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Abstract

Gradient Forests is a machine learning algorithm that is gaining in popularity for studying the environmental drivers of
genomic variation and for incorporating genomic information into climate change impact assessments. Here we provide the first
experimental evaluation of the ability of ‘genomic offsets’ - a metric of climate maladaptation derived from Gradient Forests - to
predict organismal responses to environmental change. We used high-throughput sequencing, genome scans, and several methods
(including Gradient Forests) to identify candidate loci associated with climate adaptation in balsam poplar (Populus balsamifera
L.). Individuals collected throughout balsam poplar’s range also were planted in two common garden experiments. We used
Gradient Forests to relate candidate loci to environmental gradients and to predict the expected magnitude of response (i.e.,
the genetic offset) of populations when transplanted from their “home” environment to the new environments in the common
gardens. We then compared the predicted genetic offsets to measurements of population performance in the common gardens.
We found the expected inverse relationship between genetic offset and performance in the common gardens: populations with
larger predicted genetic offsets performed worse in the common gardens than populations with smaller offsets. Also, genetic
offset better predicted performance in the common gardens than did ‘naive’ climate distances. Our results provide preliminary
evidence that genomic offsets may provide a first order estimate of the degree of expected maladaptation of populations exposed

to rapid environmental change.
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INTRODUCTION

Climate change is expected to become a major threat to biodiversity this century (Sala et al., 2000; Urban,
2015), with cascading impacts on human well-being and ecosystem function (Pecl et al., 2017). Anticipating
and mitigating these impacts requires actionable predictions of expected biological responses, which are
expected to become increasingly difficult to anticipate under novel climates of the future (Fitzpatrick, Blois,
et al., 2018; Urban et al., 2016). The adaptive capacity of species represents an important component of
climate change vulnerability (Dawson, Jackson, House, Prentice, & Mace, 2011), yet few studies incorporate
local adaptation into forecasting models, while even fewer have attempted to compare genomic predictions
to actual organismal responses.



Recent technological advancements now provide access to massive quantities of data pertinent to biodiversity
science and conservation (e.g., species occurrence databases, genome-scale DNA sequencing, high-resolution
projections of future climate; Wiiest et al., 2020). At the same time, new sophisticated machine learning
methods have emerged that can take advantage of these data to identify conservation risks and opportunities
under a changing climate. In particular, the application of machine learning to genomic studies of local
adaptation represents an especially promising frontier for improving our understanding of biotic responses
to climate change and the potential to consider climate vulnerability at the population level (Fitzpatrick &
Keller, 2015; Gougherty, Keller, Chhatre, & Fitzpatrick, 2020; Savolainen, Lascoux, & Merilé, 2013).

Fitzpatrick & Keller (2015) described how a machine learning method known as Gradient Forests (GF; Ellis,
Smith, & Pitcher, 2012) can be used to (1) analyze and map spatial variation in allele frequencies as a
function of environmental gradients and (2) project patterns of genomic variation under future climate. GF
derives monotonic, nonlinear functions that characterize compositional turnover in allele frequencies along
each fitted environmental gradient. In addition to identifying the primary environmental drivers associated
with genomic variation, these turnover functions provide unique insights into the nature of how genomic
patterns vary along multiple environmental gradients, including where changes in allele frequencies are
rapid or slow across space. The turnover functions from GF also can be used to transform (or rescale) the
fitted environmental predictors from their arbitrary anthropogenic measurement units (e.g., of temperature
or mm of precipitation) to common biological units of compositional turnover (Ellis et al., 2012). By
transforming each of the predictor variables using its associated turnover function, the multidimensional
environmental space can be converted into a multidimensional genomic space that characterizes differences
in the expected genetic makeup between populations in different environments. By applying the turnover
functions to scenarios of environmental change, one can project expected genomic patterns under future
climate. The Euclidean distance between the locations of each population in the current and future genomic
spaces characterizes the magnitude of expected change in genetic composition for each population given the
pattern of climate change in each location. Fitzpatrick & Keller (2015) termed this distance the “genetic
offset”, which can be viewed as a metric of the degree of expected maladaptation when a population is
exposed to rapid climate change, assuming no adaptive evolution ¢n situ or migration to allow adaptive
alleles to track climate change. Gougherty et al. (2020) recently extended the genetic offset concept to
consider the contributions of climate maladaptation, migration, and the potential for future novel gene-
climate associations to the vulnerability of climatically adapted populations.

Since the publication of Fitzpatrick & Keller (2015), a growing number of studies have used genetic offsets
to estimate climate maladaptation in a variety of species, including trees (Gugger, Liang, Sork, Hodgskiss, &
Wright, 2018; Ingvarsson & Bernhardsson, 2020; Jia et al., 2020; Martins et al., 2018), birds (Bay et al., 2018;
Ruegg et al., 2018), and agricultural crops such as maize landraces in Mexico (Aguirre-Liguori, Ramirez-
Barahona, Tiffin, & Eguiarte, 2019). However, like projections of species-level responses to climate change
from species distribution models, genetic offsets are in essence derived from a correlative, space-for-time
substitution approach (Blois, Williams, Fitzpatrick, Jackson, & Ferrier, 2013) that ignores the enormous
complexities underlying actual evolutionary responses of populations to environmental change, including in-
teractions between selection, effective population size, and evolutionary processes shaping adaptive variation
(e.g. migration, mutation, recombination). Instead, the use of genetic offsets assumes that, after correcting
for neutral population structure, correlations between allele frequencies and environmental gradients reflect
current patterns of local selection and relative fitness and that these existing gene-environment associa-
tionsacross space can be used to project the magnitude of change in allele frequencies expected through time
to maintain gene-environment associations at their current status quo. Very few studies have tried to relate
local adaptation analyses and associated predictions to actual organismal responses. As such, genetic offsets
lack empirical validation, and it remains unknown what if any utility the concept has for predicting the
actual performance of populations in novel environments.

Here we use machine learning, population genomic data, and common garden experiments to provide an
empirical space-for-time test of the extent to which genetic offsets predict performance of populations in new
environments. We measured growth performance of trees collected from climatically diverse populations



which were clonally propagated in two common gardens. For these same populations, we also obtained
genome-wide single nucleotide polymorphisms (SNPs) which were used in a series of genome scans for local
adaptation employing multiple methods to determine outlier loci associated with climate. We then fit GF to
the different sets of candidate SNPs determined using the different outlier detection methods and used these
models to (1) identify the primary environmental variables driving the signals of local climate adaptation
in the genome, (2) fit flexible functions describing how genetic patterns vary along the gradients, and (3)
predict genetic offsets associated with transplanting individuals from their home climatic environment to
the climates they experienced at the common garden sites. Specifically, we aim to address the following
questions:

1. How do GF models fit to different sets of statistical outlier SNPs differ in terms of variable importance,
turnover functions, and predicted spatial patterns?

