
tion on each trait. This trait-specificity would have remained hidden had the environmental and geographical
scale of the study been smaller, since we could have not analysed together such a variety of environmental
conditions and drivers. In addition, the combination of large-scale field and experimental studies, rarely
implemented in evolutionary ecology (but see, e.g., Winn & Gross 1993, Woods et al . 2012), allowed us to
assess the potential uses and misuses of observational datasets. In particular, trait-environment relationships
inferred from in situpopulations correctly predicted genetic differentiation for reproductive but not vegeta-
tive traits. For vegetative traits, the predictability diminished as the presence of plasticity led to interacting
or opposing effects of source and exposure environments, as initially forecasted (Fig. 1). The predictability
of genetic differentiation was also low for reproductive traits when analysed without accounting for their
size-dependence. Therefore, observational data may reliably inform about the current drivers of selection
and the adaptive capacity of species only for the traits most closely related with fitness. This might be
important for species- and community-level predictive models that rely on trait-environment relationships,
and for conservation programs focusing on intraspecific genetic diversity.

Evaluating trait-environment relationships can also be useful for predicting plant performance in populations
introduced outside native ranges (Alexander et al . 2012, Hulme & Barrett 2013). InP. lanceolata , traits
showed broadly similar correlations with environmental factors in both native and non-native ranges, in
agreement with previous work in other taxa (Maron et al . 2004, Montagueet al . 2008, Rosche et al . 2019;
but see Keller et al . 2009). Notably, the similarities in trait patterns between ranges held despite the location
of non-native populations in warmer and more arid conditions. This suggests that the trait-environment
correlations largely persist for some species even if they occupy more extreme areas of environmental space,
facilitating ecological predictions in a context of global change. Yet some trait-environment correlations
observed inP. lanceolata were weaker in the non-native range (see also Alexander et al . 2012). This finding
highlights that genetic differentiation may be less predictable for non-native populations and that a total
equivalence in trait patterns between ranges cannot be taken for granted due to potential evolutionary
divergence. The presence of weaker trait-environment relationships in non-native populations may be due
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to a higher role of plasticity (although the latter is not clearly supported by a recent meta-analyses across
species; see Palacio-Lopez & Gianoli 2011), or may instead result from repeated introductions in the non-
native range (Smith et al . 2020). Further sudies on widespread species might help to clarify the processes
and patterns resulting from ecological and evolutionary divergence at large spatial scales. In particular, our
observational network can form the basis for future experimental work.

Conclusions

Our study improves the understanding of intraspecific trait variation along environmental gradients, showing
that the underlying ecological and evolutionary mechanisms differ between reproductive and vegetative
traits of P. lanceolata . The environmental structuring of variation in biomass-corrected reproductive traits
was retained in common greenhouse conditions, indicative of genetic differentiation. In contrast, vegetative
traits showed strong plastic responses to buffer short-term environmental variation, sometimes in opposition
to genetic differentiation. Differences between vegetative and reproductive traits seem to arise due to the
different relationship between each type of trait and overall fitness. These results provide a crucial insight into
the potential uses and limitations of observational data, which is readily available for a considerable number
of species and traits, but which may provide more uncertain information than common-garden experiments.
While genetic differentiation was accurately predicted from observational trait-environment relationships for
biomass-corrected reproductive traits, it was sometimes masked for vegetative traits by phenotypic plasticity
and countergradient variation. Thus, evaluating evolutionary responses to environment from observational
data may lead, in the case of vegetative traits or traits not closely related with fitness, to underestimate
the capacity of plants to adapt to new environmental conditions. We also advocate for considering biomass
dependency in trait variation analyses, as well as the implications of species life histories on trait-fitness
relationships. In view of the general call for including intraspecific trait variation in ecological models (Moran
et al . 2016, Funk et al . 2017), these considerations are important for a more informed prediction of species
responses to global change.

Acknowledgements

This publication emanated from research conducted with the financial support of Science Foundation Ireland
(SFI) under Grant Number 15/ERCD/2803 (YMB). Financial support was also provided by the Spanish
Ministry of Science, Innovation and Universities to JV (IJCI-2017-32039), by the Natural Sciences and
Engineering Research Council of Canada to LHF, by the Academy of Finland to SR, by the Estonian Research
Council (grants PRG609 to MP and PUT1409 to LL) and by the European Regional Development Fund
(funding for the Centre of Excellence EcolChange to MP). S. P. Blomberg and J. van Groenendael helped
design the PlantPopNet network. We thank A. Ehrlén and A. Pettersson for their help in the greenhouse
experiment and S. Coutts for help with Figure 1. We are also grateful to the Archipelago Research Institute,
and to numerous field assistants and landowners of sampled sites.

