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Abstract

1. The metric of functional evenness FEve is an example of how approaches to conceptualizing and measuring functional

variability may go astray. 2. The index of functional evenness FEve has critical conceptual and practical drawbacks: a)

Different values of the FEve index for the same community can be obtained if the species have unequal species abundances;

this result is highly likely if most of the traits are categorical. b) Very minor differences in even one pairwise distance can result

in very different values of FEve. c) FEve uses only a fraction of the information contained in the matrix of species distances.

Counterintuitively, this can cause very similar FEve scores for communities with substantially different patterns of species

dispersal in trait space. d) FEve is a valid metric only if all species have exactly the same abundances. However, the meaning

of FEve in such an instance is unclear as the purpose of the metric is to measure the variability of abundances in trait space.

3. We recommend not using FEve metric in studies of functional variability. Given the wide usage of FEve index over the last

decade, the validity of the conclusions based on those estimates are in question. 4. Instead, we suggest three alternative metrics

that combines variability in species distances in trait space with abundance in various ways, and more broadly recommend

that researchers think about which community properties (e.g., trait-distances of a focus species to the nearest neighbor or all

other species, variability of pairwise interactions between species) they want to measure and pick from among the appropriate

metrics.

Abstract

1. The metric of functional evenness FEve is an example of how approaches to conceptualizing and
measuring functional variability may go astray.

2. The index of functional evenness FEve has critical conceptual and practical drawbacks:

1. Different values of the FEve index for the same community can be obtained if the species have unequal
species abundances; this result is highly likely if most of the traits are categorical.

2. Very minor differences in even one pairwise distance can result in very different values of FEve.
3. FEve uses only a fraction of the information contained in the matrix of species distances. Counterin-

tuitively, this can cause very similar FEve scores for communities with substantially different patterns
of species dispersal in trait space.

4. FEve is a valid metric only if all species have exactly the same abundances. However, the meaning
of FEve in such an instance is unclear as the purpose of the metric is to measure the variability of
abundances in trait space.

1. We recommend not using FEve metric in studies of functional variability. Given the wide usage of FEve
index over the last decade, the validity of the conclusions based on those estimates are in question.
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2. Instead, we suggest three alternative metrics that combines variability in species distances in trait
space with abundance in various ways, and more broadly recommend that researchers think about
which community properties (e.g., trait-distances of a focus species to the nearest neighbor or all other
species, variability of pairwise interactions between species) they want to measure and pick from among
the appropriate metrics.

Functional trait variability is a component of biodiversity that for the species within a community measures
variability in the traits that are assumed to play a role in organismal or ecosystem functions. Many aspects
of ecosystem processes depend on the nature, distribution, and variation of organismal traits. Therefore, a
proper assessment of functional trait variability is important, and numerous metrics and approaches have
been developed since the 1990s to measure this key community attribute (many of them are listed in Scheiner,
2019).

Functional trait variability is a complex concept. To describe its different facets, Villéger, Mason, and
Mouillot (2008) suggested three separate metrics: functional richness (FRic), functional evenness (FEve), and
functional divergence (FDiv), which measure, respectively, the amount of trait space filled by the community,
the evenness of species abundances as they are distributed in trait space, and how abundances are spread
across trait space. Among the few commonly used approaches, these three metrics are some of the most
complicated, but they are assumed to provide an exhaustive measure of functional variability within a
community. Despite some criticisms of these indices, mainly focused on functional evenness (e.g. Ricotta,
Bacaro, & Moretti, 2014; Legras & Gaertner, 2018), their usage has continually grown in recent years from
134 citations in 2015 to 288 in 2019, with a current total of over 1500 citations. In this paper, we demonstrate
that functional evenness (FEve) has severe limitations in its applicability and interpretation. We concentrate
on FEve as an example of how approaches to conceptualizing and measuring functional evenness may go
astray.