2. How well do genetic offsets predict responses of populations transplanted to new common garden
environments and do genetic offsets outperform naive ‘climate-only’ transfer distances?

3. How sensitive is the predictive ability of genetic offsets to the composition of SNP panels derived from
different outlier detection methods, or when randomly sampled from the genomic background?

MATERIALS AND METHODS

Study species: Balsam poplar (Populus balsamifera L., Salicaceae) is a common deciduous tree in north-
ern temperate and boreal forest ecosystems across North America. Its expansive geographic range encom-
passes broad climatic gradients in growing season length, and populations exhibit abundant clinal variation
and adaptive population divergence in allele frequencies and phenotypic traits, particularly those related
to phenology and ecophysiology (Fitzpatrick & Keller, 2015; Keller, Levsen, Ingvarsson, Olson, & Tiffin,
2011; Keller, Levsen, Olson, & Tiffin, 2012; Keller, Soolanayakanahally, et al., 2011; Olson et al., 2013;
Soolanayakanahally, Guy, Silim, Drewes, & Schroeder, 2009; Soolanayakanahally, Guy, Silim, & Song, 2013).

Based on previous work, balsam poplar is known to exhibit relatively strong regional population structure,
with multiple studies recognizing a clearly divergent subpopulation in the eastern part of its range in Atlantic
Canada and the New England States (Chhatre et al., 2019; Keller, Olson, Silim, Schroeder, & Tiffin, 2010;
Meirmans, Godbout, Lamothe, Thompson, & Isabel, 2017). The rest of the range consists of a large,
relatively homogenous genetic subpopulation in the middle core of its range that is weakly differentiated (F'
st = 0.008) but with signatures of isolation-by-distance along an axis of longitude (Chhatre et al., 2019;
Meirmans et al., 2017). Lastly, some studies suggest a third major subpopulation in northwestern Canada
and Alaska (Keller et al., 2010).

In the current study, we focused our sampling and analysis on the widespread but weakly structured “Core”
region in the middle of the range (Chhatre et al., 2019). We did this to minimize the known confounding
introduced by regional population structure to genome scans of selection (Lotterhos & Whitlock, 2014),
and because the Core region still captures large variation in the climatic environment, making it ideal for
studying adaptive contributions of genomic variation while reducing the likelihood of false positives due
to demographic history (Chhatre et al., 2019). Our selection of individuals and populations was based on
retaining individuals with ADMIXTURE ancestry scores >0.9 in the Core region based on Chhatre et al.
(2019). This resulted in 336 individuals from 42 populations for analysis of genomic variation at 107,309
biallelic SNPs, with populations distributed across north central US and Canada, from Vermont, New York,
and Quebec in the east to Manitoba and Saskatchewan in the west, and south as far as WY (Table S1).

Common gardens: We measured performance of poplar clones in two common garden locations with
contrasting climates, “IH” near Indian Head, Saskatchewan, Canada (50.52 degN, -103.68 degW), and “VT”
near Burlington, Vermont, USA (44.44 degN, -73.19 degW). Establishment of both common gardens was from
clonally propagated stem cuttings (6-9 cm with at least 2 vegetative buds) taken from natural populations
while dormant during winter, rooted in potting media in the greenhouse and grown for 1 year, and then
outplanted directly into the ground at the respective garden site. Details of the IH site are provided in
Soolanayakanahally et al. (2013), which describes the original garden established in 2005 consisting of 15



genotypes from each population planted in aggregate with 2x2 meter spacing. Each population group was
then clonally replicated 5 times in random locations throughout the garden. In 2011, a second planting at IH
was established adjacent to the original garden, consisting of additional populations planted with the same
specifications as the original planting. At the VT site, planting consisted of a completely randomized design
with a target replication of 3 ramets per genotype planted with 2x2 meter spacing. At both sites, plants
were not fertilized, but were watered as needed during the year they were established and then received no
supplemental water thereafter. Additional details of the VT site can be found in Fetter, Nelson, & Keller
(2019).

After losses due to mortality during establishment, plants available for phenotyping totaled 357 unique
genotypes (N=117 in IH; 337 in VT) representing 41 of the 42 target populations (N=9 in IH; 41 in VT;
population ‘NIC’ was absent from both; Table S1). Most of these genotypes with phenotype data were the
same individuals sequenced with GBS for the 107,309 SNPs (297 of 336 individuals with GBS; representing
41 of the 42 populations with GBS). As an overall metric of growth performance, we measured the yearly
height increment (cm) gain between the apical bud and the previous year’s bud scar on the most dominant
stem. Height increment was measured at the end of the 2015 growing season for both sites, after all plants
had finished setting bud. This gives an overall measure of growth achieved during the 2015 growing season
that integrates effects of genotypic variability in phenology and relative growth rate (Soolanayakanahally et
al., 2013). Genotypes with height increment data were represented by a mean (SD) of 2.6 (1.5) ramets.

Environmental data for field locations : To characterize environmental conditions at the sampling lo-
cations of the source populations, we used a set of seven variables at 30-arcsecond resolution (71 km x 1 km).
We selected this set of seven variables from a larger (n =21) initial set composed of 19 bioclimatic variables
and elevation from WorldClim v1.4 (representing averages for the period 1960-1990; www.worldclim.org;
Hijmans, Cameron, Parra, Jones, & Jarvis, 2005), plus latitude. We used an iterative process of GF model
fitting to assess variable importance combined with variance inflation factor (VIF) analysis to assess collinear-
ity, with the goal of retaining a final set of the most important and interpretable and least collinear variables
to the greatest extent possible. VIF estimates the potential impact of multicollinearity in regression-type
models by quantifying the extent to which standard errors are inflated due to collinearity compared to when
uncorrelated variables are used. To calculate VIFs, we used the ‘vifcor’ function with a correlation threshold
of 0.75 in the ‘usdm ’ package (Naimi, Hamm, Groen, Skidmore, & Toxopeus, 2014) in R (R Core Team,
2018). The final set of seven variables included latitude (y), elevation (elev) and five bioclimatic variables:
mean diurnal range (bio2), mean summer (biol0) and winter (bioll) temperature, and summer (biol8) and
winter (biol9) precipitation. Latitude was included to characterize the gradient in daylength not otherwise
captured by the bioclimatic variables. Of our seven retained variables, mean winter temperature (bioll)
and latitude were found to have a VIF greater than 10 (10.31 and 17.00 respectively), which is considered
an approximate rule-of-thumb cutoff VIF (Guisan, Thuiller, & Zimmermann, 2017). However, given that
GF has some ability to accommodate correlated variables (Ellis et al., 2012) and daylength is an important
determinant of phenology and height growth cessation in poplars (Soolanayakanahally et al. 2013), we opted
to retain both of these variables in our models. We aggregated the individual-level environmental data to
the level of populations (42 total) by taking the mean across individuals within each population (mean = 8
individuals per population, min=2, max=13).

