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Abstract

This work aims to study and observe all the existing score functions that help to rank the single-valued neutrosophic set (SVNS)

as well as interval-valued neutrosophic set (IVNS) to make a better choice among all the available alternatives in multi-criteria

decision-making (MCDM) problems. An intensive study about all these existing score functions reveals that there holds some

limitations in the method of ranking order which is misleading the results in decision-making problems. These observations

about the existing score functions of the SVNS and IVNS have been claimed with the help of well-defined examples, illustrating

an inefficiency of all these existing score functions. Thus, to propose a valid score function for ranking SVNS and IVNS for

making a better selection among all the other available alternatives in MCDM problems is still an open challenging research

problem.
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Abstract: This work aims to study and observe all the existing score functions that help to rank the single-
valued neutrosophic set (SVNS) as well as interval-valued neutrosophic set (IVNS) to make a better choice
among all the available alternatives in multi-criteria decision-making (MCDM) problems. An intensive study
about all these existing score functions reveals that there holds some limitations in the method of ranking
order which is misleading the results in decision-making problems. These observations about the existing
score functions of the SVNS and IVNS have been claimed with the help of well-defined examples, illustrating
an inefficiency of all these existing score functions. Thus, to propose a valid score function for ranking SVNS
and IVNS for making a better selection among all the other available alternatives in MCDM problems is
still an open challenging research problem.
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In the real-life uncertainty is the only thing which is certain in life, so the information available in the
real-world cannot be crisp always. This theory was incorporated by a deep thinker Zadeh who proposed a
new theory of sets i.e., fuzzy sets [27] which brought a huge revolution in the area of new thinking world
and mathematics. Fuzzy sets holds the idea that in practical life the information available is not always
certain or crisp but beholds the hand of uncertainty together and the study of this uncertainty would help
a lot in the process of decision making [28,29]. Later with the time some intriguing extensions of fuzzy
sets were developed like- intuitionistic fuzzy set (IFS) [2], interval-valued intuitionistic fuzzy set (IVIFS) [3],
Pythagorean fuzzy set (PFS) [24-26], interval-valued Pythagorean fuzzy set (IVPFS) [32], neutrosophic set
[18-20], SVNS [23] and IVNS [22] etc. In this note, a deep study have been made to analyze the ranking order
of some of the extensions of fuzzy sets like, IFS [8,9,30], PFS [32], IVPFS [4-7,11,12,16,17,31], SVNS [1,10,13-
15,21] and IVNS [10,13]. After a rigorous study it has been observed that there exist some restrictions in
the existing methods [10,13] for comparing SVNS and IVNS. Some well-defined counter-examples are chosen
where the uncertainty in the data is expressed in the form of SVNS and IVNS to claim that the existing
score function defined to rank the SVNS and IVNS results incorrectly. The aim of this note is to make
researchers aware that, the shortcomings pointed out by Nancy and Garg [10] in the existing methods [13]
is also occurring in the methods proposed by Nancy and Garg [10]. Therefore, to propose the valid methods
for the same is still an open challenging research problem.

2. A brief review of existing score functions

Nancy and Garg [10] pointed out the shortcomings of the existing methods [13] for the ranking of SVNS as
well for the ranking of IVNS. Also, to resolve these limitations, Nancy and Garg proposed new methods for
the same.

2.1. Existing score function

Sahin [13] proposed the following method for the ranking of two SVNS, A1 = 〈a1, b1, c1〉and A2 = 〈a2, b2, c2〉.
Find K (A1) = 1+a1−2b1−c1

2 and K (A2) = 1+a2−2b2−c2
2 , and check that K (A1) > K (A2) orK (A1) < K (A2)

orK (A1) = K (A2).

1. If K (A1) > K (A2) thenA1 > A2.
2. If K (A1) < K (A2) thenA1 < A2.
3. If K (A1) = K (A2) thenA1 = A2.

Sahin [13] also proposed the following method for the ranking of two IVNS,A1 =〈[
aL1 , a

U
1

]
,
[
bL1 , b

U
1

]
,
[
cL1 , c

U
1

]〉
andA2 =

〈[
aL2 , a

U
2

]
,
[
bL2 , b

U
2

]
,
[
cL2 , c

U
2

]〉
. FindL (A1) =

2+aL
1 +aU

1 −2bL1 −2bU1 −cL1 −cU1
4 andL (A2) =

2+aL
2 +aU

2 −2bL2 −2bU2 −cL2 −cU2
4 , and check that L (A1) > L (A2)

orL (A1) < L (A2) orL (A1) = L (A2).

