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Abstract

Characterization of microbial assemblages via environmental DNA metabarcoding is increasingly being used in routine monitor-
ing programs due to its sensitivity and cost-effectiveness. Several programs have been developed recently which infer functional
profiles from 16S rRNA gene data using hidden-state prediction (HSP) algorithms. These might offer an economic and scalable
alter-native to shotgun metagenomics. To date, HSP-based methods have seen limited use for benthic marine surveys and their
performance in these environments remains unevaluated. In this study, 16S rRNA metabarcoding was applied to sediment
samples collected at 0 and [?] 1200 m from Norwegian salmon farms, and three metabolic inference approaches (PAPRICA, PI-
CRUSt2 and TAX4FUN2) evaluated against metagenomics and environmental data. While metabarcoding and metagenomics
recovered a comparable functional diversity, the taxonomic composition differed be-tween approaches, with genera richness
up to 20x higher for metabarcoding. Comparisons between the sensitivity (highest true positive rates) and specificity (lowest
true negative rates) of HSP-based programs in detecting functions found in metagenomics data ranged, respectively, from 0.52
and 0.60 to 0.76 and 0.79. However, little correlation was observed between the relative abundance of their specific functions.
Functional beta-diversity of HSP-based data was strongly associated with that of metagenomics (r [?] 0.86 for PAPRICA and
TAX4FUN2) and responded similarly to the impact of fish farm activities. Our results demonstrate that although HSP-based
metabarcoding approaches provide a slightly different functional profile than metagenomics, partly due to recovering a distinct
community, they represent a cost-effective and valuable tool for characterizing and assessing the effects of fish farming on benthic

ecosystems.

1 | Introduction

Aquatic biomonitoring has drastically changed in the last decade with the advent of High Throughput-
Sequencing (HTS) and the substantial cost reduction of sequencing (Thomsen & Willerslev, 2015; Valentini
et al., 2016; Deiner et al., 2017; Lobo et al., 2017; Ruppert, Kline & Rahman, 2019; Wang et al., 2019).
Environmental DNA (eDNA) amplicon-based metabarcoding is increasingly being used for rapid and cost-
effective community characterization, and is now often promoted and is being gradually integrated into
routine monitoring programs (Leese et al., 2016; Danovaro et al., 2016; Pawlowski et al., 2018; Pilliod et al.,
2019).

Metagenomics, herein defined as the study of the entire genetic material recovered from environmental samp-
les, has also received considerable attention in the last few years (Bourlat et al., 2013; Grossart et al., 2020).
While amplicon-based eDNA metabarcoding provides information on which organisms are present, metage-
nomics enables insights into the functions they possess. This is particularly relevant when microorganisms



are being used as indicator organisms. For organisms such as bacteria, little is known about the ecology
of the vast majority of species. As such, it is their metabolic capability rather than their identity that is
usually of greatest interest, and likely to provide more information about current environmental conditions.
Taxonomic and functional profiles can respond differently to biogeography, abiotic environmental variables
(e.g. organic content, metal concentration) and community processes and interactions. As such, they can
exhibit different level of stochasticity and temporality, and provide complementary information that may
increase our understanding of the mechanisms behind community turnover (Barberan et al., 2012; Louca,
Parfrey & Doebeli, 2016; Hornick & Buschmann, 2018; Cordier et al., 2020). Having both taxonomic and
functional information also enables the computation of functional redundancy within the community, which
may also help assess resilience (Escalas et al., 2019).

While metagenomics may eventually replace metabarcoding for whole community assessment, it’s mainstream
use is still limited by its relatively low sample throughput and cost-efficiency, and heavy computational and
data management requirements (Bowman & Ducklow, 2015; Nagpal, Haque & Mande, 2016; Breitwieser,
Lu & Salzberg, 2018). To circumvent these issues, several programs have been developed to infer metabolic
profiles from eDNA 16S ribosomal RNA (rRNA) gene data (e.g. Functional Annotation of Prokaryotic
Taxa |[Faprotax| (Louca, Parfrey & Doebeli, 2016), Piphillin (Iwai et al., 2016), Vikodak (Nagpal, Haque &
Mande, 2016), Prediction by phylogenetIC plAcement [Paprica] (Bowman & Ducklow, 2015), Phylogenetic
Investigation of Communities by Reconstruction of Unobserved States [Picrust2; Douglas et al., 2019) and
Tax4Fun2 (Wemheuer et al., 2018). The last three methods use a hidden-state prediction (HSP) approach
(Zaneveld & Thurber, 2014) where genomic content is inferred according to the position of the genome in
a reference phylogenetic tree. These methods have been shown to provide functional profiles that correlate,
with a varying degree of success, to metagenomics and metabolomics profiles (e.g. Bowman & Ducklow,
2015; Douglas et al., 2019; Sun, Jones, & Fodor, 2020; Wemheuer et al., 2018). While not as accurate as
metagenomics functional analyses, these HSP methods can provide more complete metabolic profiles as they
do not require high sequencing depth to assign functions (e.g. pathways of rare taxa can still be assigned;
Langille et al., 2013), and may be useful in situations where metagenomics would be prohibitively expensive,
such as in broad microbial routine monitoring surveys.