A community can be characterized by its species and their abundances. Using additional information about
those species, relationships among the species can be expressed in terms of pairwise distances, that in turn can
be used to measure overall community variation. In particular, if each species is described by the same set of T
traits (standardized trait values are assumed), a community of S species can be represented by S points in a T
-dimensional trait space. While distances can be estimated with different metrics, relationships are completely
predetermined by the species’ dispersion in the trait space. Functional trait diversity can be measured in a
variety of ways; the differences in trait space among species can be measured using all pairwise distances,
the mean distance of a given species from other species, or nearest-neighbor distances (Scheiner, 2019).
Those distances can then be further weighted by the species abundances to provide a measure of abundance-
weighted functional trait variation within this multi-trait space. FEve measures functional evenness based on
abundance-weighted nearest-neighbor distances, so this metric might be relevant if the primary interactions
within a community are among species that are most similar in trait values. While such types of interactions
occur in many circumstances, there are many circumstances when this is not true for either species or types
of interactions. However, the FEve metric has been widely used to analyze functional variation without
consideration of the types of processes and entities being considered. We return to this issue in the final
section of the paper when we discuss alternative measures of functional variation.

Conceptual problems

Functional evenness (FEve) is based on a minimum spanning tree (MST) of a complete, undirected network
of S vertices (species) with edges weighted by distance. An MST links all vertices through S − 1 edges such
that there are no cycles, i.e., there is only one pathway between any two species. For S vertices there are
SS−2 possible spanning trees. The MST is the tree with the minimum possible total sum of the distances
between all pairs of connected vertices (species). Importantly, several MSTs with the same minimum total
distance may exist for a given network, if there are edges with the same distances. Such equal distances are
highly likely if most of the traits are categorical or meristic (counts). At the extreme, if all edges are of equal
distance, there are SS−2 MSTs.
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If FEve is to be used as a measure of some property of biodiversity, its conceptual basis needs to be described
and justified. In particular, what is the reasoning for the use of MST-edges in combination with abundances
as a functional characteristic? Which functional characteristic is addressed by this combination? In what
sense is it a measure of evenness? In addressing these questions, we uncover two conceptual problems: (1)
the possibility of non-uniqueness of MSTs and, (2) its use as an index of evenness.

Given a particular MST with S nodes (species si,i = 1, 2, . . . , S), FEve is calculated as follows. First, each
edge linking species si and sj with functional distancedij = dist (si, sj) between them is weighted by the sum
of their abundances (wi and wj):

EWij =
dist(si,sj)
wi+wj

=
dij

wi+wj
. (1)

Second, those weighted edges are normalized by the sum of theEWij values for the corresponding MST:

PEWij =
EWij∑S−1

(i,j)=1
EWij

, (2)

where (i, j) designates an edge between speciessi and sj . (Because of this normalization, either relative or
absolute abundances can be used.) Finally, FEve is calculated as:

FEve =

[∑S−1
(i,j)=1

min(PEWij,
1

S−1 )− 1
S−1

]
[1− 1

S−1 ]
, (3)

which takes values between 0 and 1 (the denominator is the theoretically possible maximum value of the
numerator). According to Villéger et al. (2008), ”our new functional evenness index measures both the
regularity of branch lengths in the MST and evenness in species abundances.” From context, it is also clear
that the authors intended the MST branches (edges) to connect nearest neighbors.

The authors do not explicitly identify the characteristics and objects that are the focus of their metric. We
do so as follows. The combination of an edge plus abundances (PEWij values) serves as the characteristic of
interest, with pairs of species being the objects (eq. 1). Evenness of these objects (eq. 2) is the focus of the
metric. Evenness is quantified as a deviation of the relative representations from their associated uniform
distribution (the numerator in eq. 3).

This approach has several conceptual problems. First, abundance-edge combinations (EWij values) do not
necessarily represent evenness relationships between nearest neighbors. The internal nodes of an MST have
at least two connecting edges. If one edge is smaller than another (e.g., dij < dik), its abundance-weighted
representation can be larger than that of the second edge (Eij > Eik) when the sum of abundances of the
corresponding species is sufficiently larger (wi + wk � wi + wj). Depending on how species abundances are
distributed along MST nodes, it is possible that none of those abundance-edge pairs on the MST represent
nearest neighbors. Therefore, estimation of functional evenness with FEve does not really mirror a concept
of measuring functional variability based on the functionally nearest types (species).