Environmental data for common garden locations : To characterize climatic conditions at the two
common garden experiments, we used DayMet (Thornton et al., 2014) data for 2014 and 2015, which spanned
the relevant period from planting and establishment of the clonal replicates to when the growth measure-
ments were collected. The Daymet dataset provides gridded estimates of temperature and precipitation for
North America on a daily time step at "1 km x 1 km spatial resolution. We aggregated the daily data for
2014 and 2015 to produce monthly averages for maximum and minimum temperature and monthly sums
for precipitation. We used these monthly summaries and the ‘biovars’ function in the ‘dismo ' package
(Chamberlain, 2017) to calculate the same set of bioclimatic predictor variables used to characterize climate
for the field collections.



Univariate outlier detection methods: Full details of the GEA selection scans are described in Chhatre
et al. (2019), and recapped again briefly here. Namely, we used two complementary approaches: (1) the
population-based method bayenv2(Gunther & Coop, 2013) that corrects for population relatedness using a
variance-covariance matrix of allele frequencies before testing for a correlation between SNP allele frequencies
and an environmental predictor; and (2) the individual-based method [fmm(Frichot, Schoville, Bouchard,
& Francois, 2013) that controls for background genetic structure by introducing latent factors into a linear
mixed models while testing for associations between the genotypic state at each SNP and an environmental
predictor. Both bayenv2 and I[fmm are inherently univariate, testing one environmental predictor’s associ-
ation with one SNP at a time. Therefore, to avoid inflating type I error rates, we used as environmental
predictors in each approach the first 2 PC’s from a principal components analysis on 19 bioclim variables
(Hijmans et al., 2005) plus source latitude.

We generated empirical P -values for assessing significance in GEA tests, as advocated by Lotterhos &
Whitlock (2014), using a subset (n =1,353) of non-coding intergenic SNPs based on the Populus trichocarpa
v3.0 genome annotation. We used these intergenic SNPs to generate empirical null distributions of the test
statistics used in our selection scans (Bayes Factors forbayenv2 and ?-adjusted z-scores for {fmm ), based on
ranking each test SNP within the empirical null distribution and determining its quantile sensulLotterhos
& Whitlock (2014). Candidate SNPs with a test statistic equal to or exceeding that of the empirical null
distribution were designated as selection outliers with a P [?] 0.000739 (=1/[1353+1]).

GF background: Ellis et al. (2012) provide details regarding the Gradient Forest algorithm and Fitzpatrick
& Keller (2015) describe the application of GF to modeling genomic data and predicting genetic offsets. In
brief, GF is a flexible, non-parametric extension of the machine learning approach known as Random Forests
(Breiman, 2001). GF uses Random Forest to fit an ensemble of regression trees to model change in allele
frequencies across sites and derive monotonic, nonlinear functions of environmental predictors. GF stands
on the shoulders of Random Forests and inherits its robust statistical measures of model performance and
variable importance. The predictive performance of the GF model for each SNP is quantified using the
proportion of out-of-bag data variance explained (R 2), which is a robust estimate of generalization error.
These robust goodness-of-fitR 2 values allow ranking of SNPs by how well the environmental gradients
explain changes in SNP allele frequencies and can inform the detection of statistical outliers by selecting
SNPs withR 2 values that exceed an empirical threshold (see below). The accuracy importance of predictors
is quantified as the decrease in performance when each predictor is randomly permuted. For correlated
variables, a conditional approach can be used (see Ellis et al., 2012). Lastly, from the ensemble of regression
models, GF determines how well partitions distributed at numerous “split values” along each environmental
variable explain changes in allele frequencies on either side of a split. The amount of variation explained
by each split is the ‘raw split importance’. The empirical, nonlinear turnover functions are constructed by
distributing the R 2 values from all SNPs among the predictor gradients in proportion to their accuracy
importance and along each gradient according to the density of the raw split importance values. The split
importance values for all modeled SNPs also are aggregated to an overall, genome-wide turnover function for
each variable using weightings based on predictor importance and the goodness-of-fit for each SNP model.
Portions of gradients where split importance is high emerge as thresholds where genetic change is rapid (as
might be expected between genetic groups). Gradients strongly associated with genetic variation will have
more important splits therefore greater overall cumulative importance than gradients with little biological
relevance. Important gradients will also have greater contribution to predicted genetic offsets.

GF outlier detection — Simulations: In previous work (Fitzpatrick & Keller, 2015; Fitzpatrick, Keller,
& Lotterhos, 2018), we have advocated the use of GF to calculate genetic offsets on sets of outlier loci pre-
ascertained using established methods for outlier detection that have been shown to have low false positive
rates for the presumed demographic history of the sample. Here, we were interested in assessing the behavior
of GF for outlier detection, given its strengths of incorporating multivariate predictors, interactions between
predictors, and non-linear allele frequency gradients, but also its weakness of not controlling for demographic
history. Rather than producing a comprehensive test of GF on an array of different demographic histories,
we instead focused on quantifying statistical power and the rate of false positives under a demographic model



