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Abstract

Salts in the root zone have high spatial variability, changes rapidly and adversely affects soil quality and crop productivity.
Rapid detection of electrical conductivity (EC) using visible-near infrared (Vis-NIR) and midinfrared (MIR) spectroscopy can
alleviate the adverse effects on soil and plant, which through conventional method is time consuming. Soils were collected from
the Indo-Gangetic plains and analyzed for EC using conventional, Vis-NIR, MIR spectroscopy and there was wide variation
in EC measured by the conventional method. The spectral regions in 460-500 and 1890-1906 nm in the Vis-NIR region and
4200-4310, 5275-5280, 6660-6670, 7305-7310 and 8290-8300 nm in the MIR region were sensitive to detection of EC. Partial
least square regression (PLSR) outperformed random forest regression (RF), support vector regression (SVR), and multivariate
adaptive regression splines (MARS) both in Vis-NIR and MIR region during calibration. The ratio of performance deviation
(RPD), coefficient of determination (R2) and root mean square error (RMSE) of the validation dataset were used to assess the
prediction accuracy and the predictive performance of PLSR (2.44, 0.84, 0.21), RF (1.95, 0.81, 0.20), SVR (2.09, 0.78, 0.22)
and MARS (1.81, 0.73, 0.27) models. PLSR model performed very well in the Vis-NIR range; however, in the MIR range, RF
(1.43, 0.52, 0.20), followed by PLSR (1.40, 0.55, 0.35), performed better than SVR (1.39, 0.53, 0.35) and MARS (1.29, 0.44,
0.37). Vis-NIR spectroscopy with PLSR algorithm predicted EC better than MIR spectroscopy and would be the method of

choice for rapid estimation and prediction of EC in the study region.

1. Introduction

Salt affected soils are caused by excess accumulation of salt which are pronounced at the soil surface. Salt
is often derived from geological formations featuring shale, marl, limestone, sylvite, gypsum, and halite, but
variability of soil salinity is mostly due to parent material, soil type, and landscape position (Clay et al.,
2001). Moreover, salts can be transported to the soil surface by capillary action from brackish water tables
and can accumulate due to evaporation; they can also accumulate as a result of anthropogenic activities
such as fertilization or oil production. Soil salinization is a universal problem and current estimations of the
proportion of salt-affected soils in irrigated lands for several countries were 27 % in India, 20 % in Australia,
28 % in Pakistan, 50 % in Iraq and 30 % in Egypt (Stockle, 2013). The accumulation of soluble salts in the
root zone greatly affect plant growth, resulting in lower crop yields and adversely affecting the soil fertility
(Li et al. 2013).

Soil salinity is typically assessed by measuring the soil electrical conductivity in saturated paste extracts
(ECe) or by using extracts with different soil-to-water ratios (Sonmez et al. , 2008). Developed in the mid-
1950s, ECe is one of the most widely reported soil quality assessment parameters (Karlen et al., 2008), regular



monitoring of which is essential for efficient soil and water management and sustainability of agricultural
lands (Bilgili et al., 2011). Electrical conductivity can act as an indirect indicator of important soil physical
properties (Rhoades et al., 1999) and provides important information about the impact that farm practices,
such as irrigation and soil and crop management, have at both the field and regional scales. Therefore,
reliable information on the nature and spatial extent of soil salinity is a prerequisite for restoring fertility
and preventing further degradation. Thus, timely detection of the extent and magnitude of soil salinity is
important for agriculture practices.

It is difficult to obtain up-to-date soil salinity information by using conventional techniques, to identify and
monitor soil salinity because these techniques are time consuming and expensive and require high sampling
densities and frequencies; hence efforts are being made to obtain more cost-effective methods for mapping
soil salinity. During the last two decades, visible and near-infrared spectroscopy has been used as a rapid,
cost-effective and relatively accurate method for analyzing conventional soil properties (Nocita et al., 2015).
Previously, several studies indicated that pure sodium chloride is featureless in Vis-NIR regions because salt
is not a strong or direct chromophore (Metternicht et al., 1997). However, the presence of salts in soils
may result in subtle spectral responses when combined with—OH, which is common in soils. Therefore,
soil salinity can be characterized by soil spectral reflectance or salinity spectral indices using partial least
squares regression, artificial neural network, and stepwise multiple linear regression methods (Zhang et al.,
2011) and can be detected using high-resolution spectroscopy (Jin et al.,2015). Accordingly, interest in using
reflectance spectroscopy as a rapid and effective tool for mapping soil salinity has recently grown and several
studies have estimated salt contents of air-dried soils with reasonable accuracy using reflectance spectroscopy
(Yong-Ling et al., 2010).