Second, the authors state that ”to transform species distribution in a T-dimensional functional space to a
distribution on a single axis, we choose to use the minimum spanning tree”. No reasoning is given for why
such a transformation is required. Nor is it explained in what way an MST can be considered as yielding a
distribution on a single axis, given that nodes can connect to more than two others.

Third, the functional relevance of combining MST-distances (edge values) with abundances is simply assu-
med. The use of abundances assumes that any and all functional traits have a similar per capita functional
effect.

Fourth, the potential for a single set of points to have multiple MSTs is ignored. While one can demonstrate
that the distribution of edge values is the same for all alternative MSTs, this property is lost when they
are combined with species abundances. As we show in the next section, such combinations can lead to more
than one value of evenness for the same data set.

Inferences from constructed examples

3
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Multiple MSTs can result in multiple, different values of FEve index for the same community if the species
have unequal species abundances, which severely limits the utility of the metric. The following example
demonstrates such a situation. Let the community consist of three equally distant species (s1, s2, and s3) in
a given trait spaces (i.e.dist (s1, s2) = d12 = d13 = d23 = d) with abundances w1 = 1, w2 = 2 and w3 = 3,
respectively (Fig. 1, community network). There are three MSTs with the same minimum total distance
(2d): MST1 with one edge connecting s1 and s2, and one edge connecting s2and s3 (Fig. 1, MST1); MST2

with edges connecting s1 and s2, and s1 and s3(Fig. 1, MST2); and MST3 with edges connecting s1 and s3,
and s2 and s3 (Fig. 1, MST3). The three trees result in different estimates for FEev (Fig. 1). Thus, for any
community there is a likelihood for multiple FEev estimates making interpretation of any estimates suspect.

This problem does not arise if all distances for a given network are different; then there will be only one,
unique MST. Such differences in distances are likely if all or most of the traits are quantitative. However,
such unique values for FEve do not solve the underlying conceptual problems.

Now consider the three MSTs in Fig. 1 to be three different communities and the distances between the species
no longer identical, but just very, very slightly different so that each MST is unique for that community (e.g.,
for MST1 d 12 =d 23 = 1 and d 13 = 1.0001; for MST2 d 12 =d 13 = 1 and d 23 = 1.0001; for MST3 d 13

=d 23 = 1 and d 12 = 1.0001). Intuition says that the three communities have nearly the same evenness,
and yet they have very different values of FEve.

Additional, hidden pitfalls come about from how FEve is often calculated. Rather than using the origi-
nal matrix of pairwise distances, PCoA or Multidimensional Scaling (MDS) is used first to transform the
distance matrix, and then only the first two or three axes of the transformed space are considered when
calculating species’ distances (e.g., Mouillot, Villéger, Scherer-Lorenzen, & Mason, 2011; Taudiere, & Violle,
2016). This transformation generally results in a distribution of nodes with no equal distances so that the
corresponding MST is unique. However, because of the dimensional reduction, the new pairwise distances
are only approximations of the original ones, and the corresponding FEve estimate depends on accuracy of
PCoA performance (goodness of fit of the approximations to the original distances). While one could argue
that the problems with FEve can be solved by always using untransformed distances, doing so does not
guarantee a solution to the other problems listed above.

There is one circumstance that non-unique MSTs result in the same FEve values. This can happen if all
species have exactly the same abundances. This equality occurs because any two MSTs of a given network
have the same distribution of the edge weights. However, the meaning of FEve in such an instance is unclear
as the purpose of the metric is to measure variability of abundances in trait space.

A central reason for the problems raised above is that FEve uses only a fraction of the information contained

in the matrix of species distances. Only S − 1 of the (S−1)×S
2 pairwise distances are used in the calculation

of FEve; the much larger portion of the distances are simply ignored. This can cause the same FEve scores
for communities with different patterns of species dispersal in trait space (Fig. 2). In our example, this
result occurs because the distance between species 1 and 3 is ignored. In addition, it is possible to have a
community where FEve = 1 even when neither species abundances nor distances between species are evenly
distributed (Fig. 3). In general, complete evenness (FEve = 1) is realized if and only if all PEWij values
are equal (eqs. 2, 3), which does not necessarily imply that all distances or all abundances are equal. This
behaviour contradicts the claim of Villéger, Mason, and Mouillot (2008; p. 2293) that, ”FEve decreases either
when abundance is less evenly distributed among species or when functional distances among species are less
regular.” Their claim is correct as an absolute statement only if the other factor (abundances or distances)
are held constant, which will not occur when comparing actual communities.