of isolation-by-distance. We chose this based on our sample of Core region populations that show minimal
genetic structure (F gt = 0.008) but weak isolation by distance along an east-west gradient (Chhatre et
al., 2019; Meirmans et al., 2017). We simulated population genetic data using CDPOP v1.2.20 (Landguth
& Cushman, 2010) under a simple linear stepping stone model of 30 equal sized demes arrayed along a 1-
dimensional spatial gradient, with each deme consisting of 20 unisexual individuals of equal sex ratio (total
size = 600 inds). Each diploid individual consisted of 1,000 unlinked biallelic loci. To generate starting allele
frequencies, we used the coalescent to simulate a site frequency spectrum (SFS) under a neutral Wright-Fisher
model in ms(Hudson, 2002), removed loci with minor allele frequencies <0.1, and then randomly drew 1,000
loci from the SFS to seed the initial frequencies for each deme. Gene flow was simulated with a migration
function that allowed adults to disperse to nearby demes prior to mating each generation. Probability of
migration was a negative linear function of distance from the source deme, with probability declining to
zero at a number of demes (u ) distant from the source. To evaluate different levels of migration, we chose
u values of 2, 4 or 8 demes away, which resulted in meanF gt levels of 0.15, 0.04, and 0.008, respectively.
After migration, mating occurred randomly among members within a deme, and females produced a Poisson
distributed number of offspring with a mean and variance (? value) = 5. Offspring genotypes were assembled
based on Mendelian inheritance at each locus and linkage equilibrium between loci, with a probability of
de-novo mutation = le-8. For each migration scenario, we designated locus 1 as experiencing one of three
strengths of selection (weak: s = 0.01; moderate: s = 0.1; or strong: s = 0.2). Linear viability selection was
applied whereby the probability of mortality decreased linearly from s to 0 for the dominant homozygote and
heterozygote and increased linearly from 0 to s for the recessive homozygote across the 1D landscape. Under
the non-linear scenario, the fitness of genotypes decayed or increased by the same magnitude, but followed an
exponential function defined by (a) slope of mortality decay and (b) they -intercept (Supplementary Figure
S1). We also included a neutral scenario for each migration level in which locus 1 experienced no selection
(s = 0). Thus, there were a total of 12 simulated scenarios (3 migration rates x 4 selection strengths),
which we replicated independently 100 times per scenario. For each simulation replicate, we obtained allele
frequencies per deme from the 100*" simulated generation and used these in GF to identify outlier status
using the same settings applied to empirical data (see below). For scenarios where s > 0, we calculated
power as the proportion out of 100 simulation replicates where locus 1 was identified as an outlier in the
distribution of R ? values from GF for a given significance level (range of ?: 0.001 - 0.1). For the neutral
scenario (s = 0), we calculated the false positive rate (? = 0.05) as the proportion out of 100 simulation
replicates where locus 1 was in the 95% quantile of R ? values from GF.

GF outlier detection — Empirical: In addition tobayenv2 and [fmm , we also used GF to select outlier
SNPs using two types of allele frequency estimates: (1) “raw” or uncorrected allele frequencies (hereafter
termed “GF-Raw”), and (2) standardized allele frequencies (X ) output from bayenv2(Gunther & Coop,
2013) corrected using the estimated population genetic (co)variance matrix (hereafter termed “GF-X 7).
GF-Raw used direct estimates of population minor allele frequencies based on our sample of N individuals
per population (mean N = 8; range: 2 - 13). The GF-X approach was included to explore a more robust
approach to allele frequency estimation that corrects for finite sampling and population relatedness prior to
feeding into GF for outlier detection. To select GF-Raw outliers, we fit GF to the raw minor allele frequencies
for the 107,309 SNPs and obtained an R 2 for each locus. We compared the distribution of the resulting R
2values to the empirical P -value derived from the 1,353 intergenic SNPs. To select GF-X outliers, we first
obtained standardized allele frequencies (X ) estimated using the fitted omega matrix inbayenv2 as described
above (¢f . Univariate outlier detection methods) and using the ‘-f’ flag to output 190 MCMC draws of X
for each candidate SNP. Following advice given in thebayenv2 manual, we then fit GF models separately to
each of the 190 MCMC draws and extracted the resulting 190R 2 values for each of the 107,309 SNPs. From
these values, we calculated the median R 2 for each candidate SNP, and determined empirical P- values by
determining their rank within the distribution of the medianR 2 values from the 1,353 intergenic SNPs.

Post-outlier GF modeling: We fit GF to each of the outlier SNP data sets (Bayenv, LFMM, GF-Raw,
and GF-X ) and to the set of SNPs identified as outliers by both Bayenv and LEMM (Bayenv-LFMM). For
each SNP dataset, we fit GF using 500 regression trees per SNP and a variable correlation threshold of 0.5



to invoke conditional importance estimates (Ellis et al., 2012). We used default values for the number of
predictor variables randomly sampled as candidates at each split and for the proportion of samples used for
training and testing each tree. For comparison, we also fit GF to 999 sets of 500 SNPs selected at random
from the full set of 107,309 SNPs, which we combined into a single model using the ‘combinedGradientForest’
function. All models were fit using the ‘gradientForest ’ library (Ellis et al., 2012) in R (R Core Team, 2018).

GF genetic offsets: We used each of the GF models and the ‘predict.GradientForest’ function to transform
environmental conditions described by the seven predictor variables into common units of compositional
turnover (1) throughout the geographic range of balsam poplar and for (2) each population and (3) the
two common gardens. To quantify genetic offsets resulting from transplanting each population from its
home environment to the common gardens, we calculated the Euclidean distance between each population
and the common gardens in the resulting multidimensional transformed environmental space from GF. For
comparison, we also calculated the Mahalanobis distance (Mahalanobis, 1936) between each population and
the common gardens using the raw (untransformed) environmental predictors, which serves as a ‘naive’
climate transfer distance uninformed by genomic patterns.

To visualize and compare genetic patterns in geographic and biological space, we used Principal Components
Analysis (PCA) to reduce the seven transformed environmental variables into three factors. The PCA was
centered but not scale transformed to preserve differences in the magnitude of genetic importance among
the environmental variables. Variation in genetic composition was visualized as (1) a bi-plot of the first two
principal components with labeled vectors indicating the direction and magnitude of major environmental
correlates and (2) by mapping the patterns back to geographic space. Variation in genetic composition was
visualized by assigning the first three principal components to an RGB color palette. The resulting color
similarity corresponds to the similarity of expected patterns of genetic composition. For comparison, we
repeated this process using the raw (untransformed) environmental variables.