Hyperspectral visible and near-infrared reflectance spectroscopy displays promise as a result of its perfor-
mance, accuracy and cost effectiveness in the determination of most soil properties (Shepherd and Walsh
2002). Various statistical modeling techniques help to correlate a single reflectance spectrum of soil to a
host of physical, chemical, mineralogical and microbiological attributes of that soil after proper calibration
and validation of models. Principal component regression (PCR), partial least squares regression (PLSR),
multivariate adaptive regression splines (MARS), artificial neural networks (ANN) are some of the commonly
used diagnostics for calibration and validation of hyperspectral models (Bilgili et al. , 2010). The reliability
of calibration of spectral data with chemical analysis data needs to be enhanced by factoring in variations on
account of land use and choice of scale. The calibration process also needs to be made indubitable by using
optimal sample size and sampling strategy. Once the calibration models between soil reflectance spectra and
soil variables have been established, they can be used to predict unidentified parameters. Several regression
methods based on visible near IR have been used to estimate soil salinity, and partial least-squares regression
is the most common (Farifteh et al. 2007; Bilgili et al. 2011). The PLSR approach has inference capabilities
that are useful for modelling a probable linear relationship between the measured reflectance spectra and
salt content in soils (Farifteh et al. 2007). The MARS method is considered a nonparametric method that
estimates complex nonlinear relationships among independent and dependent variables (Friedman 1991), and
it has been effectively applied in different fields (Bilgili et al. , 2010; Felicisimo et al., 2012) and generally
exhibits high performance results compared with other linear and non-parametric regression models, such as
principal component regressions, classification and regression trees and artificial neural networks.

This study was conducted to evaluate multivariate regression models to predict electrical conductivity using
Vis-NIR and MIR Spectra as a substitute to conventional soil analysis. The specific goals of this study were to
find out sensitive regions of the spectrum for modelling electrical conductivity and compare the performance
of multivariate regression models PLSR, RF, SVR, and MARS for predicting EC, both in the Vis-NIR and
MIR spectral region.

2. Materials and Methods
2.1. Study Area and Soil Sampling

The study was carried out in the middle Indo-Gangetic plain zone, India situated in the state of Uttar



Pradesh covering the administrative districts of Varanasi, Chanduali, Sant Ravidas Nagar and Mirzapur,
localized between 82°30° and 83deg30’ East and between 24deg30’ and 25deg30’ North covering a total area
of approximately 9604 km?(Fig 1). A total of 280 geo-referenced composite soil samples were collected from
surface (0-15 cm) layers after crop harvest. Stainless steel soil auger was used for collection of soil samples
and the coordinates of the sample points were recorded via hand held Global Positioning System (Model
Garmin etrexr ). Samples were air dried and ground in a wooden pestle and mortar to pass through a 2
mm sieve and electrical conductivity of soil was measured in 1:2.5 soil water suspensions using electrical
conductivity meter and expressed as dS m™! (Ghosh et al., 2012).

The processed soil samples were further homogenized in Retsch Mortar Grinder RM 200 for 3 minutes wherein
samples were grounded up to 0.5 mm size. The RM 200 is suitable for the homogenous and reproducible
sample preparation for precision of analysis. These ground soil samples were subsequently used for recording
spectral signature in alpha- MIR spectrometer and the processed soil samples that passed through 2 mm
sieve was used for obtaining spectral signature in NIR spectroradiometer.

2.2. Spectroscopic Measurement and Pre-Processing of Spectra
Collection of soil spectral data in Vis-NIR range

A portable spectroradiometer (Model: FieldSpec3 FR; Analytical Spectral Devices Inc., USA) equipped with
a contact probe (10 mm spot size) was used for spectral reflectance acquisition across the wavelength range
of 350 to 2500 nm, covering the visible (VIS), near-infrared (NIR) and shortwave-infrared (SWIR) regions.
About 50 g of soil was placed in a special container (10 cm diameter), and the soil surface was leveled with
a rubber cork used as a mallet (Mouazen et al., 2010). A spectrum from each quadrant of the container was
acquired by keeping the contact probe at the respective positions so as to have four reflectance spectra per
soil sample. For each soil sample, a reference spectrum was also collected using a 9.2-cm diameter Spectralon
white reference panel (Labsphere).