Examples from data

Our constructed examples demonstrate the potential problems with the FEve metric. Here we show how the
problem of multiple estimates from a single dataset emerges with actual data. Importantly, there is no way
to know in advance the number or range of different FEve estimates for a given dataset. Our first example
is the traditional type of data used for functional trait analyses: bats and feeding traits. The other three
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examples are from less commonly used data: genetic profiles where the traits are the presence and absence of
different genes. These examples demonstrate the problem of multiple MSTs that arises with non-continuous
traits. For the two examples that lack actual abundance data, we show how a single distance matrix can
result in multiple, disparate FEve estimates with simulated abundances. For the other two examples, we
show analyses with both actual abundances and two sets of simulated abundances to show how different
types of abundance distributions can result in highly variable FEve estimates.

Bats and feeding traits .

The first example consists of a set of five bat species (Carollia manu , Chiroderma salvini , Dermanura
glauca ,Enchisthenes hartii , and Micronycteris megalotis ) in the Manu Biosphere Reserve located on the
eastern slopes of the Andes in southeastern Peru. Our analysis was based on species characterization with
16 binary categorical traits (Table S3 in Scheiner, Kosman, Presley, & Willig 2017) that were separated
into three groups: diet (fruit, nectar, invertebrates, vertebrates, fish, blood), foraging location (open areas,
over water, above canopy, canopy, subcanopy, understory), and foraging strategy (aerial, gleaning, hovering,
other). To determine the functional distance between species, Jaccard dissimilarity was calculated for each
group of binary traits, and then the combined distance between species was determined by an equal-weight
averaging of the three group-specific dissimilarities (Table 1). Because the distance matrix contains many
equal values, three different MSTs can be generated (Table 1). Because abundance data were not available,
we provided two different sets of simulated values. For each set of simulated abudances, the multiple MSTs
resulted in FEve estimates that varied 16% and 28%, respectively, between the smallest and largest values
(0.374 to 0.480; and 0.676 to 0.785).

Bryozoan genotypes .

Cristatella mucedo is a diploid freshwater bryozoan. We used data on eight microsatellite loci (Table 2 in
Kosman & Jokela, 2019) for ten genetically separate individuals from bryozoan colonies in Lake Aegery,
Switzerland. The distance between the genotypes was calculated by assuming a stepwise mutation model of
microsatellite evolution with variable rates of mutations at different loci (SMMv; Kosman & Jokela, 2019).
The corresponding matrix of pairwise distances is presented in Table 2. Abundance data were not available,
so we provided simulated values. Again, multiple MSTs can be generated based on the distance matrix that
result in four different FEve estimates (Table 2) that ranged from 0.533 to 0.635.

Wheat fungal pathogen (Puccinia graminis f. sp. tritici)genotypes .

The data consisted of eleven virulence phenotypes of P. graminisisolates collected from bread wheat in
the Novosibirsk region of Russia. The binary phenotypes (virulence/avirulence) were determined with a
set of twenty North American wheat differential lines (Skolotneva et al., 2020). The distance between
the phenotypes was calculated using simple mismatch dissimilarity; the corresponding matrix of pairwise
distances are presented in Table 3. Twenty-four different MSTs can be generated (Table 3). For the actual
abundances, ten different FEve estimates ranged from 0.659 to 0.737 (Fig. 4). Even minor changes in
abundances resulted in substantial changes in number and values of different FEve estimates: for the Y-
modification, twenty-four values ranged from 0.708 to 0.793; for the Z-modification, eighteen values ranged
from 0.573 to 0.695 (Fig. 4).

Wheat fungal pathogen (Puccinia triticina Erikss) genotypes .