GF models fit to different sets of SNPs are expected to produce different predicted patterns of genomic
variation. To estimate and visualize differences in expected geographic patterns for each of the six sets
of modeled SNPs, we used Procrustes superimposition on the PCA ordinations, where the matrices were
rotated to minimize the sum of squares of the distances between the sites in genetic space (Peres-Neto &
Jackson, 2001). The Procrustes residuals, which in this case measure the absolute distance between sites in
genetic space and the rotated ordination space, were mapped to visualize differences in the predicted genetic
composition patterns between all pairwise comparisons of the six different GF models fit using the different
sets of SNPs. For all visualizations, we constrained predictions to within the geographic range of balsam
poplar as defined by (Little, 1971).

Genetic offset predictions of growth in common gardens: To experimentally test how well genetic
offset predicts performance in the field when populations experience a novel climate, we used genetic offset
values to predict population mean height growth increment in the two common gardens. We first generated
population BLUPs of height growth separately for each garden (VT and IH) using linear mixed-effects models
of the form:

Yiig = p + Bi+ Pj+ P(G)j + &

where height growth (Y ) is modeled as a function of the overall mean (u), the fixed effect of block or position
within the garden (B;), the random effect of population (P;), the random effect of genotype nested within
population (P(G) J.k), and a normally distributed residual error (e;jx). The resulting population-level BLUPs
from each model were then merged across gardens and combined with their corresponding garden-specific
genetic offset predictions for use in a second model in which height growth was predicted as a function of
genetic offset while controlling for overall differences between gardens. To allow for potential non-linearity
in the response, we included a quadratic term, giving a final model of the form:

Yi = p + Go;+ Go; + Gd; + &j;



where Go and Go ? are the linear and quadratic genetic offset terms, respectively, and Gd is the effect of
the jt* garden (VT or IH).

We evaluated height growth for different estimates of genetic offset derived from (a) a combined GF model
of all outlier loci, (b) outliers identified by GF-X , (c¢) the average of 999 random draws of 500 random SNPs
from the genomic background, and (d) Mahalanobis distances based on climate-only. When not significant,
we dropped the quadratic term in favor of the simple linear model. We report the percentage of variance
explained (R 2) as a metric of model performance.

RESULTS

GF outlier detection — Simulations: Testing GF without any correction for population structure (equivalent
to GF-Raw) against simulated scenarios of 1D isolation-by-distance showed that under linear selection, GF
had good power (>0.8 at ? = 0.05) to detect loci under moderate to strong selection for most migration
scenarios, although power was reduced somewhat under moderate selection with high migration (s = 0.1,
v = 8) (Fig. S2a). Under weak selection (s = 0.01), GF was under-powered to detect selection under all
migration scenarios. Under non-linear selection (Fig. S2b), power was also generally low (<0.5) for all but
strong selection (s = 0.2) and low to moderate migration (v = 2 or 4). However, the false positive rate was
well calibrated between 0.04-0.06 for ? = 0.05 (Fig. S2c). Thus, under this specific scenario of 1D isolation
by distance, GF had good power to detect moderate to strong linear selection or strong nonlinear selection
with low frequencies of false positives.

GF outlier detection — Empirical : Out of 107,309 high-quality SNPs, 23 (0.02%) were identified as statistical
outliers by all four outlier detection methods (Fig. 1). GF-X detected the fewest number of outliers (120),
had the smallest number of outliers unique to that method (22), and therefore shared the largest proportion
(98/120=81.67%) of statistical outliers with one or more of the other outlier detection methods. In contrast,
Bayenv detected the largest number of statistical outliers (320) and GF-Raw had the largest proportion
(234/291=80.41%) of detected outliers unique to that method.

GF modeling of SNP outliers - Of the 320 outlier SNPs detected using Bayenv, 242 (75.62%) had an R
Zgreater than zero in the GF model. This compares to 146 of 310 (47.1%) outlier SNPs for LFMM and 42 of
71 (59.2%) outlier SNPs for Bayenv-LFMM (note that by definition all (100%) GF-Raw and GF-X outliers
had an R 2 greater than zero). On average 49.64 of 500 (9.93%) SNPs had an R 2 greater than zero in the
999 GF models fitted to randomly selected SNPs.

Latitude was the most important predictor for all sets of SNPs (both outliers and random), followed by
winter temperature (bioll), whereas elevation and diurnal range (bio2) were the least important variables
(Supplementary Fig. S3). GF-Raw had the strongest associations (highestR 2 of all models) with all
variables, and therefore the aggregate turnover functions for GF-Raw attained the greatest maximum height
for all variables (Fig. 2). Random SNPs had the weakest associations (lowest R 2 of all models) for all
variables except elevation and diurnal range (bio2), for which Bayenv-LFMM had a lower R 2. Although the
aggregate turnover functions differed in their maximum height, reflecting differences in variable importance,
most of the aggregate turnover functions based on outlier SNPs had a similar shape, with thresholds falling
in the same general region of the gradients (Fig. 2). The GF-Raw and GF-Random turnover functions were
notable exceptions to this pattern. Unlike the aggregate turnover functions for the five sets of outlier SNPs,
which exhibited pronounced thresholds, the turnover functions for SNPs selected at random largely lacked
thresholds and instead turnover tended to be relatively constant along the seven environmental gradients. For
GF-Raw, SNP turnover was more rapid at the colder and drier portions of the temperature and precipitation
gradients than other sets of outlier SNPs, reflecting the substantial differences in patterns of turnover in the
individual outlier SNPs uniquely detected by GF-Raw (Fig. 3, Supplementary Fig. S4). Integrating across all
environmental predictors, the total R 2distribution across SNPs showed marked differences among different
outlier detection methods (1-way ANOVA: F = 152.18; df = 3, 823;P < 0.0001), with the highestR 2
values coming from GF-Raw and GF-Xand lower R 2 values from outliers detected bybayenv2 and Ifmm
(Supplementary Fig. S5).



Spatial patterns of genomic variation - The GF models fit to different sets of SNPs produced different
predicted patterns of genomic variation (Fig. 4). The most similar mapped predictions were between GF
models fitted to outlier SNPs from Bayenv, LFMM, Bayenv-LFMM, and GF-X . Differences in predicted
spatial patterns were greatest between GF-Raw and all other sets of outlier SNPs, followed by GF fit
to SNPs selected at random, with the largest range-wide differences being between GF-Raw and GF-X .
Differences in mapped patterns were generally greatest in the southern third of balsam poplar’s range and
for most comparisons reached a maximum in a latitudinal band centered near 50° N and in trailing range
edge populations in the Rocky Mountains.