Metabolic inference methods have been evaluated and used in a large variety of studies, for example in clinical
trials (Millares et al., 2015), oyster aquaculture (Arfken et al., 2017), aquatic urban systems (Wang et al.,
2018), acid mine drainages (Aguinaga et al., 2018), subterranean estuaries (Hong et al., 2019), gut microbiota
(Pacheco-Sandoval et al., 2019), marine biofilms (Salerno et al., 2018), and coral reef associated microbiomes
(Pearman et al., 2019). However, there has been limited use in the context of benthic marine monitoring
surveys (Hornick & Buschmann, 2018; Laroche et al., 2018; Cordier, 2020). Before this application can be
routinely applied in such situation, it is essential to evaluate its performance. In particular, the accuracy of
functional inference methods is strongly influenced by the completeness of the reference databases and by
the genetic plasticity of some taxonomic groups (Bowman & Ducklow, 2015). For example, certain functions,
especially those involving few genes, tend to occur at shallow phylogenetic depth (Martiny et al., 2015) and
can be difficult to correctly predict.

The aim of this study was to evaluate the performance of three metabolic inference methods, Paprica, Picrust2
and Tax4Fun2, against metagenomics and environmental data, in the context of salmon farm benthic surveys.
In particular, we aimed to: 1) compare predictions and abundance correlations between 16S rRNA amplicon-
based metabarcoding functional inference approaches (hereafter referred to as HSP methods) and shotgun
metagenomics functional profiling, 2) contrast the taxonomic and functional microbial diversity recovered
from metabarcoding and metagenomics, and 3) assess and compare the sensitivity of functional communities
derived from HSP methods and metagenomics with respect to microbial turnover and in correlation with
environmental data.



2 | Materials and methods
2.1 | Sample collection

Benthic sediment samples (depths of 32-85 m) were collected at four large scale Atlantic salmon (Salmo
salar ) farms, two located in a semi-exposed coastal region of mid-Norway (farms: FRQ and SM@) and two
inside fjords in northern Norway (farms: NOR, STO) (Fig. 1). At FR@, six samples were collected: three
biological replicates located next to the pen (0 m), and three reference (control) replicates located 1,200
m away from the fish pens. The objective of this sampling design was to compare bacterial communities
between impacted and non-impacted sediments. To test HSP methods across different geographic settings
within Norway, samples were also collected next to the pen at the NOR and STO farms (one each) in northern
Norway, and two samples at SM (Southern-Norway), one next to the pen and one located at a reference
site located 7,920 m away from the farm. Approximately 5 g of the top (1 cm) sediment layer, collected with
a van Veen grab sampler (surface area 0.1 m?), was subsampled per grab with a sterile spatula and stored
at -20°C until further processing.

2.2 | Physico-chemical and macrofaunal analyses

A complimentary suite of environmental parameters was obtained from parallel studies. The prevalence of
three terrestrial fatty acids (oleic acid, 18:1n-9; linoleic acid, 18:2n-6; and o-linolenic acid, 18:3n-3) in the
sediments, which indicate fish-feed-derived organic matter (White et al., 2017), were assessed by Folch lipid
extraction and direct methylation as described in Woodcock et al. (2019). The organic and inorganic carbon
content of the sediment was determined by drying the sediment at 40°C for 48 h followed by combustion at
450°C for 2 h (LOI450). Measures of benthic respiratory fluxes, including ammonium (NHy), total carbon
dioxide (TCO2), and oxygen (O2) were obtained from, and following the methods described in Keeley et al.
(2019). Additionally, the macrofaunal communities were obtained from and characterized using the methods
described in Keeley et al. (2019) and in Keeley et al. (In prep .).

2.3 | DNA extraction

Sediment samples were homogenized with a sterile stainless-steel micro spatula (soaked in 50% bleach solution
- commercial bleach diluted with double-distilled water [ddH5O]) for a minimum of 5 min and rinsed with
ddH»0 between each sample), subsampled (0.25 g), and processed with the DNeasy PowerSoil kit (QIAGEN,
California, USA) following the manufacturer’s protocol. DNA purity was measured with a Nanophotometer
(Implen, Munich, Germany), integrity assessed on 1.5% agarose gels, and quantity measured with a Qubit®)
Fluorometer (Life Technologies).

To assess potential cross-contamination, extraction blanks (sediment replaced by ddH,O) were included. All
sample handling and extraction steps took place in a dedicated DNA laboratory that was decontaminated
with 50% bleach solution prior to DNA extraction.