The data consist of eleven genotypes of single-uredinial isolates ofP. triticina (a dikaryotic fungus) col-
lected from durum wheat in Russia using eleven microsatellite markers (Table 3 in Kosman & Jokela, 2019;
Gultyaeva et al., 2017). The distance between the microsatellite genotypes was calculated assuming an
infinite alleles model (IAM; Kosman & Leonard, 2005), and the corresponding matrix of pairwise distances
is presented in Table 4A. Three different MSTs can be generated based on the distance matrix (Table 4B).
We compared the FEve estimates for the actual abundances with simulated values for three scenarios: (1)
two dominant and nine rare types (simulation P), nine dominant and two rare types (simulation R), and all
types equally abundant (simulation E). For the real abundances, FEve values ranged from 0.612 to 0.651
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(about 7%). For simulation P, the values have a wider range (0.711 – 0.801, around 13%). For simulation
R, the values have a very wide range, from 0.234 to 0.828 (about 354%), which shows the outsized influence
of differences in MSTs when the node has a high abundance. For simulate E, as expected, equally abundant
types resulted in the same value of 0.88 for all MSTs, despite their variation.

Summary of FEve issues

In constructing species networks, it is assumed that trait values are measured without error and that there
is no variation within species, two assumptions that we know are false. This issue could be addressed
by a procedure that would estimate the mean and variability of relevant estimates over all closely related
networks. We do not know of any attempt to study that matter for any diversity metric. Nevertheless,
this problem seems much more acute for FEve comparing with many other metrics because of the potential
for non-unique MSTs in addition to errors in distance measures. Multiple estimates of a diversity metric
obtained for different, closely-related networks are natural. However, it is conceptually incorrect to assume
that functional evenness has multiple values for a community represented by a single network. Given the
wide usage of FEve index over the last decade, the validity of the conclusions from those studies are now in
question. Our examples show that a single dataset can result in considerable variability in FEve estimates,
especially when the data include rare types. The combination of functional relationships and abundances
(species distance divided by sum of their abundances) into a single assessment of evenness results in a metric
that fails to distinguish between distance evenness and abundance evenness (Gregorius, 1990).

This entire paper has been about FEve, but we would be remiss if we do not mention PEve – phylogenetic
evenness – which was defined by Dehling et al. (2014) to be identical to FEve, but substituting nearest-
neighbor phylogenetic distances for distances in functional-trait space. We discussed the non-uniqueness
problem with FEve that occurs when you have two species which have identical nearest-neighbor distances
to a third, but differ in their abundances. This problem is most likely for categorical traits or those based
on counts with just a few possible values and so many not occur that often. However, this problem is highly
likely for phylogenetic data. It will occur any time you have a pair of sister species that are equally distant
from a third and that differ in their abundances. PEve has been used much less frequently than FEve, but
should also be abandoned. As with functional traits, there are alternative for phylogenetic evenness that can
measure the same properties while avoiding the uniqueness problem (Tucker et al. 2017, Scheiner 2019).

Next steps

We have shown that FEve has critical conceptual and practical drawbacks, and therefore, we recommend
not using this index in studies of functional variability. However, it is still possible to measure evenness
of functional traits combined with information about abundances using alternative methods that do not
have the limitations of FEve. An alternative metric based on Hill numbers that combines nearest-neighbor
distances with abundances is the evenness derivative of the diversity metric of Scheiner (2012):

qD (ATN ) =

(∑S
i=1

(
nidi min∑S

j=1 njdj min

)q) 1
(1−q)

(4)

qE (ATN ) =
qD(ATN )

S , (5)

where qD (ATN ) is effective number of distinct species that equally contribute to functional interaction and
variability within a community based on nearest-neighbor distances (nidi min = njdj min for alli 6= j), S is
the number of species,ni is the number of individuals of speciesi , di min is the nearest-neighbor distance
of species i , and q is the exponent of the Hill function. [The metrics here and below follow the symbol
convention of Scheiner (2019).] This metric measures the evenness of the joint distribution of abundances
and nearest-neighbor distances. Because each species has a unique nearest-neighbor distance, the resulting
metric always has a single value and small deviations of those values will result in only small changes in the
metric, eliminating the problems that we outlined above for FEve. It should be used in conjunction with
an examination of the separate evennesses of abundances [qE (A)] and nearest-neighbor distances [qE (TN )].
For example, it is possible that neither parameter is evenly distributed singly, but that the joint distribution

6
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has an even distribution, which can occur if they are strongly negatively correlated. Such a combination of
values would then point to the potential importance of processes that jointly affect traits and abundances
(e.g., competitive exclusion).