1. If L (A1) > L (A2) thenA1 > A2.
2. If L (A1) < L (A2) thenA1 < A2.
3. If L (A1) = L (A2)then A1 = A2.

Nancy and Garg [10, Section 2, Def. 2.6, Ex. 2.1, pp. 379] considered two different SVNS,A1 =
〈0.5, 0.2, 0.6〉and A2 = 〈0.2, 0.2, 0.3〉 and showed that on considering the existing method [13], the
relation A1 = A2 is obtained. While, it is obvious that A1 6= A2. On the basis of this numerical ex-
ample, Nancy and Garg [10, Section 2, Def. 2.6, Ex. 2.1, pp. 379] claimed that the existing method [13] for
the ranking of SVNS is not valid.

It is pertinent to mention that the SVNS,A1 = 〈0.5, 0.2, 0.6〉and A2 = 〈0.2, 0.2, 0.3〉 can also be represented
as IVNS,A1 = 〈[0.5, 0.5] , [0.2, 0.2] , [0.6, 0.6]〉and A2 = 〈[0.2, 0.2] , [0.2, 0.2] , [0.3, 0.3]〉. It can be verified that
on considering the existing method [13], the relation A1 = A2 is obtained. While, it is obvious that A1 6= A2.
Hence, the existing method [13] for the ranking of IVNS is also not valid.

2.2. Proposed score function

2



P
os

te
d

on
A

u
th

or
ea

30
J
u
l

20
20

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

g
h
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
59

61
28

91
.1

91
34

65
9

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

To resolve the shortcoming discussed in Section 2.1 of the existing methods [13], Nancy and Garg [10,
Section 3, Def. 3.1, pp. 379] proposed the following method for the ranking of two SVNS,A1 = 〈a1, b1, c1〉
andA2 = 〈a2, b2, c2〉. FindN (A1) = 1+(a1−2b1−c1)(2−a1−c1)

2 andN (A2) = 1+(a2−2b2−c2)(2−a2−c2)
2 , and check

that N (A1) > N (A2) orN (A1) < N (A2) orN (A1) = N (A2).

1. If N (A1) > N (A2) thenA1 > A2.
2. If N (A1) < N (A2) thenA1 < A2.
3. If N (A1) = N (A2) thenA1 = A2.

Furthermore, Nancy and Garg [10, Section 3, Def. 3.2, pp. 381] proposed the following method for the rank-

ing of two IVNS,A1 =
〈[

aL1 , a
U
1

]
,
[
bL1 , b

U
1

]
,
[
cL1 c

U
1

]〉
andA2 =

〈[
aL2 , a

U
2

]
,
[
bL2 , b

U
2

]
,
[
cL2 c

U
2

]〉
. FindM (A1) =

4+(aL
1 +aU

1 −cL1 −cU1 −2bL1 −2bU1 )(4−aL
1 −aU

1 −cL1 −cU1 )

8 and

M (A2) =
4+(aL

2 +aU
2 −cL2 −cU2 −2bL2 −2bU2 )(4−aL

2 −aU
2 −cL2 −cU2 )

8 , and check that M (A1) > M (A2) orM (A1) < M (A2)
orM (A1) = M (A2).

1. If M (A1) > M (A2) thenA1 > A2.
2. If M (A1) < M (A2) thenA1 < A2.
3. If M (A1) = M (A2)then A1 = A2.

In this note, it is shown that, there exist two different SVNS A1 and A2 such thatN(A1) = N(A2) as well
as two different IVNS A1 and A2 such thatM(A1) = M(A2) i.e., the shortcomings, pointed out by Nancy
and Garg [10, Section 2, Def. 2.6, Ex. 2.1, Ex. 2.2, pp. 379] in the existing methods [13], is also occurring
in the methods proposed by Nancy and Garg [10, Section 2, Def. 3.1, pp. 379; Def. 3.2, pp. 381]. Hence, to
propose the valid methods for the ranking of two SVNS as well as the ranking of two IVNS is still an open
challenging research problem.