Collection of soil spectral data in MIR range

Air-dried, crushed and 0.5 mm ground samples, mentioned earlier, were filled in the cups meant of the Bruker
alpha Fourier Transformed MIR Spectrometer for recording spectral signatures. The FT-MIR was stabilized
for two hours to increase the amplitude count to more that 9000 and corrections were made for the background
during instrument calibration, before recording spectra in the near and middle MIR range. For the Vis-NIR
range, a spectroradiometer (Model: FieldSpec3 FR; Analytical Spectral Devices Inc., USA). The raw spectra
collected from the Vis-NIR range ASD FieldSpec(r) and OPUS file from and MIR-spectrometer respectively
were subsequently pre-processed using R software (version 3.3.3, The R Foundation for Statistical Computing
Platform). The most widely used pre-processing techniques is divided into two categories: scatter-correction
methods and spectral derivatives. Since many workers are of the openion that the soil properties can be
related to absorbance and reflectance and their first and second derivatives and it has been reported that
the absorption features in reflectance spectra were enhanced by derivative spectroscopy (Tsai, 1998), the

reflectance data was transformed to absorbance through the expression, absorbance=logig (m).

First and second derivatives were obtained from reflectance and absorbance data. The spectral derivative

method consists of first derivatives (FD) and second derivatives (SD) of the reflectance spectrum using the
equation (1) and (2) respectively.
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Where R, spectral reflection/absorbance; Yi, i*'wavelength / band. Further among scatter-correction meth-
ods, multiplicative scatter correction (MSC), standard normal variate (SNV) and other smoothing methods
include averaging spectra, and median filters, first order derivative, second order derivative and the Savitzky—
Golay transformation were used to reduce noise in spectral signals.

2.3 Selection of optimum spectral band width

A correlation analysis was made to establish the relationship between electrical conductivity with reflectance
of individual band of each spectral data set using SPSS software (version 23.0). The correlation analysis was
used to elucidate the most sensitive spectral regions for electrical conductivity.

2.4 Multivariate Regression Models

Regression analysis was done in R software and a number of regression models such as Partial Least Square
Regression (PLSR) , Random Forest Regression (RF) , Support Vector Regression (SVR) , Multivariate
Adaptive Regression Splines (MARS) were analysed using different R package ‘pls’, ‘randomForest’; ‘kernlab’
and ‘earth, plotmo, plotrix, TeachingDemos’ (Clyde et al., 2017), for PLSR, RF, SVR and MARS respectively
of R 3.3.3 (The R Development Core Team, 2017).

2.5 Model Evaluation

The coefficient of determination (R?) in validation dataset, root mean square error of prediction (RMSEP)
and ratio of performance deviation (RPD) were used to evaluate models. Ranking was made on the basis of
RPD values; higher the RPD better was the model performance. When two models had same RPD values,
R2values were referred to, and models with higher R?value better explained the fitted data. When two
models had same RPD and R? values, the RMSE values were referred to, and models with lower RMSE
gave better prediction/ validation of data than those with higher RMSE. The R? PMSE and RPD were
calculated as:
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Where, Ypred = predicted values; Ymean = mean of measured values; Y meas = measured values; n=
number of predicted or measured values with I = 1,2,...n; SDval= standard deviation of measured values
in the validation dataset; and RMSEP = root mean square error of prediction in validation dataset. The
procedure used for model calibration and validation is presented:

2.6 Statistical Analysis

The Kolmogorov—Smirnov test was used to assess the normality of all variables, and the Quantile-Quantile
(Q-Q) plots coupled with the skewness values, were used to evaluate the normality of the data sets (Vasu
et al., 2017). The measured EC was subjected to a descriptive analysis and minimum, maximum, mean,
standard deviation, coeflicient of variation, kurtosis and skewness were determined using SPSS version 23.0.