An alternative approach for combining trait distance and abundance information is the use of the abundance-
weighted distance of speciesi from all of the other S − 1 species:

di =
∑

k = 1
k 6= i

Sdik
(
nk

N

)
, (6)

where N =
∑S

j=1 nj is the total number of individuals in the assemblage. Then functional diversity can be
estimated in terms of Hill numbers as:

qD (ATT ) =

(∑S
i=1

(
nidi∑S

j=1 njdj

)q) 1
(1−q)

, (7)

which is the effective number of distinct species that equally contribute to functional interaction and variabil-
ity within a community based on abundances and weighted distances of every species from all other species
(nidi = njdj for all i 6= j). From this, we can obtain an evenness measure as:

qE (ATT ) =
qD(ATT )

S . (8)

This measure of evenness would be appropriate if a given species interacts with all of the other species in a
community in a way that ‘averages’ over all of those interactions (e.g., in a system with diffuse competition).

The evenness metrics given in eqs. 5 and 8 are based on the individual properties of each species. An
alternative approach is to measure functional variation based on pairs of species:

qH (ATP ) =
(∑S

i=1

∑S
j=1

(
ninjdij∑S

k=1

∑S
l=1 nknldkl

)q) 1
(1−q)

, (9)

which measures the effective number of equally interacting pairs of species (equal values of ninjdij for
alli, j = 1, 2, . . . , S, i 6= j) (see eq. A23 in Scheiner et al., 2017), so that the number of equally interacting
species is determined as follows:

qD(ATP )=
(
1+
√

1+4qH(ATP )
)

2 , (10)

(eqs. 4 and A4, Scheiner et al., 2017). The corresponding metric of functional evenness is then:

qE (ATP ) =q D (ATP )/S . (11).

This measure of evenness would be appropriate if the pairwise interactions are important and those inter-
actions occur with all of the other species in the community (e.g., scramble competition for a spectrum of
resources(. The metrics presented here (eqs. 4 – 11), as well as FEve itself, assume that all individuals
within a species are identical; somewhat different forms are necessary to capture within-species variation.

More general concepts (Gregorius & Kosman 2017, 2018) and a large variety of metrics (Scheiner 2019)
exist for measuring functional variation, and can be used as alternative for FEve. We caution, though, that
many of them have not yet been critically evaluated. The metrics suggested here (eqs. 5, 8, and 11) are all
based on a concept of diversity of the dispersion of an effective number of types. Division of this effective
number by the actual number of types turns these into metrics of functional evenness. While there is no
single best way to measure functional-trait evenness or its combination with abundance, there are metrics,
such as FEve, that should be avoided.
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Table 1. For a set five bat species: pairwise distances, abundances, MST attributes, and estimates of
functional evenness FEve. Because no abundance data are available, we generated simulated values. The
weights of the edges between each pair of MST nodes is equal to the distance between those species.

B1 B2 B3 B4 B5 abundancea
MST
edges

MST
edges

Carollia
manu

B1 0 0.333 0.333 0.333 0.167 1 20 Bi – Bj weight

Chiroderma
salvini

B2 0.333 0 0.167 0.222 0.5 5 20 1 - 5 0.167

Dermanura
glauca

B3 0.333 0.167 0 0.167 0.5 10 20 1 – 2; 1 –

3; 1 – 4b
0.333

Enchisthenes
hartii

B4 0.333 0.222 0.167 0 0.5 20 1 3 – 4 0.167

Micronycteris
megalotis

B5 0.167 0.5 0.5 0.5 0 1 20 3 – 2 0.167

a Two sets of simulated absolute abundances: Y (bold italic ) and Z.

b Because species B1is equally distant to three others, there are three possible MSTs. For set Y, the MSTs
with edges 1− 2, 1− 3, and 1− 4 resulted in FEve estimates of 0.476, 0.480 and 0.374, respectively; for set
Z, the values were 0.785, 0.785 and 0.676, respectively.

Table 2. Ten microsatellite genotypes of freshwater bryozoanCristatella mucedo (Cm): pairwise distances,
abundances, MST attributes, and estimates of functional evenness FEve. Because no abundance data are
available, we generated simulated values. The weights of the edges between each pair of nodes is equal to
the distance between those genotypes.