2.4 | Targeted 16S rRNA library preparation

DNA extracts were set at equimolar concentration (5 ng/uL) with ddH5O for a total volume of 25 uL per
sample, stabilized with DN Astable (Biomatrica, California, USA) following the manufacturer’s protocol, and
dry-shipped to the Cawthron Institute (Nelson, NZ) for 16S rRNA library preparation. Upon arrival, DNA
extracts were rehydrated with 25 uL of ddH5O, and a segment of the V3-V4 region of the 16S ribosomal
RNA gene (approximately 450 base pairs [bp]) was PCR amplified using the forward S-D-Bact-0341-b-S-17:
5-CCT ACG GGN GGC WGC AG-3’ and reverse S-D-Bact-0785-a-A-21: 5’- GAC TAC HVG GGT ATC
TAA TCC-3" primers from Klindworth et al. (2013), modified to include Illumina™ overhang adaptors.

PCR reactions consisted of 22 pL of AmpliTaq Gold ? 360 PCR Master Mix (Life Technologies), 8 uL of
ddH;0, 1 uL of each primer (10 uM, IDT, Iowa, USA), 5 uL of GC enhancer (Life Technologies), and 2 pL of



template DNA (5 ng/uL). The reaction cycling conditions were 94°C for 3 min, followed by 30 cycles of 94°C
for 30 s, 52°C for 30 s, 72°C for 1 min, with a final extension step at 72°C for 5 min. Each PCR included a
negative control (no template sample) to ensure the absence of cross-contamination.

Amplicon purification and normalization (2 ng/uL) were performed with the SequalPrep™ Normalization
plates (Invitrogen, California, USA) following the manufacturer’s instructions, and submitted to New Zealand
Genomics Ltd (Auckland, New Zealand) for indexing with the Nextera™ DNA library Prep Kit (Illumina,
California, USA), pooling and paired-end (2 x 250 bp) sequencing on a Illumina™ MiSeq. One blank sample
(ddH50) was included prior to indexing and sequencing to control for potential contamination. Sequences
are available from the NCBI Sequence Read Archive (SRA) under project number PRJNA661323.

2.5 | Metagenomics library preparation

DNA extracts were set at equimolar concentration (8 ng/uL) with 10 Mm Tris and sent on dry ice to the Nor-
wegian Sequencing Center (NSC, Oslo) for library preparation with the Nextera™ DNA Flex Tagmentation
kit (lumina, California, USA) following the manufacturer’s protocol. After indexing, samples were pooled
and sequenced on 4 Novaseq SP flow cell (Illumina, California, USA) with a 2 x 150 bp paired-end protocol.
One blank sample (ddH20) was included prior to indexing and sequencing to assess potential contamination.
Sequences are available from the NCBI Sequence Read Archive (SRA) under project number PRINA661323.

2.6 | Bioinformatic analysis of 16S rRNA data

Primers from the demultiplexed fastq files were removed with cutadapt (version 2.6; Martin, 2011) and reads
quality filtered, denoised, merged and chimera filtered with the DADA2 R program (version 1.14; Callahan
et al., 2016). Prior to quality filtering, reads were truncated at 226 and 220 bp on the 5’ end to remove
the lower quality section and reduce the number of reads lost during quality trimming. Quality filtering and
denoising were performed using the default parameters, and merged using a perfect minimum overlap of
10 bp. Chimera removal was performed using the consensus method where sequences found to be chimeric
in the majority of samples (default value = 90 %) are discarded. Sequences found in negative controls, in-
cluding DNA extraction, PCR, indexing and sequencing blanks were examined and subsequently removed
from across all samples. Sequences unclassified at kingdom level or not identified as bacteria were discarded.
Additionally, rare amplicon sequence variants (ASVs; less than 10 reads across the entire study) were remo-
ved from the dataset. The resulting sequences were used for taxonomic and functional profiling using three
pipelines: Paprica (version 0.5.2; Bowman & Ducklow, 2015), Picrust2 (version 2.2.0_b; Douglas et al., 2019)
and Tax4Fun2 (version 1.1.4; Wembheuer et al., 2018). These methods were chosen for their popularity in
the scientific literature, their compatibility with large datasets, and their reliance on KO (KEGG ortholog
numbers) and EC (Enzyme commission numbers), which can be easily assessed against metagenomics results
obtained from Humann2 (Franzosa et al., 2018), our chosen functional profiling methodology. Prior to the
taxonomic assignment and metabolic inference, sequencing depth per sample was visualized with the “rare-
curve” function of the “vegan” R package (version 2.5.6; Oksanen et al., 2019) to ensure that all samples had
sufficient sequencing depth to recover most of the diversity (Fig. S1). The default parameters implemented
within each method were used to keep the analysis as simple as possible.