Genetic offsets & climatic transfer distances - Because GF-X had the largest proportion of outliers that
overlapped with other detection methods (and conversely, the smallest proportion of unique SNPs), here we
report results for GF-X only. Northwesternmost populations, most distant from VT were predicted to have
the largest genetic offsets associated with transplanting populations from their home environment to the
VT common garden (Fig. 5a). The pattern of predicted genetic offsets was largely reversed for transplanting
populations to the IH common garden: populations in the southeasternmost portion of the range, farthest
from IH, were predicted to have the largest genetic offsets (Fig. 5¢). This resulted in a highly significant
negative correlation for the genetic offsets between the two garden sites (r = 0.897, df = 40, P <0.0001;
Supplementary Fig. S6). In contrast, climate-only transfer distances (i.e., genetically-naive climate distances
based on Mahalanobis distance) showed no clear cline with distance from the common gardens (Fig. 5b, d),
and in fact climate-only distances showed a weak but positive correlation across gardens (r = 0.380, df =
40, P= 0.013; Supplementary Fig. S6).

Plotting the populations and the common gardens in the transformed multidimensional genomic space and
the untransformed multidimensional environmental space reveals the locations of populations relative to the
common gardens in terms of expected genomic similarity (Fig. 6a) and climatic similarity (Fig. 6b), thereby
providing a means to conceptualize genetic offsets and climate transfer distances (though in only two of
the seven dimensions as variation along additional axes is not shown). Consistent with variable importance
ranking, latitude (y) and winter temperature (bioll) have the strongest contribution to variation in the
multidimensional genomic space (as indicated by the length of the vectors in Fig. 6a). Shading indicates
the degree of expected similarity of genetic patterns, with locations with similar shading being expected to
have similar genomic composition. Numerous populations are predicted to have similar genomic patterns
as those for the climate of the VT common garden. These populations plot near the VT common garden
in the transformed genomic space and therefore have lower predicted genetic offsets for movement to VT
common garden climate. In contrast, all seven variables have roughly equal contribution to variation in
the untransformed environmental space (Fig. 6b) and the locations of populations and their distances from
the common gardens reflects climatic similarity rather than underlying genomic patterns. For example,
SSR is located within the unique higher elevation climate space (Fig. 6b), despite having predicted genetic
composition similar to some eastern populations (Fig. 6a).

Genetic offset prediction of common garden performance - Genetic offset was significantly associated with
the realized performance of populations transferred to the novel environments of the common gardens.
Genetic offset models explained >60% of the variation in height increment growth (Table 1). Consistent
with predictions, height growth was highest for populations experiencing the lowest values of genetic offset
and declined with larger values of offset (Fig. 7). The shape of the height-offset relationship was non-linear,
represented by a significant quadratic effect (Table 1), and exhibited the steepest decline as offset increased
above zero followed by a flattening out at larger genetic offset values. Surprisingly, the estimates of genetic
offset made from the random selection of SNPs from the genomic background were just as good or slightly
better (R 2 = 0.66) than genetic offsets based on outlier loci (R 2 = 0.61-0.63). Climate-only distance had
a negative linear association with height growth, but was a weaker predictor overall, explaining a bit more
than half the variance in growth compared to genetic offset models (R 2= 0.34).

For the subset of populations that were phenotyped in both VT and TH (N=9 of 41), we observed a clear
rank order change and crossing reaction norms in the genetic offset predictions, indicative of a tradeoff in the



locally adaptive gene-climate relationship across sites (Fig. 8). Consistent with the prediction of a tradeoft,
the height growth of populations tended to increase or decrease in a trend that was inverse to the change in
genetic offset across sites, although without consistent change in the rank-order of populations. Accordingly,
the per-population difference in height growth between sites (VT minus IH) was negatively correlated with
difference in offset (Spearman’s rho = -0.6, P 1_tailea = 0.048), although with only 9 populations statistical
power was limited.

DISCUSSION

The primary goal of this study was to provide an experimental test of the extent to which genetic offsets, a
correlative space-for-time approach, can predict performance of populations exposed to new environments.
By transplanting individuals from their home environment to the novel climate of the common gardens,
we substituted space for time as a proxy for rapid climate change. We found that genetic offsets based on
existing gene-environment relationships work well to predict performance of populations experiencing new
environments - and much better than climate differences alone (Table 1). We view this finding as encouraging
preliminary evidence that genetic offsets may represent a first order estimate of the degree of expected
maladaptation of populations exposed to novel environments. While our study considered climate differences
across geographic space, in principle our findings should be relevant to temporal changes in climate as well.
As such, genetic offsets could provide a means to estimate aspects of population-level vulnerability to climate
change. Additional research is warranted to determine the extent to which our findings are generalizable to
other systems and populations growing in natural environments.

That genetic offsets outperformed naive climate distances is not surprising and can be best understood by
considering the similarities and distinctions between these two methods. In many ways, genetic offset share a
conceptual foundation with climate transfer distances long used in forestry (Mdatyds, 1996). The establishment
of provenance trials, in which tree seed from multiple locations are collected and grown in multiple sites,
has allowed for evaluation of tree performance as a function of differences in climate between sources and
planting sites (i.e., response functions derived from climate transfer distances; Wang, Hamann, Yanchuk,
O’Neill, & Aitken, 2006; Wang, O’Neill, & Aitken, 2010). These experiments provide excellent insight into
the climate variables that best predict phenotypic performance upon transfer to a new site, but are time and
labor-intensive, and not practical for most study systems. A simpler approach is to delineate climate-based
seed zones from which seeds should be selected for restoration under the hypothesis that maladaptation of
seedlings is minimized (and production is maximized) when movement of seeds is restricted to other sites
with similar climate (e.g., Bower, St Clair, & Erickson, 2014; Pike et al., 2020). The distinction between the
“traditional” climate transfer distances used for seed zone delineation and genetic offsets is simply that genetic
offsets use re-scaled climate distances based on the modeled associations with (adaptive) genomic variation,
whereas climate distances typically weigh the included variables equally despite potential variation in their
adaptive importance. Existing gene-environment relationships described by the fitted turnover functions from
GF provide the mechanism that allows proper weighting of different climate variables, based on how allele
frequencies are aligned with climate gradients. Gradients strongly associated with genomic variation (and
portions of these gradients where genetic patterns change most rapidly) will have greater contribution to
genetic offsets than will unimportant variables (or portions of gradients where allele frequencies generally are
constant; Capblancq, Fitzpatrick, Bay, Exposito-Alonso, & Keller, 2020; Fitzpatrick & Keller, 2015). This
also fits well with a recent study in lodgepole pine, (Pinus contorta ), in which the climate variables identified
as important in GEA models were strongly correlated (r = 0.9) with the climate variables associated with
phenotypic performance in a 20-year provenance trial (Mahony et al., 2020). This suggests that one of the
realized benefits of GEA may be in identifying which among a set of climate variables are most predictive
of local adaptation, which is the same principle being employed by GF to weight different climate variables
based on the strength of the genomic association when calculating genetic offsets. The use of GEA plus
genetic offsets may prove useful for conservation planning in long-lived species or those for which phenotypic
information from experimental assessment of field performance is lacking.