3. Result and discussion
3.1. Descriptive statistics of soil electrical conductivity

The data for electrical conductivity was not normally distributed as evident from the Q-Q plot (Fig 2a),
where, considerable deviation from the straight diagonal line at both ends can be observed and hence the data
was log transformed (to the base 10) to make it normally distributed (Fig 2b). The descriptive statistics
revealed considerable variability of soil electrical conductivity (Table 1). The minimum and maximum
values of electrical conductivity were 0.01 to 1.71 dS m™, with a mean value of 0.46 dS m™' and the values
of skewness and kurtosis were 1.0 and 2.34 respectively. Development of soil salinity is sometimes geogenic,
being affected by parent material and arid climate, but is largely anthropogenic in the Indo-Gangetic plains,



being affected by fertilization, crop production or management history. Soil salinity is generally measured as
electrical conductivity in the saturation paste or its liquid extracts, with soils having EC.> 4 dS m™! being
referred to as saline. It may be reiterated that the procedure for measuring EC in the present study is that
which is routinely followed in soil testing laboratories where EC is measured in the soil suspension (1: 2.5)
used to measure pH, and would be considerably higher when measured in saturation extract, normally used
to differentiate saline and non-saline soils. Moreover, soil salinity is an important parameter of estimating
soil quality, is highly variable, changes rapidly over small distances spatially, and hence a large number
of samples are required to adequately characterize soil salinity across landscapes (Aldabaa et al., 2015).
Further any increase in electrical conductivity, has great bearing on efficient soil and water management and
sustainable crop production (Bilgili et al., 2011). To alleviate the cost of extensive sampling, followed by
sample preparation and detailed laboratory analysis, hyperspectral reflectance spectroscopy is a lucrative
alternative for rapid characterization of salt content in soil, and justifies investigation.

3.2 Spectral preprocessing influence

Spectra obtained from Vis-NIR and MIR spectrometers were subject to preprocessing, such as absorbance,
first order derivative, second order derivative, multiple scatter correction and standard normal variate. Spec-
tra pre-treatment is a mathematical manipulation that enhances the spectral information and eliminates the
physical effect of light scattering, which can be due to particles of different sizes and shapes of samples
(Minasny and McBratney, 2008) and is thus the most important step before any chemometric modeling.
Different pre-processing transformations have been applied in numerous studies to transform soil spectral
data, remove noise, accentuate features, and prepare them for chemometric modelling. However, the first
derivative, second derivative, SNV and MSC manipulation did not greatly enhances some of the spectral
features compared to reflectance. Moreover reflectance (unprocessed spectra) presented the best performance
as compared to other preprocessing methods, irrespective of the models used (PLSR, RF, SVR or MARS)
(Table 2 & 3) and was thus considered to be the most robust spectral preprocessing method based on its
predictive performance for EC. Some earlier results (Moros et al. 2009) also suggest that calibration models
in which spectra were not preprocessed are more sensitive to changes compared to models for which pre-
processing was applied and Nawar et al. (2016) re-confirmed it, and used no preprocessing for prediction.
Reflectance has also been successfully used in other studies, to estimate soil properties (Viscarra Rossel et al.
2006, Nawar et al. 2016). Vibhute et al., (2018) reported electrical conductivity to be better calibrated (R?
= 0.80 and RMSE = 2.07) before pre-treatments than after pretreatment of spectra and Nocita et al. (2014)
applied continuous removal reflectance to predict the soil properties by diffuse reflectance spectroscopy from
soil samples throughout the European Union. The present study demonstrates that reflectance (unprocessed
spectra) (Fig 3 a & b) is better than any preprocessing tool for prediction of EC regardless of the method
applied and demonstrates its suitability for prediction of EC, both in the Vis-NIR and MIR spectral regions.

3.3. Correlation between reflectance data and soil properties

Absorption of radiation at molecular vibrational frequencies in the visible-infrared region forms the basis of
this spectroscopic technique and a plot of correlation coefficient in the Vis-NIR and MIR region (Fig. 4 a
& b) was used to establish the most sensitive spectral region for predicting of electrical conductivity. In the
Vis-NIR region, peaks were observed in the visible region at 460-500 nm (with low correlation coefficient)
and NIR region at 1890-1906 nm (correlation coefficient= +0.16) followed by a broad shoulder. Gaikwad
(2020) reported conspicuous absorption in the region close to wavelength 427, 487 and 1917 nm and weak
absorption features near 950, 1414, 2206, 2380 and 2460 nm; whereas Margate et al., (2001) reported most
sensitive spectral regions for determination of EC in soils of south Spain being 390-400, 615-625, 685-695,
800-810, 950-960, 1410-1420, 1935-1945, and 2350-2360 nm. The absorption features close to 1400 and 1900
nm represent the stretching of oxygen (O)-hydrogen (H) and bending of H-O-H of the free water and its
overtones (Nawar et al., 2014). In the MIR region, five peaks had correlation coefficient > 2, three of them
in the positive quadrant (5275-5280, 6660-6670, 7305-7310) and two in the negative quadrant (4200-4310,
8290-8300) and could be important spectral regions for predicting EC using models.