References

Acasuso-Rivero C., Murren C.J., Schlichting C.D. & Steiner U.K. (2019). Adaptive phenotypic plasticity for
life-history and less fitness-related traits. Proc. R. Soc. B , 286, 20190653.

Adler P.B., Salguero-Gémez R., Compagnoni A., Hsu J.S., Ray-Mukherjee J., Mbeau-Ache C. et al. (2014).
Functional traits explain variation in plant life history strategies. Proc. Natl. Acad. Sci. USA | 111, 740-745.

Albert C.H., Thuiller W., Yoccoz N.G., Soudant A., Boucher F., Saccone P. et al. (2010a). Intraspecific
functional variability: extent, structure and sources of variation. J. Fcol ., 98, 604-613.

Albert C.H., Thuiller W., Yoccoz N.G., Douzet R., Aubert S. et al. (2010b). A multi-trait approach reveals
the structure and the relative importance of intra- vs. interspecific variability in plant traits. Funct. Ecol .,
24, 1192-1201.

Alexander J.M., van Kleunen M., Ghezzi R. & Edwards P.J. (2012). Different genetic clines in response to
temperature across the native and introduced ranges of a global plant invader. J. Ecol ., 100, 771-781.

12



Alpert P. & Simms E.L. (2002). The relative advantages of plasticity and fixity in different environments:
when is it good for a plant to adjust? Fvol. Ecol ., 16, 285-297.

Benito Garzéon M., Alia R., Robson T.M. & Zavala M.A. (2011). Intra-specific variability and plasticity
influence potential tree species distributions under climate change. Global Ecol. Biogeogr ., 20, 766-778.

Biere A. (1995). Genotypic and plastic variation in plant size: effects on fecundity and allocation patterns in
Lychnis flos-cuculi along a gradient of natural soil fertility. J. Fcol ., 83, 629-642.

Boardman N.K.T. (1977). Comparative photosynthesis of sun and shade plants. Annu. Rev. Plant Physiol
., 28, 355-377.

Bradshaw A.D. (1965). Evolutionary significance of phenotypic plasticity in plants. In: Advances in genetics.
Elsevier, pp. 115-155.

Breza L.C., Souza L., Sanders N.J. & Classen A.T. (2012). Within and between population variation in plant
traits predicts ecosystem functions associated with a dominant plant species. Fcol. Evol ., 2, 1151-1161.

Bruelheide H., Dengler J., Purschke O., Lenoir J., Jiménez-Alfaro B., Hennekens S.M. et al . (2018). Global
trait-environment relationships of plant communities. Nature Ecol Evol , 2, 1906-1917.

Buckley Y.M., Blomberg S., Crone E.E., Csergé A.M., Ehrlén J., Garcia M.B. et al. (2019). Plantpopnet
protocol V1.01 2015. https://doi.org/10.6084/m9.figshare.7982810.v7.

Burnham K.P. & Anderson D.R. (2002). Model selection and multimodel inference: a practical information-
theoretic approach. Springer Science & Business Media.

Burns J.H., Blomberg S.P., Crone E.E., Ehrlén J., Knight T.M., Pichancourt J.B. et al. (2010). Empirical
tests of life-history evolution theory using phylogenetic analysis of plant demography.J. Ecol ., 98, 334-344.

Cavers P.B., Bassett I.J. & Crompton C.W. (1980). The biology of Canadian weeds. 47. Plantago lanceolata
L. Can. J. Plant Sci ., 60, 1269-1282.

Caruso C.M., Maherali H. & Martin R.A. (2020). A meta-analysis of natural selection on plant functional
traits. Int. J. Plant Sci ., 181, 44-55.

Chevin L.M. & Lande R. (2015). Evolution of environmental cues for phenotypic plasticity. Fvol. , 69,
2767-2775.

Chevin L.M., Lande R. & Mace G.M. (2010). Adaptation, plasticity, and extinction in a changing environ-
ment: towards a predictive theory. PLoS Biol ., 8, e1000357.