2.7 | Bioinformatic analysis of metagenomics data

The metagenomics pipeline used is based on the fully automated workflow of the Humann2 software
(version 2.8.2; Franzosa et al., 2018). Reads were first pre-processed with KneadData (version 0.7.4; htt-
ps://bitbucket.org/biobakery /kneaddatae) to perform both quality filtering with Trimmomatic (version 0.39;
Bolger, Lohse, & Usadel, 2014), and screening of undesired reads (herein phix, human and salmon DNA) with
Bowtie2 (version 2.3.5.1; Langmead & Salzberg, 2012). Profiling of taxa was performed with MetaPhlAn2
(version 2.7.8; Truong et al., 2015) and results used to construct a sample-specific database from functionally



annotated pangenomes (referred to as the ChocoPhlAn database). Humann2 then performed a nucleotide-
level mapping with Bowtie2 of all reads against the custom database, followed by a translated search with
Diamond (version 0.8.36.98; Buchfink, Xie, & Huson, 2015) for those that did not align. Reads that re-
mained unaligned were subjected to an additional translated search against the UniRef50 protein database
(Suzek et al., 2015). The gene family abundance table was then converted to a KO and EC tables using the
“Humann2_regroup_table” function and the uniref50_ko and uniref50_leveldec groups, respectively.

2.8 | Data analysis and statistics

Taxonomic and functional richness differences between metabarcoding and metagenomics data were visual-
ized with box and bar plots using the “ggplot2” R package (version 3.3.1; Wickham, 2016).

Using presence/absence data, the prediction of pathways from HSP methods (herein Paprica, Picrust2 and
Tax4Fun2) was tested against the metagenomics profiles using the “caret” R package (version 6.0.86; Kuhn,
2020) and the “confusionMatrix” function, and visualized with the “alluvial” R package (version 0.1.2;
Bojanowski & Edwards, 2016).

Spearman correlations of functions across all samples and per samples between the HSP methods and the
metagenomics data were assessed using the “stats” R package (version 3.6.1; R Core Team, n.d.) and the
“cor” function. For this analysis, EC and KO abundances were transformed to the centered-log ratio with
the “clr” function of the “composition” R package (version 1.40.4; van den Boogaart, Tolosana-Delgado,
& Bren, 2020) and only functions shared between inference methods and metagenomics were maintained.
Because several ECs and KOs co-occur within pathways and genomes, correlation of functions between HSP
and metagenomic samples can be naturally high, even between completely unrelated samples (Douglas et
al., 2019; Sun, Jones & Fodor, 2020). To take this dependency into account, we added a randomized dataset
referred to as “null expectation” for each HSP method. Based on the original ASV abundance table, the
permaswap function of the “vegan” R package (parameters: times = 1, burnin = 20000, thin = 500, mtype =
”count”, shuffle = "both”) was first used to create a dataframe with permuted samples and ASVs. This table
was then inputted in to each HSP method to obtain “null expectation” datasets of functional inferences.
Differences between results of the actual and “null expectation” data were tested with Welch two sample
t-tests.

Correspondence of ASV and functional communities between HSP methods with metagenomics was assessed
with a procrustes test using the “protest” function (symmetric analysis with 9,999 permutations and scores =
“sites”) of the “vegan” R package (version 2.5.6; Oksanen et al., 2019). The correspondence of the ASV and
functional communities derived from HSP and metagenomics with macrofaunal communities (transformed
with the Wisconsin method implemented in “vegan”) as well as physico-chemical data (scaled with the rda
function of the “vegan”) was also assessed with procrustes tests using the same parameters. Physico-chemical
data were only completely available for the FR® locality, therefore only samples from this site were kept for
the latter analysis. In addition to the procrustes tests, the sensitivity of each dataset towards fish farming
was assessed using permutational analyses of variance (PERMANOVA; Anderson, 2005) between samples
collected at the 0 m and [?] 1200 m from the pen. For the procrustes and PERMANOVA analyses, two
methodologies were evaluated: 1) Euclidean distance matrices computed from centered-log ratio transformed
abundances, as suggested in Gloor, Macklaim, Pawlowsky-Glahn, & Egozcue (2017) for compositional data,
and 2) Jaccard distance matrices for presence/absence data. Multivariate homogeneity of groups dispersions
analyses between distance categories (0 m and [?] 1200 m) were performed with the “betadisper” function
of the “vegan” R package.

Compared to reference sites, benthic environments in proximity to fish farm activities are typically char-
acterized by higher concentrations of organic matter and nutrients, especially phosphorus and nitrogen
(Buschmann et al., 2006; Wang et al., 2012), which can lead to eutrophic conditions and anaerobic microbial
degradation (e.g. sulphate reduction and methanogenesis; Valdemarsen, Kristensen & Holmer, 2009). To
explore this, the response of pathways associated to the nitrogen and sulfur cycle between near and far-field