3.4 Calibrations and predictability of models



The calibration was carried out using randomly selected 196 samples from the dataset and validated on 84
samples using four algorithms, namely, partial least square (PLS), random forest (RF), multivariate adaptive
regression splines (MARS) and support vector regression (SVR) methodology. In the calibration Vis-NIR
data set, the values of R? and RMSE for PLSR model was 0.93, 0.12; using the RF model was 0.84, 0.15;
while using the SVR model was 0.80, 0.21 and MARS was 0.86, 0.12. In the calibration MIR data set, the
values of R? and RMSE values for PLSR, RF, MARS and SVR models were 0.94, 0.26; 0.84, 0.25; 0.80, 0.25
and 0.91, 0.25, respectively. R? is an important statistical measure which represents the proportion of the
difference or variance in statistical terms for a dependent variable which can be explained by an independent
variable or variables, and in short, determines how well data fit the regression model; whereas lower RMSE
indicates better fit of data. From the calibration datasets it is clear that PLSR model outperformed other
models in having higher R? and lower RMSE values (Table 2 and 3).

The predictive performance of PLSR, RF, SVR and MARS models for EC in the Vis-NIR range was evaluated
and the respective values for PLSR were (R? = 0.84, RMSE=0.21 , RPD=2.44); for RF were (R? = 0.81,
RMSE = 0.20, RPD=1.95); for MARS were (R? = 0.73, RMSE = 0.27, RPD=1.81) and for SVR were (R?
= 0.78, RMSE = 0.22, RPD=2.09). In the MIR dataset, the corresponding values for PLSR were (R? =
0.55, RMSE = 0.35, RPD=1.40); for RF were (R? = 0.52, RMSE = 0.20, RPD=1.43); for MARS were (R?
= 0.44, RMSE = 0.37, RPD=1.29); and for SVR were (R? = 0.53, RMSE = 0.35, RPD=1.39) respectively.
The threshold RPD values used to test model performance were the ones developed by Chang et al.,(2001),
where excellent models have RPD > 2, fair models have RPD between 1.4 and 2, and non-reliable models
with RPD < 1.4. Accordingly, PLSR was considered as an excellent model in the Vis-NIR range (RPD =
2.44) and RF as fairly good in the MIR range (RPD=1.43) (Table 2 and 3).

PLSR model has been successfully used in this study and has been used for estimating soil salinity and
other properties of soil elsewhere in the world, e.g., New South Wales, Australia (Janik et al., 2009), the
island of Texel in the northwest of The Netherlands (Farifteh et al., 2007a), the Yellow River delta region in
China (Weng et al., 2008) and the Hetao Irrigation District of Inner Mongolia in China (Qu et al. , 2009).
PLSR first decomposes the spectra into a set of eigenvectors and scores and performs a regression with soil
attributes in a separate step, thus actually using the soil information during the decomposition process. The
advantages of PLSR is its linearity and it takes advantage of the correlation that exists between the spectra
and the soil properties; thus, the resulting spectral vectors are directly related to the soil attribute (Geladi
and Kowalski, 1986). It is robust in terms of data noise and missing values, and balances the two objectives
of explaining response and predictor variation and performs the decomposition and regression in a single
step. Sidike et al.,(2014) showed that an accurate prediction of soil salinity can be made based on the PLSR
method (R® = 0.992, RMSE = 0.195) and Farifteh et al., (2007) suggested that PLSR analyses offered
accurate to good prediction of EC.