Clausen J., Keck D.D. & Hiesey W.M. (1940). Ezperimental studies on the nature of species. 1. Effect of
varied environments on western North American plants. Publication 520. Carnegie Institution of Washington,
Washington DC.

Clifford H.T. (1962). Insect pollination of Plantago lanceolataL. Nature , 193, 196-196.

Conover D.O., Dufty T.A. & Hice L.A. (2009). The covariance between genetic and environmental influ-
ences across ecological gradients: reassessing the evolutionary significance of countergradient and cogradient
variation. Ann. NY Acad. Sci ., 1168, 100-129.

Conover D.O. & Schultz E.T. (1995). Phenotypic similarity and the evolutionary significance of countergra-
dient variation. Trends Ecol. Evol ., 10, 248-252.

Crutsinger G.M., Collins M.D., Fordyce J.A., Gompert Z., Nice C.C. & Sanders N.J. (2006). Plant genotypic
diversity predicts community structure and governs an ecosystem process. Science , 313, 966-968.

Des Roches S., Post D.M., Turley N.E., Bailey J.K., Hendry A.P., Kinnison M.T. et al. (2018). The ecological
importance of intraspecific variation. Nature Ecol. Evol ., 2, 57-64.

13



Dwyer J.M., Hobbs R.J. & Mayfield M.M. (2014). Specific leaf area responses to environmental gradients
through space and time. FEcology , 95, 399-410.

Easterling M.R., Ellner S.P. & Dixon P.M. (2000). Size-specific sensitivity: applying a new structured popu-
lation model. Ecology , 81, 694-708.

Enquist B.J., Condit R., Peet R.K., Schildhauer M. & Thiers B.M. (2016). Cyberinfrastructure for an
integrated botanical information network to investigate the ecological impacts of global climate change on
plant biodiversity. PeerJ Preprints , 4, e2615v2.

Fick S.E. & Hijmans R.J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land
areas. Int. J. Climatol ., 37, 4302-4315.

Franks S.J., Weber J.J. & Aitken S.N. (2014). Evolutionary and plastic responses to climate change in
terrestrial plant populations. Fvol. Appl ., 7, 123-139.

Frazee J.E. & Marquis R.J. (1994). Environmental contribution to floral trait variation in Chamaecrista
fasciculata (Fabaceae: Caesalpinoideae). Am. J. Bot ., 81, 206-215.

Funk J.L., Larson J.E., Ames G.M., Butterfield B.J., Cavender-Bares J., Firn J. et al. (2017). Revisiting the
Holy Grail: using plant functional traits to understand ecological processes. Biol. Rev ., 92, 1156-1173.

Garcia M.B., Picé F.X. & Ehrlén J. (2008). Life span correlates with population dynamics in perennial
herbaceous plants. Am. J. Bot ., 95, 258-262.

Harper J.L. (1977). Population biology of plants. Academic Press, London, UK.
Hereford J. (2009). A quantitative survey of local adaptation and fitness trade-offs. Am. Nat. , 173, 579-588.

Hilde C.H., Gamelon M., Saether B.-E., Gaillard J.-M., Yoccoz N.G. & Pélabon C. (2020). The demographic
buffering hypothesis: evidence and challenges. Trends Ecol. Evol ., 35, 6.

Hooker J.D. (1867). Handbook of the New Zealand flora. Part 2. Reeve & Co., London.

Hughes A.R., Inouye B.D., Johnson M.T.J., Underwood N. & Vellend M. (2008). Ecological consequences of
genetic diversity. Ecol. Lett ., 11, 609-623.

Hulme P.E. & Barrett S.C.H. (2013). Integrating trait- and niche-based approaches to assess contemporary
evolution in alien plant species.J. Ecol ., 101, 68-77.

Iversen C.M., McCormack M.L., Powell A.S., Blackwood C.B., Freschet G.T., Kattge J. et al. (2017). A
global Fine-Root Ecology Database to address below-ground challenges in plant ecology. New Phytol ., 215,
15-26.

Johnson J.B. & Omland K.S. (2004). Model selection in ecology and evolution. Trends Ecol. Evol ., 19,
101-108.

Joshi J., Schmid B., Caldeira M.C., Dimitrakopoulos P.G., Good J., Harris R. et al. (2001). Local adaptation
enhances performance of common plant species. Ecol. Lett ., 4, 536-544.