The finding that genetic offsets had good predictive power regardless of whether they were based on sets of
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outlier SNPs or simply SNPs selected at random from the genome (which surprisingly slightly outperformed
genetic offsets based on outlier SNPs) is harder to explain. One explanation is if allele frequencies of the
genome as a whole tend to be aligned with the same environmental gradients that are important to local
adaptation (i.e., the gradients of adaptive and neutral genomic background are parallel or proportional),
then one could serve as an adequate proxy for the other. If this is the case, then SNPs selected at random
should provide the same rank weighting of the climate gradients as would outlier SNPs, which was generally
the case in our study (Fig. 2, Supplementary Fig. S3). However, as mentioned above, the shapes of the
turnover functions also will influence genetic offsets. All else being equal, larger genetic offsets will occur
for populations transferred between environments on either side of a threshold as compared to populations
transferred along flat portions of allele turnover gradients. Assuming these nonlinearities reflect true signals
of local adaptation, we would then expect genetic offsets that incorporate these patterns to outperform linear
methods that do not. Our findings do not support this expectation. In this study, the turnover functions
based on outlier SNPs often showed pronounced nonlinearities, whereas those based on randomly sampling
SNPs from the genomic background tended to be more linear (Figs. 2, 3), yet genetic offsets based on outliers
tended to be strongly correlated with those from random SNPs (Supplementary Figs. 6). Further, random
SNPs slightly outperformed outlier SNPs in explaining height growth in the common gardens. Additional
research is required to determine whether this result is an artefact of our study or a more general pattern.

Another primary goal of our study was to explore differences between GF models fit to different sets of
outlier SNPs. There are numerous ways to detect statistical outlier SNPs, and, as was the case in this study,
it is not uncommon for different methods to identify different SNPs as outliers, leaving some uncertainty
regarding which SNPs are false vs. true positives, and therefore which SNPs truly are associated with climate
adaptation and thus most informative from a predictive standpoint. By fitting GF models to different sets
of outlier SNPs, we can ask: To what extent do different sets of outlier SNPs produce different inferences?
We found that although the different outlier methods detected different sets outlier SNPs (Fig. 1), GF
models fit to different sets of outliers from bayenv2 , ifmm , and GF-X were similar in terms of variable
importance ranking (thoughR 2 values differed, Supplementary Figs. 3 and 5), the general shapes of the
turnover functions (Figs. 2, 3), and therefore, the predicted spatial patterns of genetic variation (Fig. 4),
and by extension, the predicted genetic offsets (Supplementary Fig. 6). GF models fit to SNPs selected
at random or those selected using allele frequencies uncorrected for population structure (GF-Raw) also
generally followed the same pattern of variable importance ranking as other outlier detection methods, but
given that these methods selected a large proportion of unique SNPS, they produced turnover functions
and predicted spatial patterns that differed from each other and frombayenv2 | Ifmm , and GF-X . The
similarity in variable importance ranking and predictions from different sets of outlier SNPs would arise if
(1) the outlier SNPs they shared in common tended to have strong relationships with climate (and therefore
would have greater contribution to the fitted turnover functions from GF; (Ellis et al., 2012) and/or (2) the
outlier SNPs unique to each method tended to have similar relationships (i.e., shapes of turnover functions)
with climate. We have evidence for both possibilities. The shapes and cumulative importance of the turnover
functions for the outlier SNPs unique to bayenv2 ,ifmm , and GF-X were similar (Fig. 3) and the totalR
2 from GF models increased for SNPs as their outlier status was shared among an increasing number of
detection methods (Supplementary Fig. S7). Outliers unique to a single method likely represent a mix of
false positive SNPs along with some true positives that may be better detected by one method over another,
although these are difficult to separate in real data. Our experimental design and sampling strategy were
specifically chosen to minimize false positives arising from demographic history, and our simulations testing
GF-Raw suggested a low type I error rate under a simple scenario of isolation by distance. However, under
more complex demographic histories we would expect GF-Raw to be prone to false positives because it
does not have an internal control for neutral population structure. Given this, and the observed reduction
in unique outliers identified by GF before and after correcting for population relatedness (i.e., GF-Raw vs.
GF-X ), we advocate fitting GF only to allele frequencies that have been properly corrected for demographic
history.

In terms of outlier detection, it is notable that GF-X detected the fewest outliers overall and the fewest
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outliers unique to that method (Fig. 1). Unlike bayenv2 and [fmm , GF is multivariate, can accommodate
interactions between variables, and assumes no parametric form of the allele frequency ~ environment relati-
onship (although it does assume monotonicity). Therefore, GF-X may be less prone to the multiple testing
problem inherent in univariate methods, or to outlier loci arising due to departures from the assumed linear
model. As such, the combination of GF run on standardized allele frequencies produced by bayenv2 as done
in this study (GF-X ) could provide a more holistic approach to multivariate outlier detection that is robust
to the shape of the allele frequency ~ environment relationship, while also correcting for finite sampling and
population structure. Because GF reports an R 2 for each predictor variable in the model as well as for
the model as a whole, it also provides a means to consider outlier status from the context of individual
climate gradients as well as more comprehensively. Taken together, we feel GF warrants further study as a
useful outlier detection method under simple demographic histories, or when provided with allele frequencies
that have been corrected for population relatedness; especially for systems under strong, linear selection and
intermediate migration (supplementary Figure S2).