RF is a group of al algorithms that have been developed as an extension of Classification and Regression Tree
analysis to enhance the prediction performance and have been mainly used for classification problems (Olson
et al. 2017). The RF is a fast, simple data-driven statistical approach that has been used in digital soil
mapping and has shown good accuracy and is reported to be resistant to over-fitting and usually performs
well in problems with a low sample-to-feature ratio (Wei et al.,2012), but could not outperform PLSR in data
calibration for both spectral ranges and validation in the Vis-NIR range in the present study. SVR, which is
a machine learning algorithm based on the statistical learning theory which seeks to maximize the ability to
generalize using the structural risk minimization principle (Filgueiras et al. 2014) and MARS, which splits
the data into sub regions (splines) with different interval ending knots, which are the points in the slopes
where the regression coefficients change, and fits the data in each sub region using a set of adaptive piece
wise linear regressions (Friedman, 1991); both did not perform better than PLSR and RF in this study.

The scatter plots of measured and predicted values for soil electrical conductivity in the calibration Vis-NIR
and MIR datasets (Fig 5 and Fig 7) showed good relation between these two variables with high R? values
in both datasets. The scatter plots of measured and predicted EC in the validation NIR and MIR datasets
(Fig 6 and Fig 8) also suggest good model validation with high R? values. On comparing the RPD values



of Vis-NIR and MIR validation datasets, higher RPD values were obtained in the Vis-NIR region and hence
this region may be better suited for prediction of EC than MIR region. Soriano et al., (2014) reported that
Vis-NIR spectroscopy shows better result (R2= 0.60) in prediction of EC than MIR (R%= 0.27) as observed
in our study. Kodaira et al., (2013) reported that EC was generally poorly predicted by both MIR (R?=
0.26) and NIR spectroscopy (R?= 0.57) but, Minasny et al. (2009) predicted EC with good accuracy in the
MIR region using large variation of values in the dataset used.

5. Conclusion

The study was conducted in the Indo-Gangetic plain region to evaluate the performance of reflectance
spectroscopy in the Vis-Nir and MIR regions for estimation of electrical conductivity which is known to
affect crop productivity and soil quality. The procedure adopted for testing EC was one that is commonly
used in the soil testing laboratories of India and results suggested wide variation of electrical conductivity in
the study region. Spectral regions in 460-500 and 1890-1906 nm in the Vis-NIR region and 4200-4310, 5275-
5280, 6660-6670, 7305-7310 and 8290-8300 nm in the MIR region were identified as sensitive for estimation
of EC. The PLSR model outperformed other models in calibration and validation in the Vis-NIR range
and the PLSR model in calibration and RF model in validation was better in the MIR range (followed by
PLSR). Among the Vis-NIR and MIR regions, on the basis of higher RPD values, the data fitted better in
the Vis-NIR region and would be the region of choice for predicting EC in the study area. Thus reflectance
spectroscopy in the Vis-NIR range with PLSR algorithm is very well suited to replace conventional method
of estimating electrical conductivity in the intensively cultivated Indo-Gangetic plain regions of India.
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Figure 3. (a) Reflectance Spectra in the visual- near infrared (Vis-NIR) range (350-2500 nm) of soils.
Figure 3. (b) Reflectance Spectra in the middle infra-red (MIR) range of soils.
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Figure 4 (a). Correlation between electrical conductivity and reflectance in the visual- near infrared (Vis-
NIR) region

Figure 4 (b). Correlation between EC and reflectance in the middle infra-red (MIR) region

Figure 5 . Calibration model developed for EC in the NIR region using (a) Partial Least Square Regression
(PLSR) (b) Random Forest Regression (RF) (c¢) Support Vector Regression (SVR) and (d) Multivariate
Adaptive Regression Splines (MARS)

Figure 6 . Validation model developed for EC in the NIR region using (a) Partial Least Square Regression
(PLSR) (b) Random Forest Regression (RF) (c) Support Vector Regression (SVR) and (d) Multivariate
Adaptive Regression Splines (MARS)

Figure 7 . Calibration model developed for EC in the MIR region using (a) Partial Least Square Regression
(PLSR) (b) Random Forest Regression (RF) (c¢) Support Vector Regression (SVR) and (d) Multivariate
Adaptive Regression Splines (MARS)

Figure 8 . Validation model developed for EC in the MIR region using (a) Partial Least Square Regression
(PLSR) (b) Random Forest Regression (RF) (c¢) Support Vector Regression (SVR) and (d) Multivariate
Adaptive Regression Splines (MARS)
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