Kattge J., Bonisch G., Diaz S., Lavorel S., Prentice I.C., Leadley P.et al . (2020). TRY plant trait database
- enhanced coverage and open access. Global Change Biol .

Keller S.R., Sowell D.R., Neiman M., Wolfe L.M. & Taylor D.R.. (2009). Adaptation and colonization history
affect the evolution of clines in two introduced species. New Phytol ., 183, 678-690.

Kriticos D.J., Webber B.L., Leriche A., Ota N., Macadam 1., Bathols J.et al. (2012). CliMond: global high-
resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol. Evol ., 3,
53-64.

14



Lacey E.P., Roach D.A., Herr D., Kincaid S. & Perrott R. (2003). Multigenerational effects of flowering and
fruiting phenology inPlantago lanceolata . Ecology , 84, 2462-2475.

Le Bagousse-Pinguet Y., Borger L., Quero J.L., Garcia-Gémez M., Soriano S., Maestre F.T. & Gross N.
(2015). Traits of neighbouring plants and space limitation determine intraspecific trait variability in semi-
arid shrublands. Journal of Ecology , 103, 1647-1657.

Liancourt P., Spence L.A.; Song D.S., Lkhagva A., Sharkhuu A., Boldgiv B. et al . (2013). Plant response
to climate change varies with topography, interactions with neighbors, and ecotype. Ecology , 94, 444-453.

Liao H., D’Antonio C.M., Chen B., Huang Q. & Peng S. (2016). How much do phenotypic plasticity and
local genetic variation contribute to phenotypic divergences along environmental gradients in widespread
invasive plants? A meta-analysis. Oikos , 125, 905-917.

MacColl A.D.C. (2011). The ecological causes of evolution. Trends Ecol. Evol ., 26, 514-522.

Maron J.L., Vila M., Bommarco R., Elmendorf S. & Beardsley P. (2004). Rapid evolution of an invasive
plant. Ecol. Monogr ., 74, 261-280.

Matesanz S., Gianoli E. & Valladares F. (2010). Global change and the evolution of phenotypic plasticity in
plants. Ann. NY Acad. Sci ., 1206, 35-55.

Matesanz S. & Ramirez-Valiente J.A. (2019). A review and meta-analysis of intraspecific differences in
phenotypic plasticity: Implications to forecast plant responses to climate change. Global Ecol. Biogeogr ., 28,
1682-1694.

McDonald J.L., Franco M., Townley S., Ezard T.H.G., Jelbert K. & Hodgson D.J. (2017). Divergent demo-
graphic strategies of plants in variable environments. Nat. Ecol. Evol. , 1, 1-6.

Merild J. & Hendry A.P. (2014). Climate change, adaptation, and phenotypic plasticity: the problem and
the evidence. Fvol. Appl ., 7, 1-14.

Meyers S.C. & Liston A. (2008). The biogeography of Plantago ovata Forssk. (Plantaginaceae). Int. J. Plant
Sci ., 169, 954-962.

Montague J.L., Barrett S.C.H. & Eckert C.G. (2008). Re-establishment of clinal variation in flowering time
among introduced populations of purple loosestrife (Lythrum salicaria , Lythraceae). J. Evol. Biol ., 21,
234-245.

Moran E.V., Hartig F. & Bell D.M. (2016). Intraspecific trait variation across scales: implications for under-
standing global change responses. Global Change Biol ., 22, 137-150.

Morris W.F. & Doak D.F. (2005). How general are the determinants of the stochastic population growth
rate across nearby sites? Ecol. Monogr ., 75, 119-137.

Miinzbergovd Z., Hadincovd V., Skdlova H. & Vandvik V. (2017). Genetic differentiation and plasticity
interact along temperature and precipitation gradients to determine plant performance under climate change.
J. Ecol ., 105, 1358-1373.

Oleksyn J., Modrzynski J., Tjoelker M.G., Reich P.B. & Karolewski P. (1998). Growth and physiology of
Picea abies populations from elevational transects: common garden evidence for altitudinal ecotypes and
cold adaptation. Funct. Fcol ., 12, 573-590.

Palacio-Lopez K., Beckage B., Scheiner S. & Molofsky J. (2015). The ubiquity of phenotypic plasticity in
plants: a synthesis. Fcol Evol , 5, 3389-3400.