sites, and between metagenomics and HSP-based pathways profiles were compared. Pathways were clustered
to their parent class based on the MetaCyc database (https://metacyc.org/) and only classes involved in
nitrogen (fixation, ammonification, nitrification, denitrification and degradation) and sulfur cycle (oxidation,
reduction and degradation) were maintained. Groups of pathways that associated to more than one parent
class were filtered out. The response of the remaining classes between pen and reference sites was analyzed
using centered-log ratio transformed data and the ‘lm’ function of the ‘stats’ R package and visualized with
barplots using the ‘ggplot2’ R package. Only Paprica and Picrust2 provide pathways data derived from
the MetaCyc database and are similar to those of Humann2, therefore only these two HSP methods were
assessed. In addition, functional groups determined by the Faprotax methodology (version 1.2.1; Louca,
Parfrey & Doebeli, 2016), where ecologically relevant groups are assigned to ASVs based on available liter-
ature from cultured strains, was performed and differential abundance assessed with Ancom2 (version 2.1;
Kaul et al., 2017) between pen and reference sites in order to compare results with metagenomics and HSP
data.

3 | Results

3.1 | 16S rRNA sequencing and pre-processing

Excluding the controls, a total of 1,374,973 reads (mean of 122,640 per sample) were sequenced. Quality
filtering, denoising, merging and removing chimeric sequences resulted in 36% of reads being discarded (Table
S1). Discarding sequences found in the blanks (Table S2) reduced read count by 2.1% and resulted in the
loss of 12 ASVs. Removing non-bacterial sequences and those either assigned to chloroplast or unidentified
at kingdom level resulted in the loss of 8.5% of the reads. Discarding ASVs with less than 10 reads further
decreased the number of ASVs and reads by 44.8% and 3.8%, respectively. Final reads count per sample
averaged 65,966 (standard deviation [sd] = 21,526), with ASV richness reaching a plateau for all samples
(Fig. S1).

3.2 | Metagenomics sequencing and pre-processing

A total of 314,003,232 reads with a mean of 31,400,323 per sample were obtained from the 1/2 Novaseq
SP flow cell (Table S3). Trimming low quality reads reduced their number by 19.3% and removing reads
associated to phix and human DNA by 0.6%, and to salmon DNA by another 0.6% (Table S3).

On average, 4,425.6 gene families per sample matched the ChocoPhLAn database after nucleotide alignment
with Bowtie2 (Table S4). Translating reads with diamond and using the uniref50 database, an average of
36% of reads could be aligned, with a mean of 1,084,334 gene families identified per sample (Table S4).

3.3 | Metabarcoding versus metagenomics-based functional profiling

In both the 16S rRNA metabarcoding and metagenomics dataset, the two main bacterial Phyla were Pro-
teobacteria and Bacteroidetes (Fig. 2A). The Proteobacteria families Desulfobacteraceae, Psychromon-
adaceae and Vibrionaceae, and the Bacteroidetes family Flavobacteriaceae were the most abundant taxa.
The total number of bacterial families detected was substantially higher for metabarcoding (224) compared
to metagenomics (15; Fig. 2B). Subsequently, the mean number of families detected per sample was also
considerably higher for metabarcoding (114) versus metagenomics (4.3) (Fig. 2B). Conversely, the overall
and mean number of functions per sample, either ECs or KOs, were relatively similar between HSP methods
and metagenomics (Fig. 2C).

Differences in the detection of functions (ECs and KOs) by HSP methods and metagenomics were assessed
with confusion matrices (Fig. 3). The results indicate that Paprica had the highest sensitivity (highest true
positives rate; 0.76), followed by Picrust2 (0.66) and Tax4Fun2 (0.52). Conversely, Paprica showed lowest



specificity (lowest true negative rate) of 0.6, while Picrust2 and Tax4Fun2 showed similar results with 0.78
and 0.79, respectively.

Overall, correlations of the abundance of HSP-derived functions with metagenomics was low, with a mean
value of 0.07, 0.2 and 0.16 for Paprica, Picrust2 and Tax4Fun2, respectively, and hardly differed from
the null expectation datasets (Fig. 4). At the sample level, Spearman correlations of the HSP datasets
with metagenomics was highest for Picrust2 (0.81), followed by Tax4Fun2 (0.67) and Paprica (0.6), but no
significant difference with null expectation datasets was observed (Fig. 4 and Table S5).

The correspondence of the ASV (16S rRNA metabarcoding) community with the functional community
derived from metagenomics was relatively weak using either centered-log ratio transformation (r = 0.49,
p.value = 0.21) or presence/absence (r = 0.4, p.value = 0.44) data (Fig. 5). This contrasts with the strong
and significant correspondence of the HSP-derived functional communities with metagenomics, with Paprica
and Tax4Fun2 showing highest correlation (r [?] 0.87; Fig. 5). Correspondence of these two HSP methods
with metagenomics noticeably improved when using presence/absence data and Jaccard dissimilarity indices
(r = 0.92 and 0.04, respectively; Fig. 5).