While still a new and largely untested method, GF is increasingly being applied to genomic studies, including
quantifying population-level climate change vulnerability. However, concerns have been raised about the
application of genetic offsets in this capacity, especially for mobile organisms with short generation times
(Fitzpatrick, Keller, et al., 2018). Common garden experiments are not perfect proxies for climate change or
organisms in natural environments, but our results suggest that existing genetic patterns across space and
associated genetic offsets may be informative for predictions across time as well - even if these predictions
are based on neutral genetic patterns. Given the inherent complexities, for most any organism it will be
challenging to predict the exact nature of genomic change in response to environmental change. However,
for some organisms, it may be possible to use existing gene-environment relationships to develop adequate
assessments of the magnitude of expected genomic change based on genetic offsets, which can provide a
proxy for population-level exposure to climate change.
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Table 1. Model estimates (SE) relating common garden height increment growth to genetic offset predictions
from Gradient Forests. Offset predictions were tested for different sets of outlier loci: (a) All outliers presented
in Fig. 1; (b) GF-X outliers; (¢) random sampling of SNPs from the genomic background; and (d) the climate-
only Mahalanobis distance based between source and garden sites.

(a) All outliers (b) GF-X (¢) Random-SNPs  (d) Climate-only
Intercept  46.33 (3.66)**** 39.81 (4.68)**** 50.63 (6.93)**** 37.23 (2.79)***
Offset 16.18¢2 (1.48¢2)***  _3.94e2 (1.07e2)*** -2.37e3 6.16e2)*** -0.28 (0.09)**

Offset? 3.50e2 (1.11e2)**  1.55e2 (6.12¢2)* 3.80e4 (1.4e4)**
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Garden  2.39 (0.90)* 5.34 (2.29)* 5.76 (2.23)* 8.74 (2.77)%*
N SNPs 823 120 500° n/a
Model R?  0.61 0.63 0.66 0.34

"Snot significant, * P < 0.05, ¥**P < 0.01, *** P < 0.001, **** P< (0.0001.

2Average genetic offset from 999 random draws of 500 SNPs from the genomic background.

LFMM Bayenv

FIGURE 1 - Venn diagram showing the intersection between four outlier detection analyses. Each ellipse
represents a different detection method and numbers correspond to either (black) the number of unique
outliers from each method or (gray) the number of shared outliers among methods.
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FIGURE 2 - Compositional turnover functions from GF models fit to different sets of outlier and randomly
selected SNPs. Each bold, colored curve in each panel is an aggregate turnover function from a different GF
model representing the R 2-weighted average of the individual turnover functions (shown in Figure 3) fitted
to the number of SNPs indicated in the legend. For example, the green line indicates the overall turnover
function from a GF model fit to minor allele frequencies of 310 significant outliers identified bylfmm analyses,
146 of which had an R ?greater than zero in the GF model and therefore contributed to the aggregate function
for this model. The thin black lines indicate aggregate turnover functions from GF models fit to 999 different
sets of 500 randomly selected SNPs and the teal line represents the combined aggregate of these 999 models.
The location of where each population occurs on each gradient is labeled along the x-axes (for clarity only
a subset of populations are shown). The vertical dashed and dotted lines indicate where the VT and IH
common gardens respectively fall along each gradient given the local conditions during the common garden
experiments in 2014-2015.
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FIGURE 3 - SNP-level compositional turnover functions for the four outlier detection methods (columns)
and variables (rows; only the first four most important variables are shown, see Supplementary Figure S4
for the remaining three variables). The first four columns show the fitted SNP-level turnover functions for
outlier SNPs unique to that method, whereas the last column (‘Shared’) plots the fitted SNP-level turnover
functions for SNPs detected by two or more outlier detection methods.
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FIGURE 4 - Mapped pairwise comparisons of predicted patterns of spatial turnover in genetic composition
from six GF models fit to different sets of outlier and randomly selected SNPs. The number in the lower
left of each panel is the sum of the Procrustes residuals across all pixels within the range of balsam poplar
for each pairwise model comparison, with higher values and lighter shading indicating greater differences in
predicted geographic patterns between the model pairs.
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FIGURE 5 - Maps of population locations and common gardens, with label sizes scaled to (a, ¢) predicted
genetic offsets from GF-X or (b, d) climatic transfer distances for transplanting populations from their home
environment to either the (red dot) VT or (red triangle) IH common garden. Only populations with cyan
labels were planted in the respective garden in each column. Dark shading is the range of balsam poplar
from (Little, 1971).
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FIGURE 6 - Bi-plots showing (a) predicted variation in genetic composition from GF-X and (b) variation
in untransformed environmental conditions (each colored point is a climate grid cell within a subset of the
range of balsam poplar containing the sample populations). Locations of the 42 populations within each of
these spaces are indicated by three letter population codes. The VT and TH common gardens are indicated
by a red dot and red triangle respectively. Colors in (a) represent gradients in genetic turnover derived from
transformed environmental predictors; locations with similar colors are expected to harbor populations with
similar genetic composition. In (b), color similarity corresponds to environmental similarity uninformed by
genetic patterns. Labeled vectors indicate the direction and magnitude of gradients with greatest contribution
(y=latitude, elev=elevation, bio2=mean diurnal range, biol0/bioll=mean summer / winter temperature,
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bio18/bio19=summer /winter precipitation). Genetic offsets are approximately the Euclidean distance from
each population to the common gardens in (a), whereas climate transfer distances are approximately the
Euclidean distance from each population to the common gardens in (b), though note that variation in higher
dimensions is not shown.

(a) (b)

s
S
IS
=

£ £
2 =2
T =
@ o
£ £ 30-
G S
£ £
= =
2 2
[7}
2 £
20 20-
«* ®
L
0.03 0.06 0.09 0.04 0.08 0.12
Genetic offset Genetic offset
(c) (d)
@ L]
[ ]
o 40-
40
£ £
2 N
E 2 30-
g g
g e
[+} Qo
£ £
= =
= %"
7] Q
T T
20
10-
0.01 0.02 0.0 20 40 &0
Genetic offset Climate-only Mahalanobis distance

FIGURE 7 - Predicted genetic offset from Gradient Forest versus height growth increment measured in
common gardens. The GF turnover functions in Figure 2 were used to predict the genetic offset of populations
when transplanted from their source climate to the climate of the common garden. The fitted lines and
confidence intervals show the modeled relationships between genetic offset and height growth increment
based on a quadratic fit (panels a-c) or linear fit (panel d). Different offsets are plotted based on (a) all
outlier loci, (b) GF-X , (c) average of the 999 random draws of 500 background SNPs, and (d) climate-only
Mahalanobis distances.
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