Palacio-Lépez K. & Gianoli E. (2011). Invasive plants do not display greater phenotypic plasticity than their
native or non-invasive counterparts: a meta-analysis. Oikos , 120, 1393-1401.

15



Pfister C.A. (1998). Patterns of variance in stage-structured populations: evolutionary predictions and eco-
logical implications. Proc. Natl. Acad. Sci. USA , 95, 213-218.

Poorter H., Niinemets U., Poorter L., Wright I.J. & Villar R. (2009). Causes and consequences of variation
in leaf mass per area (LMA): a meta-analysis. New Phytol ., 182, 565-588.

Preite V., Stocklin J., Armbruster G.F.J. & Scheepens J.F. (2015). Adaptation of flowering phenology and
fitness-related traits across environmental gradients in the widespread Campanula rotundifolia .Evol. Ecol .,
29, 249-267.

Quinn G.P. & Keough M.J. (2002). Experimental design and data analysis for biologists. Cambridge Uni-
versity Press, Cambridge, UK.

R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria.

Reich P.B., Wright I.J., Cavender-Bares J., Craine J.M., Oleksyn J., Westoby M. et al. (2003). The evolution
of plant functional variation: traits, spectra, and strategies. Int. J. Plant Sci ., 164, S143-S164.

Revelle W. (2018). psych: Procedures for Personality and Psychological Research. V.1.8.3. Northwestern
University, Evanston, Illinois, USA. https://CRAN.R-project.org/package=psych.

Richards C.L., Bossdorf O., Muth N.Z., Gurevitch J. & Pigliucci M. (2006). Jack of all trades, master of
some? On the role of phenotypic plasticity in plant invasions. Ecol. Lett ., 9, 981-993.

Roach D.A. & Wulff R.D. (1987). Maternal effects in plants. Ann. Rev. Ecol. Syst ., 18, 209-235.

Roach D.A. (2003). Age-specific demography in Plantago : Variation among cohorts in a natural plant
population. Ecology , 84, 749-756.

Rosche C., Hensen 1., Schaar A., Zehra U., Jasieniuk M., Callaway R.M.et al. (2019). Climate outweighs
native vs. nonnative range-effects for genetics and common garden performance of a cosmopolitan weed.
Ecol. Monogr ., 89, e01386.

Roybal C.M. & Butterfield B.J. (2019). Species-specific trait-environment relationships among populations
of widespread grass species. Oecologia , 189, 1017-1026.

Sagar G.R. & Harper J.L. (1964). Plantago Magjor L., P. Media L. and P. Lanceolata L. J. Ecol. , 52, 189-221.

Santangelo J.S., Johnson M.T.J. & Ness R.W. (2018). Modern spandrels: the roles of genetic drift, gene flow
and natural selection in the evolution of parallel clines. Proc Royal Soc B: Biol Sci , 285, 20180230.

Scheiner S.M. (1993). Genetics and evolution of phenotypic plasticity. Ann. Rev. Ecol. Syst ., 24, 35-68.

Shefferson R.P. & Roach D.A. (2012). The triple helix of Plantago lanceolata : genetics and the environment
interact to determine population dynamics. Ecology , 93, 793-802.

Shipley B., De Bello F., Cornelissen J.H.C., Laliberté E., Laughlin D.C. & Reich P.B. (2016). Reinforcing
loose foundation stones in trait-based plant ecology. Oecologia , 180, 923-931.

Sih A. (2004). A behavioural ecological view of phenotypic plasticity. In: Phenotypic Plasticity: Functional
and Conceptual Processes (eds. deWitt T.J & Scheiner SM). Oxford University Press New York, pp. 112-126.

Silvertown J., Franco M. & Menges E. (1996). Interpretation of elasticity matrices as an aid to the manage-
ment of plant populations for conservation. Conserv. Biol ., 10, 591-597.

Schlichting C.D. & Levin D.A. (1984). Phenotypic plasticity of annual Phloz : tests of some hypotheses. Am.
J. Bot ., 71, 252-260.

16



Smith A.L., Hodkinson T.R., Villellas J., Catford J., Csergé A.M., Blomberg S.P. et al. (2020). Global gene
flow releases invasive plants from environmental constraints on genetic diversity. Proc. Natl. Acad. Sci.
USA |, 117, 4218-4227.