3.4 | Sensitivity of 16S rRNA metabarcoding and metagenomics

The response of the taxonomic (ASVs) and functional communities toward fish farm activities was tested
for each dataset with a PERMANOVA, by comparing the variance between samples collected at the pen
(0 m) versus those collected at reference sites ([?] 1200 m). Except for Picrust2, the data transformed to
the centered-log ratio showed significant differences between near and far-field samples. In general, highest
sensitivity was achieved when using presence/absence data and Jaccard dissimilarity indices, with Paprica
and Tax4Fun2 being the most responsive (R? = 0.39 and 0.4, respectively; Table 1). While betadisper
analysis of homogeneity of groups dispersions showed higher variance in samples collected at the pen, no
significant difference was detected between distance groups (Fig. S2 and S3, Table S6).

Correlation of the taxonomic (ASVs) and functional communities with macrofaunal communities and physico-
chemical data were explored with Protest analyses. While the taxonomic profile did not significantly correlate
with the macrofauna, all functional communities were strongly and significantly correlated (r [?] 0.68), with
the strongest associations with Paprica, Tax4Fun2 and metagenomics data (Table 2). Conversely, only the
EC-based datasets (Paprica and Humann2 EC) were significantly associated with the physico-chemical data
(r [?] 0.96, p.value [?] 0.048), although correlations were relatively strong with all molecular datasets (r [?]
0.5; Table 2).

Pathways of particular interest involved in the nitrogen and sulfur cycle were compared between pen and refer-
ence sites and between the metagenomics (Humann2) and 16S rRNA HSP-based data (Fig. 6). Only four out
of the nine pathways investigated were found to be affected by fish farm activities within the metagenomics
and Picrust2 datasets. These included nitrate-reduction (increased prevalence; +), allantoin-degradation (re-
duced prevalence; -), sulfur-oxidation (-) and glycosaminoglycan-degradation (+). In comparison, Paprica
identified four additional pathways affected by fish farming including nitrogen-fixation (+), sulfur-reduction
(-), sulfite and sulfide-reduction (-), and dimethylsulfide-degradation (4). All pathways found to be either
positively or negatively affected by fish farm activities in the metagenomes were found to respond similarly
in both Paprica and Picrust2 datasets. Since we expected sulfur related pathways of both metagenomics and
16S rRNA HSP-based data to be more strongly affected by fish farm activities, we also assessed functional
groups determined by the Faprotax methodology (based on the taxonomic identification of the ASVs). Us-
ing Faprotax, functional groups more prominent near the pens included ureolysis, dark hydrogen oxidation,
sulfite respiration and nitrogen fixation, while those more abundant at the reference sites included aerobic
ammonia oxidation and oxygenic photoautotrophy (Fig. S4).



4 | Discussion

In this study, our main objectives were to assess the level of correspondence between the taxonomic and
functional profiles derived from amplicon-based 16S rRNA metabarcoding data and shotgun metagenomics,
evaluate the strengths and weaknesses of both approaches, and determine whether functional profiles from
HSP methods can be used as a substitute to metagenomics for monitoring functional changes associated
with fish farming in marine environments.

The overall taxonomic richness recovered by 16S rRNA metabarcoding was up to 20-fold higher (depending
on the taxonomic level) than metagenomics. This is due, in part, to the differences in the ability of identifying
sequences of different lengths (~ 450 bp [metabarcoding] versus ~ 150 bp [metagenomics]) and by differences
in the taxonomic assignment methods used. However, it is also well recognized that metagenomics requires
much more sequencing effort than metabarcoding to reach equivalent 16S rRNA coverage as it captures
all DNA material (Cottier et al., 2018; Singer, Shekarriz, McCarthy, Fahner, & Hajibabaei, 2020). This
is especially problematic in highly diverse communities such as the marine sediment samples assessed in
this study. Small differences in taxonomic composition were anticipated because 16S rRNA primer sets are
never truly universal (Pollock et al., 2018). While both datasets were relatively similar in terms of dominant
Phyla and Families, several taxa such as BD2-2 (Bacteroidetes), Sulfurovaceae, Thermoanaerobaculaceae
and Rubritaleaceae were more predominant in the metabarcoding data. These results clearly illustrate
the advantage of using targeted amplicon 16S profiling over metagenomics when it comes to providing a
comprehensive overview of communities in complex environments, although biases due to preferential PCR
amplification and primer specificity are inevitably introduced.

Despite the differences in taxonomic richness, functional richness between the HSP methods and metage-
nomics was relatively similar. This counter intuitive result occurs because most ECs/KOs are typically
redundant across microbial communities (Louca et al., 2018; Starke et al., 2020), many of which performing
functions that are essential to cellular activities. Additionally, several non-ubiquitous functions, and espe-
cially those occurring at shallow phylogenetic depth, are difficult to accurately predict (Martiny et al., 2015)
and may therefore be omitted by HSP methods (Bowman & Ducklow, 2015). These false negatives were
prominent for Paprica, which had the lowest specificity. The opposite scenario where functional richness is
artificially increased due to false positive predictions is also a possibility. For example, phylogenetic plasticity
and genomic variability can result in loss of functions within taxa that can’t be detected by HSP methods.
However, because of the substantial differences in terms of recovered taxonomic diversity between metage-
nomics and 16S metabarcoding methods and limits imposed by sequencing depth, it is also possible that some
functions predicted by the HSP methods were not detected by metagenomics. As such, the true sensitivity
of the HSP methods, which was lowest for Tax4Fun2 and highest for paprica, was likely underestimated.