(A) Cm1 Cm2 Cm3 Cm4 Cm5 Cm6 Cm7 Cm8 Cm9 Cm10 abundancea
MST
edges

MST
edges

Cm1 0 0.066 0.021 0.009 0.066 0.052 0.054 0.078 0.083 0.124 1 Cmi –
Cmj

weight

Cm2 0.066 0 0.045 0.057 0.114 0.014 0.012 0.102 0.106 0.147 2 1 - 4 0.009
Cm3 0.021 0.045 0 0.012 0.069 0.059 0.057 0.057 0.062 0.103 3 4 - 3 0.012
Cm4 0.009 0.057 0.012 0 0.057 0.047 0.045 0.069 0.073 0.114 4 3 – 2; 4

- 7b
0.045

Cm5 0.066 0.114 0.069 0.057 0 0.104 0.102 0.012 0.016 0.057 5 2 – 7 0.012
Cm6 0.052 0.014 0.059 0.047 0.104 0 0.002 0.116 0.12 0.161 6 7 – 6 0.002
Cm7 0.054 0.012 0.057 0.045 0.102 0.002 0 0.114 0.118 0.159 7 4 – 5; 3

- 8b
0.057

Cm8 0.078 0.102 0.057 0.069 0.012 0.116 0.114 0 0.004 0.046 8 5 – 8 0.012
Cm9 0.083 0.106 0.062 0.073 0.016 0.12 0.118 0.004 0 0.05 9 8 - 9 0.004
Cm10 0.124 0.147 0.103 0.114 0.057 0.161 0.159 0.046 0.05 0 10 8 - 10 0.046
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a Simulated absolute abundances.

b There are four different MSTs with one of these edges. These MSTs resulted in four different FEve values:
0.533, 0.553, 0.612, 0.635.

Table 3. Eleven virulence phenotypes of P. graminis (Pgt): pairwise distances, abundances, MST attributes,
and estimates of functional evenness FEve. The weights of the edges between each pair of nodes is equal to
the distance between those phenotypes. To show the effects of variation in abundances, besides the actual
values, we calculated FEve for each of two pairs of altered values.

Pgt1 Pgt2 Pgt3 Pgt4 Pgt5 Pgt6 Pgt7 Pgt8 Pgt9 Pgt10 Pgt11 abundance
MST
edges

MST
edges

Pgt1 0 0.05 0.1 0.15 0.1 0.1 0.15 0.05 0.15 0.3 0.45 1 Pgti –
Pgtj

weight

Pgt2 0.05 0 0.05 0.1 0.15 0.15 0.2 0.1 0.1 0.35 0.4 1 1 - 2 0.05
Pgt3 0.1 0.05 0 0.05 0.2 0.1 0.15 0.15 0.15 0.3 0.35 (3)a

2
(8)b

2 -
3

0.05

Pgt4 0.15 0.1 0.05 0 0.15 0.15 0.2 0.2 0.1 0.35 0.3 2 3 - 4 0.05
Pgt5 0.1 0.15 0.2 0.15 0 0.2 0.15 0.15 0.15 0.3 0.35 2 1 – 8 0.05
Pgt6 0.1 0.15 0.1 0.15 0.2 0 0.15 0.15 0.25 0.2 0.35 (4)a

1
1 –
6; 3
– 6c

0.10

Pgt7 0.15 0.2 0.15 0.2 0.15 0.15 0 0.2 0.3 0.25 0.3 2 1 - 5 0.10
Pgt8 0.05 0.1 0.15 0.2 0.15 0.15 0.2 0 0.1 0.25 0.4 9 2 - 9;

4 - 9;
8 – 9c

0.10

Pgt9 0.15 0.1 0.15 0.1 0.15 0.25 0.3 0.1 0 0.35 0.3 1 1 – 7;
3 – 7;
5 – 7;
6 – 7c

0.15

Pgt10 0.3 0.35 0.3 0.35 0.3 0.2 0.25 0.25 0.35 0 0.25 2 6 - 10 0.20
Pgt11 0.45 0.4 0.35 0.3 0.35 0.35 0.3 0.4 0.3 0.25 0 8 (2)b 10 -

11
0.25

a Modification Y of abundances of two phenotypes.

b Modification Z of abundances of two phenotypes; the total number of individuals was not changed.

c Twenty-four different MSTs are possible with one of these edges. The multiple MSTs resulted in ten,
twenty-four, and eighteen different FEve values for actual abundances, Y-modification, and Z-modification,
respectively. Variability of FEve estimates is shown in Fig. 4.