Stearns S.C. & Kawecki T.J. (1994). Fitness sensitivity and the canalization of life-history traits. Fvolution
, 48, 1438-1450.

Sultan S.E. (1995). Phenotypic plasticity and plant adaptation. Acta Bot. Neerl ., 44, 363-383.

van de Pol M., Bailey L.D., McLean N., Rijsdijk L., Lawson C.R. & Brouwer L. (2016). Identifying the best
climatic predictors in ecology and evolution. Methods Ecol Fvol , 7, 1246-1257.

Van Tienderen P.H. & Van der Toorn J. (1991). Genetic differentiation between populations of Plantago
lanceolata . 11. Phenotypic selection in a transplant experiment in three contrasting habitats.J. Ecol. , 79,
43-59.

Villellas J. & Garcia M.B. (2013). The role of the tolerance—fecundity trade-off in maintaining intraspecific
seed trait variation in a widespread dimorphic herb. Plant Biol. , 15, 899-909.

Villellas J. & Garcia M.B. (2017). Intrinsic and extrinsic drivers of recruitment across the distribution range
of a seed-dimorphic herb.Plant Ecol ., 218, 529-539.

Violle C., Enquist B.J., McGill B.J., Jiang L., Albert C.H., Hulshof C.et al. (2012). The return of the
variance: intraspecific variability in community ecology. Trends Ecol. Fvol ., 27, 244-252.

Violle C., Navas M.L., Vile D., Kazakou E., Fortunel C., Hummel I.et al. (2007). Let the concept of trait be
functional! Oikos , 116, 882-892.

Violle C., Reich P.B., Pacala S.W., Enquist B.J. & Kattge J. (2014). The emergence and promise of functional
biogeography. Proc. Natl. Acad. Sci. USA , 111, 13690-13696.

Weiner J., Campbell L.G., Pino J. & Echarte L. (2009). The allometry of reproduction within plant popu-
lations. J. Ecol. , 97, 1220-1233.

Winn A.A. & Gross K.L. (1993). Latitudinal variation in seed weight and flower number in Prunella vulgaris
. Oecologia , 93, 55-62.

Woods E.C., Hastings A.P., Turley N.E., Heard S.B. & Agrawal A.A. (2012). Adaptive geographical clines
in the growth and defense of a native plant. Fcol. Mon. , 82, 149-168.

Zhang J. & Lechowicz M.J. (1994). Correlation between time of flowering and phenotypic plasticity in
Arabidopsis thaliana (Brassicaceae).Am. J. Bot. , 81, 1336-1342.

Supporting information

Additional Supporting Information may be downloaded via the online version of this article at Wiley Online
Library (www.ecologyletters.com).

Tables

Table 1. Assessment of the utility of observational field data to predict genetic differentiation in Plantago
lanceolata . Vegetative traits are biomass and specific leaf area (SLA), and biomass corrected reproductive
traits are probability of flowering (Flw Prob) and fecundity. The effects of environmental drivers (Aridity,
Temperature, Vegetation Cover and Mowing) on each trait are compared for greenhouse (Grh) vs. field (F1d)
conditions, based on effects from best models shown in Figures 3 and 5. The comparison (Comp) determines
genetic differentiation to be 1) predictable if effects in greenhouse and field conditions share presence or
absence, and direction if present (green) or 2) unpredictable otherwise (black; cf. Fig. 1). Signs of effects are
“+7 (positive), “” (negative), “~” (inconsistent direction due to interactions; note some interactions do not
lead to inconsistent direction), “abs” (absent) and “na” (not analysed; no comparison is made).
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Trait Aridity Aridity Aridity Temperature Temperature Temperature Cover Cover C
Grh Fld Comp Grh Fld Comp Grh Fld C

(Vegetative)

Biomass - abs abs abs - +

SLA + abs - - - abs

(Reproductive)