In general, we observed little correlation and/or no significant difference with the null expectation datasets
based on the abundance of functions shared between HSP methods and metagenomics. Other studies have
reported weak correlations of HSP derived pathways abundance with metagenomics when compared to null
expectation datasets, with decreasing performance for more complex and/or less characterized environments
(Douglas et al., 2019; Sun, Jones & Fodor, 2020). These low correlations could be due to preferential
amplification of certain DNA sequences, primers biases, and varying gene copy numbers of 16S rRNA per
taxa, although HSP methods typically try to correct this bias (Bowman & Ducklow, 2015; Wemheuer et
al., 2018; Douglas et al., 2019). The increased detection sensitivity of 16S rRNA metabarcoding can also
create a bias in the number of contributing taxa to certain functions, which can negatively affect correlations
with functions derived from metagenomics. Considering that amplicon-based 16S rRNA metabarcoding
and metagenomics uncovered a substantially different bacterial diversity, the weak correlation in functional
abundance between the two methods is expected.

An alternative and possibly more appropriate approach to comparing functional profiles of HSP and metage-
nomics approaches is by contrasting their correlation with metadata (Sun et al., 2020) or by evaluating the
correspondence between the ordination of their functional communities. Using procrustes analyses, there



was a very strong and significant correlation between HSP methods and metagenomics, especially when
using presence/absence data. The ASV communities showed no significant relationship with the functional
profiles, suggesting that the taxonomic and functional communities were influenced differently by the bi-
ological and/or environmental conditions. We also tested the correspondence of the bacterial taxonomic
and functional profiles with macrofaunal communities and physico-chemical data. While both profiles cor-
related relatively well to physico-chemical data (r [?] 0.5), with the EC-based data performing best, only
functional profiles correlated strongly and significantly with the macrofaunal communities. A higher asso-
ciation of functional versus taxonomic beta-diversity with macrofaunal data was also reported by Laroche
et al. (2018), which suggest that interactions between these communities are especially driven by microbial
metabolic capabilities rather than specific phylogenetic association.

The sensitivity of the different datasets in detecting the effect of fish farm activities was evaluated by
comparing changes in community composition between near-field (0 m from pen) and far-field samples (>=
1,200 m from pen). In general, we found higher sensitivity for the HSP methods, and especially for Paprica
and Tax4Fun2, compared to metagenomics and ASV communities. These results indicate that despite the
lower accuracy and increased detection sensitivity of HSP methods, they may be more accurate in assessing
how microbial communities respond to environmental changes than metagenomics. This is likely enhanced
when complex microbial communities are present, such as in marine sediments. The results improved when
transforming functional abundance data, including those of metagenomics, to presence/absence data, as it
reduced within group variability. In addition, we observed higher stochasticity of microbial taxonomic shifts
in response to a contamination gradient compared to functional community changes. This observation has
also been reported by Hornick & Buschmann (2018), Laroche et al. (2018) and Ren et al. (2016) and is
likely due to several taxa sharing the same metabolic capabilities and their succession in the ecosystem may
have less to do with environmental changes than with biological properties (e.g. growth cycle and bacterial
interactions) and geo-topographic factors (e.g. depth and geographic distance). As such, functional profiles
may be slightly more robust and sensitive in detecting environmental alterations caused by fish farm activities,
although further research is needed to properly test this assumption.

Benthic environments under cage fin-fish aquaculture are usually enriched in organic waste and nutrients
such as phosphorus and nitrogen compounds (from faeces and uneaten fish feed for example), which can lead
to eutrophic conditions, microbial anaerobic activities and the production of ammonia and hydrogen sulfide
gasses (Brooks & Mahnken, 2003; Buschmann et al., 2006; Valdemarsen, Kristensen & Holmer, 2009; Wang
et al., 2012). In the present study, we were particularly interested in comparing the response of classes of
pathways associated to the nitrogen and sulfur cycles between the pen and reference sites, and between the
metagenomics and HSP-based data. Overall, results from both approaches were very similar, with an increase
near the pens of pathways associated to nitrate reduction and glycosaminoglycan degradation, and a decrease
of pathways affiliated to allantoin degradation and sulfur oxidation. Additionally, the Paprica analysis
showed a decrease in pathway abundance associated with sulfur reduction, sulfite and sulfide reduction,
and an increase of dimethylsulfide degradation near the pens. While we expected pathways of nitrate-
reduction to be in higher abundance near the fish farms, due to enriched nutrients and possibly anoxic
conditions, it was somewhat surprising that pathways associated with sulfur compounds were less abundant
in both the metagenomics and HSP datasets. However, sulfite respiration was found to be associated
with the pens when using taxonomic information of the 16S rRNA data and literature-based functional
association (Faprotax methodology). It is likely that certain pathways associated to the sulfur cycle, such
as sulfite oxidation and reduction, were indeed more prominent near the pens but were not fully picked-
up by metagenomics and HSP-based functional profiling, possibly due to the incompleteness of reference
databases. For example, pathways associated to sulfite respiration were absent from both the Humann2
and Picrust2 datasets. Glycosaminoglycan degradation is responsible for the degradation of long linear
polysaccharides made of repeating disaccharide units, also referred to as mucopolysaccharides (Ernst et
al., 1995). It is probable that high quantities of mucopolysaccharides originate from mucus produced and
excreted by the caged salmon (see Reverter et al., 2018; Jacobsen et al., 2019) and this is being catabolized
by a specialized group of bacteria. Allantoin represents a product of uric acid, an important metabolic