Table 4. (A) Eleven microsatellite genotypes of P. triticina (Pt): pairwise distances, abundances and MST
attributes. The weights of the edges between each pair of nodes is equal to the distance between those
genotypes. To show the effects of variation in abundances, besides the actual values, we calculated FEve for
two instances of altered values. (B) Estimates of functional evenness FEve.
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. (A) Pt1 Pt2 Pt3 Pt4 Pt5 Pt6 Pt7 Pt8 Pt9 Pt10 Pt11 abundance
MST
edges

MST
edges

Pt1 0 0.045 0.045 0.091 0.045 0.136 0.091 0.091 0.136 0.182 0.182 10 a

1b

20 c

Pti –
Ptj

weight

Pt2 0.045 0 0.091 0.136 0.091 0.091 0.045 0.045 0.182 0.136 0.136 12 1
20

1 - 2 0.045

Pt3 0.045 0.091 0 0.136 0.091 0.182 0.045 0.136 0.091 0.136 0.227 6 1
20

1 - 3 0.045

Pt4 0.091 0.136 0.136 0 0.045 0.227 0.182 0.091 0.227 0.273 0.273 1 1
20

1 - 5 0.045

Pt5 0.045 0.091 0.091 0.045 0 0.182 0.136 0.045 0.182 0.227 0.227 1 1
20

5 - 4 0.045

Pt6 0.136 0.091 0.182 0.227 0.182 0 0.136 0.136 0.091 0.045 0.045 2 1
20

2 - 7 0.045

Pt7 0.091 0.045 0.045 0.182 0.136 0.136 0 0.091 0.136 0.091 0.182 4 20
1

2 - 8 0.045

Pt8 0.091 0.045 0.136 0.091 0.045 0.136 0.091 0 0.227 0.182 0.182 1 1
20

2 - 6;
3 - 9;
7 – 9d

0.091

Pt9 0.136 0.182 0.091 0.227 0.182 0.091 0.136 0.227 0 0.045 0.136 1 20
1

6 - 10 0.045

Pt10 0.182 0.136 0.136 0.273 0.227 0.045 0.091 0.182 0.045 0 0.091 4 1
20

10 - 9 0.045

Pt11 0.182 0.136 0.227 0.273 0.227 0.045 0.182 0.182 0.136 0.091 0 1 1
20

6 - 11 0.045

(B) MST abundances abundances abundances abundances

actual simulated P simulated R equal
1 (2-6)d 0.651 0.801 0.828 0.880
2 (3-9) 0.631 0.724 0.753 0.880
3 (7-9) 0.612 0.711 0.234 0.880

a Actual abundances (bold italic ).

b Simulation P of abundances (italic ).

c Simulation R of abundances (italic underline ).

d There are three different MSTs with one of these edges.

Figure captions

Figure 1. A community network in which the distances between all three species are identical, which results
in three possible minimum spanning trees (MSTs) and multiple FEve estimates for the same community.

Figure 2. In these communities, two of the three species are equally distant in both communities (d 12 =d 23

= d ) with a distance that is smaller than the third distance (d 13). If the abundances of the three species are
w1 = 1, w2 = 2 and w3 = 3, then FEve = 0.75), even though community B seems much more functionally
irregular than community A.
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Figure 3. This community consists of three species in whichd 23 is larger than d 13 andd 12. The abundances
(w ) and distances result in values of EW12 = EW13 = 1

6 ,PEW12 = PEW13 = 0.5, and FEve = 1.

Figure 4. Variability of FEve estimates for the actual abundances of eleven virulence phenotypes of P.
graminis , and the Y- and Z- modification of abundances (see Table 3 for details).

Figure 1
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Figure 2

Figure 3
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Figure 4
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