Flw Prob abs abs abs abs - -

Fecundity + + + - abs abs

Figure legends

Figure 1. Predictability of trait genetic differentiation among populations after comparison of experimental
data and observational field data. In a common garden experiment with individuals from multiple prove-
nances (“source” environments) growing in a set of treatments (“exposure” environments), one can partition
the independent (a-e) or interacting (f-h) effects of genetic differentiation and phenotypic plasticity. Pop-
ulation genetic differentiation is identified as trait variation along source environments (blue lines), and
plasticity is detected by comparing trait values between low (light blue) and high (dark blue) levels of the
exposure environment. Note that source and exposure environments are driven here by the same underlying
environmental factor. The resulting pattern expected to be observed across field populations is shown with
red dashed lines, linking two extreme populations along the environmental gradient in the treatment closest
to their corresponding source conditions (from low to high treatments). Observational field data will pro-
vide a reliable prediction of genetic differentiation (green squares) in the presence of (a) only source effects,
(c) source and exposure effects with the same direction, or (f) source effects with consistent direction but
inconsistent slope across exposure environments. In contrast, genetic differentiation will not be predictable
from field patterns (black squares) in the presence of (b) only exposure effects, (d,e) source and exposure
effects with opposite directions (“countergradient variation”), or (g,h) source effects with inconsistent direc-
tion across exposure environments. Note that the x-axis contains source rather than exposure environment
(this differs thus from classical displays of plasticity in reaction norms, as the exposure environment is best
envisaged as a set of treatments with observations over a continuous environmental gradient comprising the
source environments).

Figure 2. Location of native (black) and non-native (grey) study populations of Plantago lanceolata in
geographical (a) and environmental (b) space. Circles indicate populations studied in the field; triangles
indicate populations studied in the field and included in the greenhouse experiment. Colours filling the
world map in a) correspond to mean annual temperature and precipitation as shown in b). In b), small black
and grey background points correspond to the environmental niche occupied by the species in the native and
non-native range, respectively, according to occurrence data from GBIF and BIEN databases.

Fig. 3. Effects from the best model (blue) and competing models (grey; [?]AIC, < 2) for each trait
of Plantago lanceolata in the greenhouse, with 95% confidence intervals. The effects correspond to source
environmental drivers (A = Aridity; T = Temperature; C = Vegetation Cover; M = Mowing), experimental
treatments of Water (W4 = dry) and Light (Lgs and Lss), and the interactions between them. Vegetative
traits (a-c) are biomass, specific leaf area (SLA) and root:shoot ratio (RSR), and reproductive traits (d-e)
are probability of flowering (“Flw Prob”) and fecundity (“Fecund”). For simplicity, we omit the effects of
control biomass. The effects of Lg4 treatment and Mowing were not tested in RSR and fecundity, respectively
(absent labels; see Material and methodsfor details).

Figure 4. Effects of two source environmental drivers (A = Aridity; C = Vegetation Cover) and their
corresponding exposure treatments (Water and Light) on Plantago lanceolata traits in the greenhouse. Veg-
etative traits are biomass (a-c), specific leaf area (SLA; d-f) and root:shoot ratio (RSR; g-i), and reproductive
traits are probability of flowering (Flw Prob; j-1) and fecundity (Fecund; m-o0). Results are presented with
95% confidence intervals (CI), and correspond to the best model according to Akaike Information Criterion
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(empty subpanels or bars indicate no effect in the best model). In the left and middle columns, trait values
are shown for wet (Wy) and dry (Wq4) water treatments, and for Ligg, Les and Lgslight treatments. All
traits are mean centred and scaled by the standard deviation, except for probability of flowering (Y-axis in
logit scale). Source drivers are mean centred and scaled by two times the standard deviation (see Appendix
S3). The distribution of populations along source environment values is shown by rug marks on the inside of
the x axis. In the right column, the effects of source environment (genetic differentiation; yellow), exposure
environment (plasticity; orange) and their interaction (red) are compared. Note that effect sizes are given
as absolute values for comparison, and only the CI upper limit is shown.

Fig. 5. Effects from the best model (blue) and competing models (grey; [?]AIC. < 2) for each trait
of Plantago lanceolata in the field, with 95% confidence intervals. The effects correspond to environmental
factors (A = Aridity; T = Temperature; C = Vegetation Cover; M = Mowing), non-native range (Runat ),
and the interactions between them. Vegetative traits (a-b) are biomass and specific leaf area (SLA), and
reproductive traits (c-d) are probability of flowering (“Flw Prob”) and fecundity (“Fecund”). The effects
of environmental factors alone correspond to native populations; the effects of environmental factors on
non-native populations can be deduced by summing environmental effects alone and the effects of range x
environment interactions. For simplicity, we omit the effect of biomass in models of probability of flowering
and fecundity.
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