intermediate compound produced by both animals and bacteria. Under limited nutrient conditions, allantoin
can be degraded into ammonia by some bacteria, to serve as a secondary source of nitrogen (Switzer et al.,
2020). Correspondingly, our results suggest that pathways associated to allantoin degradation are less
abundant near the pens, where strong nutrient enrichment occurs. Overall, these results show congruence
between metagenomics and HSP methods for the classes of pathways of particular interest, and highlight both
the potential and caveats of the current functional profiling methods in providing further understanding of
the metabolic and environmental changes occurring in benthic ecosystems. Further research involving more
samples and taking into account regional and temporal variability is needed to confidently identify potential
functional indicators of fish farm ecological impacts that could be eventually integrated into benthic health
indexes.

Collectively our results suggest that the lower specificity of HSP methods may be offset by the ability of
amplicon-based metabarcoding to provide a much more exhaustive assessment of the taxonomic community,
and hence of functions that have low genomic variability. This allows HSP methods to provide functional
profiles that are relatively similar to those of metagenomics, and which respond similarly to environmental
changes. Although the accuracy and sensitivity of HSP methods are still strongly affected by the incomplete-
ness of reference databases, our results demonstrate that they provide a useful functional profiling alternative
to metagenomics, and a valuable tool in detecting and evaluating the effects of salmon farming on benthic
ecosystems.
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Fig 6. Centered-log ratio (CLR) abundance of pathway classes of particular interest between metagenomics
(Humann2) and hidden-state prediction (HSP) methods (Paprica and Picrust2).

Classes of pathways with positive CLR were more prevalent at the pens while those with negative CLR were
more prevalent at the reference sites.

Table 1 . Permutational analysis of variance of the taxonomic (amplicon sequence variant; ASVs) and
functional communities between distance categories (pen versus reference sites) per methodology using 999
permutations. Significant responses (p.value [?] 0.05) are displayed in bold.

Distance from pen Distance from pen
Transf. Method R? p-value
Centered-log ratio ASVs 0.19 0.009
Paprica 0.26 0.007
Picrust2 0.16 0.151
Tax4Fun2 0.26 0.009
Humann2 (EC) 0.18 0.040
Humann2 (KO) 0.17 0.027
Presence ASVs 0.17 0.014
Absence
Paprica 0.39 0.012
Picrust2 0.26 0.025
Tax4Fun2 0.40 0.008
Humann2 (EC) 0.24 0.045
Humann2 (KO) 0.24 0.029

Table 2 . Protest analysis of the 16S rRNA gene metabarcoding-based and metagenomics data with macro-
fauna and physico-chemical data, using 9,999 permutations. Significant responses (p.value [?] 0.05) are
displayed in bold. ASV = amplicon sequence variant.

Physico- Physico-
Macrofauna Macrofauna chemical* chemical*

Transf. Method r p.value r p-value p-value
Centered-log ASVs 0.49 0.214 0.72 0.111 0.111
ratio

Paprica 0.88 <0.001 0.98 0.048 0.048

Picrust2 0.68 0.019 0.71 0.135 0.135

Tax4Fun2 0.87 <0.001 0.74 0.126 0.126
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Physico- Physico-
Macrofauna Macrofauna chemical* chemical*
Humann2 0.88 0.001 0.96 0.004 0.004
(EC)
Humann?2 0.88 0.001 0.67 0.211 0.211
(KO)
Presence ASVs 0.41 0.453 0.72 0.111 0.111
Absence
Paprica 0.90 <0.001 0.98 0.048 0.048
Picrust2 0.69 0.011 0.50 0.126 0.126
Tax4Fun2 0.95 <0.001 0.74 0.126 0.126
Humann2 0.90 <0.001 0.96 0.004 0.004
(EC)
Humann2 0.89 <0.001 0.67 0.211 0.211
(KO)

* Analysis with the physico-chemical data only included samples (n=6) from the FR@ locality.
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