3. Limitations of proposed method for ranking of two SVNS

Let A1 = 〈0.8, 0.1, 0.6〉 and A2 = 〈0.8, 0.2, 0.4〉 be two SVNS, then according to the proposed method [10,
Section 3, Def. 3.1, pp. 379], discussed in Section 2.2, N(A1) = N(A2) = 0.5. Therefore, according to the
proposed method [10, Section 3, Def. 3.1, pp. 379], A1 = A2. While, it is obvious that A1 6= A2. Hence,
the proposed method [10, Section 3, Def. 3.1, pp. 379] for the ranking of two SVNS is not valid.

Similarly, let A1 = 〈0.1, 0.0, 0.1〉 and A2 = 〈0.3, 0.0, 0.3〉 be two SVNS, then according to the proposed
method [10, Section 3, Def. 3.1, pp. 379], discussed in Section 2.2, N(A1) = N(A2) = 0.5. Therefore,
according to the proposed method [10, Section 3, Def. 3.1, pp. 379], A1 = A2. While, it is obvious
that A1 6= A2. Hence, the proposed method [10, Section 3, Def. 3.1, pp. 379] for the ranking of two SVNS
is not valid.

4. Limitations of proposed method for ranking of two IVNS

LetA1 = 〈[0.1, 0.7] , [0.05, 0.15] , [0.1, 0.3]〉and A2 = 〈[0.2, 0.8] , [0.05, 0.15] , [0.2, 0.4]〉be any two IVNS, then
according to the proposed method [10, Section 3, Def. 3.2, pp. 381], discussed in Section 2.2,M(A1) =
M(A2) = 0.5. Therefore, according to the proposed method [10, Section 3, Def. 3.2, pp. 381], A1 = A2.
While, it is obvious that A1 6= A2. Hence, the proposed method [10, Section 3, Def. 3.2, pp. 381] for the
ranking of two IVNS is not valid.

Similarly, letA1 = 〈[0.1, 0.7] , [0.1, 0.1] , [0.1, 0.3]〉and A2 = 〈[0.2, 0.8] , [0.1, 0.1] , [0.2, 0.4]〉be any two IVNS,
then according to the proposed method [10, Section 3, Def. 3.2, pp. 381], discussed in Section 2.2,M(A1) =
M(A2) = 0.5. Therefore, according to the proposed method [10, Section 3, Def. 3.2, pp. 381], A1 = A2.
While, it is obvious that A1 6= A2. Hence, the proposed method [10, Section 3, Def. 3.2, pp. 381] for the
ranking of two IVNS is not valid.

It is observed that several such examples are occurring like this, i.e., letA1 =
〈[0.1, 0.7] , [0.0, 0.2] , [0.1, 0.3]〉andA2 = 〈[0.2, 0.8] , [0.0, 0.2] , [0.2, 0.4]〉also, let another example

3
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be,A1 = 〈[0.1, 0.2] , [0.0, 0.0] , [0.1, 0.2]〉andA2 = 〈[0.4, 0.5] , [0.0, 0.0] , [0.4, 0.5]〉and we observe that each
example according to the proposed method [10, Section 3, Def. 3.2, pp. 381], discussed in Section 2.2,
results intoM(A1) = M(A2) = 0.5 declaring that A1 = A2. While, it is obvious that A1 6= A2. Hence, the
proposed method [10, Section 3, Def. 3.2, pp. 381] for the ranking of two IVNS is not valid in its present
form.

5. Conclusion

Thus with an intensive analysis, it is clearly observed that Nancy and Garg’s proposed method [10, Section
3, Def. 3.1, pp. 379] for the ranking of two SVNS as well as the Nancy and Garg’s proposed method [10,
Section 3, Def. 3.2, pp. 381] for the ranking of two IVNS fails to find the correct ranking order and hence
stands invalid. To propose the valid methods for the same may be considered as a challenging future research
problem.
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